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2.1 INTRODUCTION

In this chapter, we provide the necessary basics for the tools we use for 

prediction of rainfall, air temperature and soil temperature and also discuss some 

background of the problems and data.

2.2 CATCHMENT AREA USED IN ANALYSIS

The Gujarat state of India occupies the 5 98 per cent area of the country in 

the western part, located at latitude of 20°1'N to 24°7' N and longitude of 68°4' E 

to 4°4'E, which covers 1, 95, 984 square kilometers. Western border of the state is 

coastline and therefore, it is one of the important maritime states in the country. 

The southwest monsoon brings rains in the state and this influences the 

atmospheric condition. The physiography and Thar Desert also influence the 

physical condition in the state. Climatically, most part of the state falls in sub- 

humid (south) semi arid (Middle) and arid (Western) zone in the northern and 

northwestern extremities.

In the present study, we use rainfall data series (DS) of annual rainfall 

froml958 to 2006, soil temperatures DS from 1982-2005, hourly air temperatures 

of the year 1992 are observed at Observatory, Anand agricultural University, 

Anand, In chapter 4, for extreme Value Analysis, we use daily data from 1901 to 

1992 of 58 stations of 8 different Agro-climatic zones observed by India 

Meteorological department, Air Port, Ahmedabad.
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2.3 DEFINITION OF WEATHER AND CLIMATE

I) WEATHER (Ghadeker, [39])

Physical state of the atmosphere at a particular place and time is called 

weather. Weather is a result of interactions of soil-air-water-solar radiations. The 

instantaneous result of these interactions can be measured by 

sensors/instruments in the observatory. It is measured in terms of wind speed, 

temperature, humidity, atmospheric pressure, cloudiness, and precipitation. In 

most places, weather changes from hour-to-hour, day-to-day, and season-to- 

season.

Thus, observed weather parameters always dynamic in nature. Weather of 

individual season decides the crop yield in that particular season. Adverse 

weather results in crop failure or loss in yield and compels short term planning 

Weather on micro-scale can be modified. For example mulching, solarization, 

covering the field with different plastic cover, irrigation, etc.

II) CLIMATE

The long period average of weather elements in a region is known as 

climate. Thus climate is derived information on regional basis and it constitutes 

geographical information Climates are classified as desert, continental, marine, 

savanna and tropical. Climatic conditions of a region decide the suitablity of the 

crop to be grown. It decides crop yield potentiality in a region and it is basis in a 

long term planning in the agriculture sector
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2.3.1 WEATHER AND CLIMATE PREDICTION

Prediction of climate is a difficult task. Human being was trying to predict 

the climate since its civilization by astrological methods. Advent of computer 

and electronic technology facilitate the scientists for prediction of climate is a 

more efficient way.

There are number of large computer models called General Circulation 

Models, or GCMs, that have been built to study and predict climate. These 

models use the basic laws of science (conservation of mass, energy and 

momentum etc.) to represent the large-scale circulations and interactions of the 

earth -atmosphere system.

In order to understand and predict the climate system better, one has to 

understand the basic climatic processes. Many ongoing research programs, both 

in the Umted States, and elsewhere around the world, are dedicated to 

producing this better basic knowledge.

The climate system is extraordinarily complex and one may never be able 

to predict fully how it will respond. Indeed, within limits it may even be a 

"chaotic system," which would mean that precise predictions would never be 

possible.

However, the weather elements are express as climatic parameters by 

Mathematical terms, like normal measurements (Conard [22])

(a) Estimation of central tendency OR Mean values of the major elements.



Chapter 2 25

(b) Estimation of periodic, quasi-periodic or non-periodic variability m 

nature/dispersion about the averages.

Climatic variability gives major problems from agriculture system and 

food production year-to-year.

2.3.2 WATER CYCLE

The hydrological cycle of earth atmosphere is one of the example in which 

water evaporate from the water body and vegetation due to incident of solar 

energy and thereby maintaining the temperature of atmosphere. Evaporated 

water in the gaseous form diffuse in atmosphere and condensed leads to 

waterfall that is Rainfall. This rainwater again gains as a runoff and accumulates 

in reservoir, infiltrate in soil and recharge groundwater level, runoff in the river 

and sea. These rainfall activities also control the air and earth temperature 

2.4 FORMULATION OF PREDICTION PROBLEM

Man has built up his progress through information and knowledge of his 

surrounding regions. In many situations, he requires unavailable information for 

planning and acting therefore, he tries to forecast (predict) that information using 

his available knowledge about phenomena that have already occurred or may 

occur in the future.

