CONTENTS

Chapter		Section		Page No
1	INTRO	DUCTION	•••••	. 1
	1.1	INTRODUCTION	•••••	2-19
	1.2	CONCLUSION	•••••	20
2	PRELIM	MINARIES	••••	21
	2.1	INTRODUCTION		22
	2.2	CATCHMENT AREA USED IN ANALYSIS		22
	2.3	DEFINITION OF WEATHER AND CLIMATE	••••	23-25
	2.4	FORMULATION OF PREDICTION PROBLEM		25-29
	2.5	ARTIFICIAL NEURAL NETWORK (ANN)		29-47
	2.6	FOURIER SERIES FOR ONE VARIABLE		47-50
	2.7	DOUBLE FOURIER SERIES (DFS)		51-59
3	TEMPE	CTION OF WEEKLY SOIL ERATURES BY HARMONIC YSIS AND ARTIFICIAL NEURAL ORKS		60
	3.1	INTRODUCTION	• • • • • • • • • • • • • • • • • • • •	61-63
	3.2	PROBLEM FORMULATION	••••	63-64
	3.3	PREDICTION OF SOIL TEMPERATURE BY ANN USING 3-INPUTS AND 3-OUTPUTS		64-67

	3.4	METHOD II: NEURAL NETWORK APPROACH (MCCULLOCH TYPE NEURONS)		68-77	
	3.5	METHOD III: PREDICTION OF ST BY THREE INPUTS USING MULTILAYERED ANN		78-79	
	3.6	I CASE (b) PREDICTION OF ST BY TWO INPUTS USING MULTILAYERED ANN		79-82	
	3.7	I CASE (c) PREDICTION OF ST BY ONE VARIABLE, (TIME) USING (ANN) WITH BACKPROPAGATION ALGORITHM		82-94	
	3.8	SOIL TEMPERATURE PREDICTION BY HARMONIC ANALYSIS		94-120	
`	3.9	CONCLUSION		120	
4	GAMM. TYPE-II	ALL PROBABILITY ANALYSIS BY A, GUMBEL AND FISHER TIPETT DISTRIBUTIONS AND CIAL NEURAL NETWORKS		121	
	4.1	INTRODUCTION	••••	122-124	
	4.2	PROBLEM FORMULATION	•••••	124-128	
	4.3	DETAILS OF THE FIRST PROBLEM : RTPA		128-156	
	4.4	SECOND PROBLEM	***********	156-171	
	4.5	CONCLUSION FOR USED TWO METHODS		171	
5	BY DO	TION OF ANNUAL RAINFALL JBLE FOURIER SERIES AND CIAL NEURAL NETWORKS		172	
	5 1	INTRODUCTION		173	

,

,	3.4	METHOD II: NEURAL NETWORK APPROACH (MCCULLOCH TYPE NEURONS)		68-77
	3.5	METHOD III: PREDICTION OF ST BY THREE INPUTS USING MULTILAYERED ANN		78-79
	3.6	I CASE (b) PREDICTION OF ST BY TWO INPUTS USING MULTILAYERED ANN		79-82
	3.7	I CASE (c) PREDICTION OF ST BY ONE VARIABLE, (TIME) USING (ANN) WITH BACKPROPAGATION ALGORITHM	•••••	82-94
	3.8	SOIL TEMPERATURE PREDICTION BY HARMONIC ANALYSIS		94-120
`	3.9	CONCLUSION		120
4	GAMM. TYPE-II	ALL PROBABILITY ANALYSIS BY A, GUMBEL AND FISHER TIPETT I DISTRIBUTIONS AND CIAL NEURAL NETWORKS		121
	4.1	INTRODUCTION	*******	122-124
	4.2	PROBLEM FORMULATION		124-128
	4.3	DETAILS OF THE FIRST PROBLEM : RTPA		128-156
	4.4	SECOND PROBLEM	•••••	156-171
	4.5	CONCLUSION FOR USED TWO METHODS		171
5	BY DO	CTION OF ANNUAL RAINFALL UBLE FOURIER SERIES AND CIAL NEURAL NETWORKS		172
	5.1	INTRODUCTION		173

	5.2	PROBLEM FORMULATION	•••••	173-186
	5 3	DATA		186-188
	5.4	DOUBLE FOURIER SERIES		188-195
	5.5	ARTIFICIAL NEURAL NETWORK (ANN) APPROACH		195-202
	5.6	COMPARISON OF THE RESULTS BY TWO METHODS DFS AND ANN		202-203
	5.7	CONCLUSION		203
6	TEMPE LOGAN	ATION OF HOURLY AIR RATURES BY WILLIAM AND N MODEL, DOUBLE FOURIER AND ARTIFICIAL NEURAL DRKS		204
	6.1	INTRODUCTION		205-206
,	6.1 6.2	INTRODUCTION PROBLEMS FORMULATION		205-206 206-212
,		PROBLEMS FORMULATION		206-212
,	6.2	PROBLEMS FORMULATION		206-212 212-219
	6.2	PROBLEMS FORMULATION CASE (II)		206-212 212-219 219-220
	6.2 6.3 6.4	PROBLEMS FORMULATION CASE (II) DATA DETAILS OF THE METHODS		206-212 212-219 219-220 220-236
7	6.2 6.3 6.4 6.5	PROBLEMS FORMULATION CASE (II) DATA DETAILS OF THE METHODS AND RESULTS COMPARISONS OF THE USED		206-212 212-219 219-220 220-236
7	6.2 6.3 6.4 6.5	PROBLEMS FORMULATION CASE (II) DATA DETAILS OF THE METHODS AND RESULTS COMPARISONS OF THE USED FOUR METHODS		206-212 212-219 219-220 220-236 236-237