Thus, without having data or information one can make a judgment 

forecast and with availability of information one can approach/make forecast 

using statistics or mathematics laws, which has high accuracy in composition to
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judgment forecasts. Types of forecasts release by India Meteorological 

Department (IMD) are

1) Short Range Forecasts (SRF): Covering a period of a few hours to two days

2) Medium Range Forecasts (MRF): Covering a period from 3 to 10 days.

3) Long Range Forecasts (LRF). Covering a period of a month or a season.

2.4.1 DETAILS OF THE INSTITUTION ISSUING WEATHER

PREDICTION

The India Meteorological Department (IMD), India issues long-range 

forecasts of all - India monsoon rainfall every year. To give accurate LRF, first 

approach is by selecting predictors by having highest correlation coefficients 

(Krishna Kumar [88]) and then to develop a model like Multiple Regression 

Multiple Power Regression or Dynamic Stochastic Transfer Techniques etc.

Atmospheric study is global in nature, so it requires international co­

operation. Therefore, there is a formation of World Meteorological Organization 

(WMO) as a special Agency of United Nations. Advantage of satellites, 

meteorology has global viewing continuous homogenous data, which was highly 

needed for prediction of weather parameters. The satellite programmes advance 

their research and adding new sensors to improve the capability of prediction or 

study of the atmosphere. Now many countries have their own meteorological 

satellites and the data's being made available to other countries through the 

global telecommunication network.
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2.42 NATURE OF THE RAINFALL IN INDIA

Rainfall is a discrete variable process m any part of the India 

Commencement of rainfall may be early or delayed, frequent breaks in July or 

August, it terminate earlier or persist longer time than usual and also rainfall 

may be very unevenly distributed in space and time since it may be excessive in 

one part of the country and deficient in another part (Rao [127]) Thus 

distribution of rainfall in India is erratic and its behavior unpredictable as climate 

changes (Pramanik et al. [123]) due to its determination largely by the physical 

features and orientations of mountains and plateau with regard to prevailing 

winds. About 851 % of total rainfall of the year occurs during the southwest 

monsoon (June-September) season.

2.43 DIFFERENT METHODS USED FOR PREDICTION OF

RAINFALL BY INDIA METEROLOGICAL DEPARTMENT (IMD)

There is a tremendous impact of rainfall patterns in agricultural planning 

(Sharma et al. [137]; Sharma et al. [138]). Long Range Forecast (LRF) is a 

challenging task especially in the modem world where one is facing the major 

environmental problems of global warming. Therefore, accurate long-range 

forecast of rainfall requires proper method in right direction. Most of the 

approaches to forecast the rainfall uses either a Dynamical Prediction Model or 

Statistical Methods.

In general, rainfall is highly non-linear phenomena in nature exhibiting 

what is known as the 'butterfly effect' i.e the fluttering wings of a butterfly at one
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comer of the globe may ultimately cause a tornado at another geographically far 

away place. Lorenz [101] discovered this phenomenon, which is popularly 

known as the butterfly effect.

To give accurate LRF, first approach is by selecting predictors by having 

highest correlation coefficients and then to develop a model like

(I) Multiple Regressions (Murphy et al, [110]; Walker [164], Thapliyal [153])

(II) Auto Regressive Integrated Moving Average Technique (ARIMA) 

(Gowariker et al [47]; Vaziri [162]).

(III) Multiple Power Regression ( Gowariker [47]; Paranjpe et al [119])

(IV) Dynamic Stochastic Transfer Techniques etc (Thapliyal [152]) and

(V) Harmonic Analysis Technique

In recent years, new modeling technique Artificial Neural Network 

(ANN) (Wiberg et al [168]) is mainly used by statistician, mathematician and 

meteorologist etc. as an alternative for solution of complex problem like 

prediction of monsoon rainfall or rainfall runoff, temperature, antifungal activity, 

medicine etc.

An attempt has been made in this thesis to predict the 

(i) Annual Rainfall (ARP),

(li) Weekly Rainfall (WRF) and its probabilities (PBs),

(iii) Highest One day Maximum Rainfall (HOMRF),
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(iv) Hourly Air Temperatures (HAT) and weekly Soil Temperatures (ST), 

for Anand station of Gujarat by using the artificial neural network 

(ANN) techniques.

2.5 ARTIFICIAL NEURAL NETWORK (ANN)

An Artificial Neural Network (ANN) is a flexible mathematical structure, 

which is capable of identifying complex non-linear relationship 0acques et al 

[72]) between input and output data set. ANN models have been found useful 

and efficient, particularly in problems for which the characteristics of the 

processes are difficult to describe using Mathematical equations (Zaldivar et al 

[173]) Thus, ANN provides input-output simulation and forecasting models in 

situations that do not require modeling of the internal structure of the 

parameters.

An Artificial Neural Network (ANN) is a massively parallel distributed 

processor made up of highly networked simple processing umts (called neurons; 

Fig: 2.1) which has natural ability for storing experimental knowledge and 

making it available for future use. The ANN is a new information-processing 

paradigm that is motivated by the working of brain in human or other species for 

the processing of information It resembles the brain in two things: 

i. Knowledge is acquired by the network from its environment through a 

learning process

li. Inter-neuron connection strengths (known as synaptic weights) are used to 

store the acquired knowledge.
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NEURON ELEMENTS

Fig: 2.1

These Artificial Neural Network can be interpreted as adaptive machines, 

which can store knowledge through the learning process. Neural Network 

methods are applied for example, in hydrological prediction (Kingston et al 

[85]), pattern recognition, vision, speech recognition, classification, and control 

systems.

2.5.1 A NEURON

A more sophisticated neuron (Figure 2.2 (a)) is the McCulloch and Pitts 

model (MCP). The first step toward artificial neural networks came in 1943 when 

Warren McCulloch, a neuron physiologist, and a young mathematician, Walter 

Pitts, wrote a paper on how neurons might work. They modeled a simple neural 

network with electrical circuits.

The weight associated with connection of an input is a number which 

when multiplied with the input gives the weighted input. These weighted inputs 

are then added together and if they exceed a pre-set threshold value, the neuron 

fires. In any other case the neuron does not fire
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A MCP NEURON

The MCP neuron has the ability to adapt to a particular situation by 

changing its weights and/or threshold. Various algorithms like Delta rule and 

the Back error propagation rule etc. are used to train a network to assign the 

right values of weights.

A Single Artificial Neuron - Perceptron

Fig: 2.2(b)
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A smgle artificial neuron model (perceptron) consists of the following 

components (Fig1 2.2 (b)):

1. Input x : It is an n vector x = [xl,x2,...xn]T inputted to the neuron.

2. A set of synaptic weights wt i-1,2....... n, representing the connecting

strength of a neuron.

3. An adder (]T ) for summing the weighted inputs to a neuron.

4. A transfer (activation) function f for limiting the amplitude of the output of a 

neuron.

5. The bias 6 has the effect of increasing or lowering the net input of the 

activation function, depending on whether it is positive or negative 

respectively. The bias ‘O' has the effect of applying an affme transformation 

to the input of the neuron

n
6. Output y. The output is computed as y=f (Zw<x«~ 9 )■

»=i

2.5.2 TYPES OF ANN

There are many types of neural network models. The models can be 

categorized m many ways. One possibility is to classify them on the basis of the 

learning principle. There are five basic learning rules. Those are

1. Error correction learning: Rooted in optimum filtering

2. Memory based Learning: Operates by memorizing the training data 

explicit.
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3. Hebbian Learning- Inspired by neurobiological considerations.

4 Competitive Learning: Inspired by neurobiological considerations.

Boltzmann Learning: Based on ideas borrowed from statistical mechanics 

There are two types of ANN based as learning methods:

(I) Supervised learning

and

(II) Unsupervised learning.

(I) SUPERVISED LEARNING

In supervised learning network is provided with example cases and 

desired responses. The network weights are then adapted in order to minimize 

the difference between network outputs and desired outputs.

Examples of supervised learning are

1. Perception learning rule

2. Delta learning rule

3. Widrow-Hoff learning rule

(II) UNSUPERVISED LEARNING

In the unsupervised learning the network is given only input signals, and 

the network weights change through a predefined mechanism, which usually 

groups the data into clusters of similar data.

Examples of Unsupervised Learning are 

1. Hebbian Rule

2. Winner-take-all
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Artificial Neural Network are also classified by their topology like. Feed- 

Forward Network, Multi-layer Perceptrone Network (MLP), Recurrent 

Network etc.

The MLP network consists of several layers of neurons. Each neuron in a 

certain layer is connected to each neuron of the next layer. There are no 

feedback connections. The neuron weights are considered as free parameters. 

The most often used MLP-network consists of three layers:

(i) Input layer, (ii) Hidden layer and (ill) Output layer.

A three layers MLP network is shown in the figure 2.3.

A THREE LAYER MLP NETWORKS

Fig: 2.3

As an N-dimensional input vector is fed to the network, an M-dimensional 

output vector is produced. The network can be understood as a function from the 

N-dimensional input space to the M-dimensional output space
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The ANN models are researched in connection with many power system 

applications, short-term rainfall forecasting applications etc. Most of the 

suggested models use MLP networks. In the models, inputs variables to the 

network are generally the present and past data values and outputs variables 

are future data values. But the network is trained using actual historical data.

The basic device (neuron) of the network is a perceptron. This is a 

computation unit, which produces its output by taking a linear combination of 

the input signals and by transforming this by a function called activity function. 

The output of the perceptron as a function of the input signals can be given by, 

y = /'(^Twtx, + 0)where, y is the output variable; i=l,2,3...n , x, is the input

variables (signals), wx is the synaptic weights of the neurons,© is the bias term 

(another neuron weight) with fixed point 1 and f is the activity or transfer 

functions.

The activation function used in the hidden layer is usually nonlinear 

(logistic sigmoid or hyperbolic tangent) and the activation function in the 

output layer can be either nonlinear (a nonlinear-nonlinear network) or linear (a 

nonlinear-linear network). Possible forms of the activity function are linear 

function, step function, logistic function and hyperbolic tangent function etc. 

These are shown below (Cybenko [25]):
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/ (x) ~~—is the logistic Sigmoid Function.

f(x) = tanhfa x) is the Hyperbolic Tangent Function.

/(*) = x
0

when x>0 
when x< 0

is the Piecewise Linear Function.

where,' a' is a constant and 'x' is the input variable to the neuron.

The inputs xt s is multiplied by the connecting weights Wy. The weighted 

inputs x, * Wij to each of the hidden neuron is added and passed through the 

activation function. Input to the first neuron m the hidden layer is- 

X2W11+X2W21+X3W31+X4W41+ +X«W«1 

The output of the hidden neuron of the jth-hidden layer would be:

h
(1 + e

-E

The output of the hidden neurons is then multiplied by the connection 

weights to the output neuron, Wk and passed on to the output layer. The 

weighted outputs of the hidden layer are added together and then passed 

through the activation function. The input to the output neuron is

hi Wl+I12W2+ ha W3+fu W4+ho W5+he W6+ll7W7 + + hnWn

The output of the network would then be:

h
(1 + ' >)
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The neural network of this type can be understood as a function 

approximate. It has been proved that given a sufficient number of hidden layer 

neurons, it can approximate any continuous function from a compact region of 

rn to RM at an arbitrary accuracy.

By giving training to the network, network weights are adjusted according 

to the given output from Historical data.

Thus, the network learns through examples. The idea is to give the 

network, input variables with desired outputs. To each input signal the network 

produces an output signal, and the learning aims at minimizing the sum of 

squares of the differences between desired and actual outputs. The learning is 

carried out by trial and error, i.e. repeatedly feeding the input-output patterns to 

the network. One complete presentation of the entire training set is called an 

epoch. The learning process is usually performed on an epoch-by-epoch basis 

until the weights stabilize and the sum of squared errors converges to some 

minimum value The mostly used learning algorithm for the MLP-networks is 

the back propagation algorithm. This is a specific technique for implementing 

gradient descent method in the weight space, where the gradient of the sum of 

squared errors with respective to the weights is approximated by propagating 

the error signals backwards m the network. The Equation for training in the back 

propagation algorithm in the output layer is

w,(n+l) = Wj(n) + r y *( y' - y )* (1- y)*h,* w,*(l- h,)*x,

where, y' is the actual output,
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y: the output of the network, 

r: the learning factor (O.ltoO.OOl), 

n. the number of learning cycles(Epochs), 

xf the input that corresponds to the output y', 

hj output of the hidden neuron of the j^-hidden layer 

2.5.3 LEARNING LAW: THE DELTA RULE

Delta rule, which is the continuous version of the discrete perception 

learning rule. Thus, it is also known as the continuous perceptron rule. The 

learning signal for this rule is called delta and is defined by

r = [d-f(WTx)]f\wrx)

The term /'(wTx) is the derivative of the activation function f(net) 

computed for net = wTx .

This rule is based on the simple idea of continuously modifying the 

strengths of the input connections to reduce the difference that is delta between 

the desired output value and the actual output of a processing element. This rule 

changes the synaptic weights in the way that minimizes the mean squared error 

of the network. This rule is also referred to as the Widrow-Hoff [169] Learning 

Rule and the Least Mean Square (LMS) Learning Rule. The way that the Delta 

Rule works is that the delta error in the output layer is transformed by the 

derivative of the transfer function and is then used in the previous neural layer 

to adjust input connection weights. In other words, this error is back propagated



Chapter 2 39

into previous layers one layer at a time. The process of back-propagating the 

network errors continues until the first layer is reached. The network type called 

Feed forward, Back-propagation derives its name from this method of 

computing the error term

The explanation of the delta learning rule is as shown below:

Let x(k) = [xi(k),x2(k),...,xll(k)]T ,k -1,2, .p be p input patterns and d(k), 

k= l,2,..p be the corresponding output patterns of the perceptron network. Let 

y(k), k =1,2,.. ,p be the output of the network with input x(k) and weight w(k) . 

Let e (k) = [d(k)-y(k)] be the error when we inputted the kth pattern. The mean 

squared error is given by

E = -(d(k)- y(k))2 

E = ±[d(k)~f(wrx)]2

We want to minimize E with respect to w. The error (or energy) E is decreasing at

the highest rate in the direction of the negative gradient of E.

Highest rate minimizing direction = - gradient E.

= -id - f(wTx)](-f (wTx)x)
= [d-f(wTx)]f\wTx)x

Let T] be a positive constant and we take the increment vector as

A wt =rj (d - f(wTx))fl {wTx)x 

Thus weight update rule to minimize the error E is given by

w(k +1) = w(k) + ?7 {d - f (wrx)) fl (wTx)x
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When using the delta rule, it is important to ensure that the input data set 

is well randomized Well-ordered or structured presentation of the training set 

can lead to a network, which cannot converge to the desired accuracy If that 

happens, then the network is incapable of learning the problem.

2.5.4 APPROXIMATION CAPABILITIES OF FEED FORWARD NEURAL 

NETWORK FOR CONTINUOUS FUNCTIONS 

We have the well-known approximation theorem:

❖ WEIERSTRASS'S APPROXIMATION THEOREM 

Let g be a continuous real- valued function defined on a close interval 

[a,b]. Then, given any s positive, there exists a polynomial y (which depend 

on,? ) with real coefficients such that

| g(x) - y(x) ] < s for every x e [a,b]

We now present some fundamental results in the form of theorems, on 

continuous function approximation capabilities of feed forward nets. The mam 

result is that two-layer feed-forward net with a sufficient number of hidden 

units, of the sigmodial activation type, and a single linear output is capable of 

approximating any continuous function /: R" -» R" to any desired accuracy. 

Before formally stating this result, let us consider some early observations on the 

implications of a classic theorem on function approximation, Kolmogorov's 

theorem, which motivates the use of layered feed forward nets as function 

approximators.



Chapter 2 41

❖ KOLMOGROV'S THEOREM

It has been suggested (Hecht [61]) that Kolomogrov's theorem concermng 

the realization of arbitrary multivariate functions provides theoretical support for 

neural network that implement such function.

❖ THEOREM : Any continuous real-valued functions /(x,,x2,..,xn) defined

on [0,1]", n > 2, can be represented in the form •

2n+l «

fix y,X2,..,Xn) = £g,[£ ?„(*,)]
M /=1

where the gt terms are properly chosen continuous functions of one variable, and 

the <p functions are continuous monotonically increasing functions independent 

of/

The theorem states that one can express a continuous multivariate function 

on a compact set in terms of sums and compositions of a finite number of single 

variable functions.

2.5.5 SINGLE-HIDDEN-LAYER NEURAL NETWORK ARE UNIVERSAL 

APPROXIMATORS

Rigorous mathematical proofs for the universality of feed forward layered 

neural nets employing continuous sigmoid type, as well as other more general, 

activation units were given independently, by Cybenko[25].

Cybenko's proof is distinguished by being mathematically concise and elegant 

[it is based on Hahn-Banach theorem (2.5.8)].
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2.5.6 LIPSCHITZ CONDITION

A function f, from M to itself is said to satisfy a Lipschitz condition if 

there is some real number 0 < k < 1 such that, for all x and y in M,

d(f{x)J{y)) < kd(x,y).

The smallest such value of k is called the Lipschitz constant of /.

In mathematics, functions between ordered sets are said to be monotonic 

(or monotone, or isotone) if they preserve the given order.

2.5.7 BANACH FIXED POINT THEOREM

The Banach fixed point theorem (known as the contraction mapping 

theorem) is an important tool in the theory of metric spaces, it guarantees the 

existence and uniqueness of fixed points of certain self maps of metric spaces

❖ THEOREM

Let (X, d) be a non-empty complete metric space. Let T: X —> X be a contraction 

mapping on X, i e: there is a nonnegative real number q < 1 such that

d(TxtTy) < q ■ d(x,y)

for all x, y in X. Then the map T admits one and only one fixed point x* in X (this 

means Tx* = x‘).

Moreover, this fixed point can be found as below: 

start with an arbitrary element xo in X and define an iterative sequence by x« = 

Txn-i for n = 1, 2,3,... This sequence converges and its limit is x*
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2.5.8 THE BACK-PROPAGATION ALGORITHM

Units are connected to one another. Let WXJ be the weight of the connection 

from unit ux to unit u}. It is then convenient to represent the pattern of 

connectivity in the network by a weight matrix W whose elements are the 

weights Wij. Two types of connection are usually distinguished: excitatory and 

inhibitory. A positive weight represents an excitatory connection whereas a 

negative weight represents an inhibitory connection. The pattern of connectivity 

characterizes the architecture of the network.

A unit in the output layer determines its activity by following a two-step 

procedure.

First, it computes the total weighted input x,, using the formula-

l

where yx is the activity level of the ith unit in the previous layer and wXJ is the 

weight of the connection between the i * and the j* unit.

Next, the unit calculates the activity yj using some function of the total 

weighted input. Typically we use the sigmoid function-

1
v =---------s J t . ax,l + e J

Once the activities of all output units have been determined, the network 

computes the error E, which is defined by the expression:
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where yi is the activity level of the i* unit in the top layer and di is the 

desired output of the ith unit.

The back-propagation algorithm has four steps:

1. Compute how fast the error changes as the activity of an output unit is 

changed. This error derivative (EA) is the difference between the actual 

and the desired activity.

2. Compute how fast the error changes as the total input received by an 

output unit is changed. This quantity (El) is the answer from step 1 

multiplied by the rate at which the output of a unit changes as its total 

input is changed.

3. Compute how fast the error changes as a weight on the connection into an 

output unit is changed. This quantity (EW) is the answer from step 2 

multiplied by the activity level of the unit from which the connection 

emanates

/
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4. Compute how fast the error changes as the activity of a unit m the 

previous layer is changed. This crucial step allows back propagation to be 

applied to multilayer networks. When the activity of a unit in the previous 

layer changes, it affects the activities of all the output umts to which it is 

connected. So to compute the overall effect on the error, we add together 

all these separate effects on output units. But each effect is simple to 

calculate. It is the answer in step 2 multiplied by the weight on the 

connection to that output unit.

i®
EA==ir m &--- x—L

By using steps 2 and 4, we can convert the EAs of one layer of units into 

EAs for the previous layer This procedure can be repeated to get the EAs for as 

many previous layers as desired. Once we know the EA of a unit, we can use 

steps 2 and 3 to compute the EWs on its incoming connections

There are many variations to the learning rules for back-propagation 

network. Different error functions, transfer functions, and even the modifying 

method of the derivative of the transfer function can be used. Here, the error 

function, or delta weight equation, is modified so that a portion of the previous 

delta weight is fed through to the current delta weight. This acts, in engineering 

terms, as a low-pass filter on the delta weight terms since general trends are
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reinforced whereas oscillatory behavior is canceled out. This allows a low, 

normally slower, learning coefficient to be used, but creates faster learning.

The number of input-output pairs that are presented during the 

accumulation is referred to as an epoch. This epoch may correspond either to the 

complete set of training pairs or to a subset.

There are limitations to the feed forward, back-propagation architecture. 

Back-propagation requires lots of supervised training, with lots of input-output 

examples. Additionally, the internal mapping procedures are not well 

understood, and there is no guarantee that the system will converge to an 

acceptable solution.

2.5.9 APPLICATIONS OF ANN

Typical feed forward, back-propagation applications include speech 

synthesis from text, robot arms, evaluation of bank loans, image processing, 

knowledge representation, forecasting and prediction, and multi-target tracking 

etc. [5].

Neural network have broad applicability to real world business problems 

(Corne et al. [23]; Jorge Kazno [79]; Raman et al. [124]; Stamslaw [150]) In fact, 

they have already been successfully applied in many industries. Since neural 

networks are best at identifying patterns or trends in data, they are well suited 

for prediction or forecasting (Solomatine et al. [149]).

Their ability to learn by example makes them very flexible and powerful. 

There is no need to understand the internal mechanisms of the task. They are



Chapter 2 47

also very well suited for real time systems because of their fast response and 

computational times, which are due to their parallel architecture.

Basically, most applications of neural networks have following five 

categories:

1) Data association,

2) Data conceptualization,

3) Data filtering,

4) Prediction and Classification.

2.6 FOURIER SERIES FOR ONE VARIABLE (Grewal [48])

❖ PERIODIC FUNCTION

A function f (x) is said to be periodic if there exist a real number T for any 

x of the domain such that f (x+T)=f (x). P is said to be the fundamental period.

❖ REPRESENTATION OF FOUIER SERIES

Let f (x) be defined in the interval [0, Pj and determined outside of this 

interval by its periodic extension, and let P is the period. The Fourier series 

corresponding to f (x) is

(2.11)

where, the Fourier coefficients a„ and bn are

P
k=T,2,...
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Amplitude and phase angle defined by

z^ak2 +bk2 and 0=1 an („ \

j
k = 1,2, .

2.6.1 CONDITONS FOR A FOURIER EXPANSION (Wylie, [172]) 

❖ DIRICHLET'S CONDITIONS

Any function f (x) can be represented as a Fourier series (2.11) where ao, an 

and bn are constants, provided:

(I) f(x) is periodic, single valued and finite;

(II) f(x) has finite number of discontinuities at any one period,

(III) f(x) has at the most a finite number of maxima and minima

2.6.2 CONVERGENCE THEOREM OF FOURIER SERIES 

❖ THEOREM: GIBB'S PHENOMENON

Let f(x) be a function, which is twice differentiable, such that/(x),/(x), and 

f(x) are piecewise continuous on the interval (- n, n) . Then, for any, k)

the sequence of Fourier partial sums fN(x) , converges to ~(/(x ~)+ f(x +))/ as n

tends to oo. Where, the notations f(x+) and f(x-) are the right-limit and left-limit 

respectively of f at the point x.

where, fN(x) = a* +Sa«cos
N

vn - f 2 itnx\

l p J + 2J*„sm
n-l L p J (2.12)

Sum (2.12) is known as partial sum of Fourier series.
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If function s(f) is defined by

f(x) if f is continuous at x
«(/)(*) =■

/(x-)/(x+)
2

if f is discontinuous at x

then from the above theorem,
lim fN (x) = s(f)(x), for any xe[-;r,7r].

2.6.3 HARMONIC ANALYSIS

According to mathematical principles, any function which is defined at 

every point in the interval can be represented by an infinite series of sine and 

cosine functions. This series called a Fourier Series. The determination of a finite 

sum of sine and cosine terms is called "Harmonic Analysis "

Harmonic analysis which studies the representation of functions or signals 

as the superposition of basic waves. The basic waves are called 'harmonics', 

hence this analysis is known by "harmonic analysis."

Harmonic analysis is most common for the study of the periodical 

variations of the meteorological parameters. Harmonic analysis helps in the 

physical understanding of the regular fluctuations.

Harmonic analysis (HA) is used to apply for periodic variations 

(Achela,[2]) of the weather parameters and it is helpful to understand the regular 

fluctuations in the variable(Van wijk, [160])
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In the case of meteorological data, observations are not continuous but 

exits only at discrete points Temperature observation made at equal spacing, 

every week, every hour, or may be given of a month. Now, if only a finite 

number of points exist in the interval to be analyzed, a finite number of sines and 

cosines terms will be able to estimate all the observations.

In harmonic analysis different harmonics are isolated and each can be 

treated as independent identity and each may have different physical meaning 

For example, it may be possible that the first harmonic of the diurnal pressure 

cycle may be diurnal heating by the sun, but the second harmonic may be caused 

by the Sun's tide-producing force. In many cases it is possible to account for the 

complete variation at once, but the individual harmonics can be explained. 

Harmonic analysis helps to give the boundary condition in the case of 

temperature study by certain differential equation. For example, the vertical 

variation of the daily temperature cycle can be expressed as a solution of the 

equation of heat conduction, where, the temperature variation at the surface is 

given in terms of harmonic analysis

Since the annual and diurnal variation of weather parameters like soil and 

air temperature have a tendency to interact with each other, diurnal variation is 

studied on the basis of observations during the one complete cycle. Therefore, to 

predict the soil temperature, Harmonic Analysis (HA) is applied. Liakatas[99], 

have pointed out that HA affords the most precise and accurate method.



annual rainfall (ARF) in chapter 5 and hourly air temperature (HAT) in 

chapter 6.

First define an orthonormal to a system of continuous functions or 

square integrable functions defined on R, where R is a rectangle in the xy-plane 

R:a<x<b, c<y<d The system </>„(x,y) n= 0,1,2 (2-3)

is said to be orthogonal if

\\<t>„ (x, y)<t>m (x, y) dx dy = 0; n * m.
R

Norm of <f>n (x,y) is defined by \<f>n (x,y)|| = M (x,y)2 dxdy. (2.4)

The system (2.3) is said to be normal if

\<Pn Uo’)|| =f; n=o,i,2

This implies that Jj‘<f)n (x, y) <f>m (a\ y) dx dy =1
R

2.7.1 FOURIER COEFFICIENTS (FCs)

One can associate a Fourier series with every absolutely integarblc 

function f(x,y) defined on R. That is

f{x,.v) * cH (.v, j’) + c, (.v, v) +c,^(.v, y) +.... + c„ tj)n (x, ___ (2.5)

where,

jj / (x, y)</m (x, y)dxdy Jj / (x, y)(j>m (x, v)dxdy
_ ______________________  __R

Jj</>? (x,y)dxdy |kf
R

C,
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(2 6)

The quantities cn given by (2 6) are known as the Fourier Coefficients 

(FCs) associated with the function f(x,y).

All the properties of complete systems proved for one variable is true for 

two variables also.

2.7.2 DOUBLE TRIGONOMETRIC FOURIER SERIES

1, cosmx, sinmx, cosny, smny.. 
cosmx cosny, sinmx cosny,
cosmx sinny, sinmx sinny,.......m = 1,2...; n = 1,2......

(2 7)

form the basic trigonometric system in two variables. Each of these functions is 

of period P=2?r in both x and y. The functions of the system (2.7) are orthogonal 

on the square K: [a<x<a + 2n, b<y<b+2n ].

2.7.3 FOURIER COEFFICIECIENTS OF f(x,y)

Let f(x,y) be defined on K. Then,

JJ f(x,y)dxdy J\f{x,y)dxdy

JJ/(x,y)cosmxdxdy JJ/(x,y) cosmxdxdy
A -

cosmx 2n:2 m = 1,2.

JJ/(x, y) cos ny dxdy JJ/(x,y) cos ny dx dy
4,n = ^------:-----------------=-----------—----------- ; n =1,2...

cos ny\\ In
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Jj/(x, y) sin mx dxdy jj/(x, y) sin mx dx dy

Bm0 = JL
SltlffW lit1 m =1,2...

j"j/(x,y)sinm_y dxdy j"j"/(x,y) sin my dx dy

B,o. = JL
jlsin my\ In2 >=1,2...

and same way,

1
m« 2 

71
JJ/(x, y) cos mx cos nydxdy,

bm„ = Jj/ (x, y) sin mx cos nydxdy,

mn _2
n

JJ/ (x, y) cos mxsin nydxdy,

dmn = — JJ/(x, y) sin mx sin nydxdy
71 Y

; m~ 1,2,3... andn = 1,2,3, (2 8)

with these FCs (2 8) Fourier Series of f(x,y) can be defined as below,

f(x,y) be defined on square K = {(x,y): - % <x< n, - n <y< n ] c R2, then

z=f(x,y)=

I
m-0

CO
cosmxcosny + bmn sm mx cos ny + cmn cosmxsmny + dmn smmxsmKy]

B=0

(2 9)

where,

j for m = n = 0

< j for m> 0, n = 0 or m = 0, n> 0 

1 for m> 0, « > 0
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Now,

f(Ny)=

co oo

I 5>„„k. cos mxcos ny + bmn sin mx cos ny + cmn cos mx sin ny + dmn sin mxsin ny].
m=0 n-0

implies that

lim
m —^ co Smn (x, y) = / (x, y) Or forgiven £>-0 ,thereexists a number N such that the inequality 

n -» oo

\f(x,y) - Smn(x,y)\< s , holds form >N,n>N. this is also applicable to every square

[a<x<a-vl7t, b<y<b+2n ]

2.7.4 A NUMERICAL EXAMPLE ILLUSTRATING THE DFS METHOD

During the computation using Double Fourier Series, Fourier Coefficients 

are found from constructing a matrix equation which is given in chapter 5. There, 

we have used pseudoinverse of a matrix. This is defined as below

If A + is the unique matrix and said to be pseudoinverse of A which 

satisfies the following criteria:

1. A A + A = A,

2. A + AA + = A + (A + is a weak inverse for the multiplicative semigroup)

3. (AA + ) * = AA + (That is, AA + is Hermitian)

4 (A + A) * = A + A (A + A is also Hermitian)

Here M* is the conjugate transpose of a matrix M whose elements are real.
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Example 1: 

Notations:

1) A(i/j)= Component of the 1th raw and jth column of the matrix A

2) A(,j) = All the components of j* column of the matrix A 

Suppose that x =[2 3] , y=[41] and z=x+y.

Let m = 1,2 and n =1,2 

Number of observation is 2.

NOW, SX = X'2xl * mix2 = 2 4
3 6 and siy = y'm * nix2 =

48
12

/

'4 8 2 4
aa =s SX lsJ A

. 11 9 Q 11

_1 2 3 6

ac
cos( aa) 

- and as = sm( aa ) 
_

- 0 3268 0 2702 - 0 3784 0 4207

- 0 0728 - 0 2081 0 4947 0 4546

a c —
- 0 2081 - 0 4950

as -
0 4546 0 0706

- 0 3268 04801 - 0 3784 - 0 1397

-04161 -0.9900' '-0.6536 -0 1455'

lio

-0.6536 0.9602 0.5403 -0.4161
cx = cos(i'x) , cx =
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ssx = sm(sx)

ssy - sm(sly)

ssx =

0.9093 0.1411

ssy =

-0.7568 -0.2794

-0.7568 0 8415'

0.9894 0.9093 '

Now, let
0 2720 ~ ' 01440'

cx(l,l).*cy( ,1)' -0 2248 cx(l,2).*cy(-,2) 04119

= ’ re = =
cx(2,l) *cy(.,l) 0 4272 cx(2,2).*cy( ,2)_ -0 1397

-0 3531 -0 3995

'0.3149 ' -0 8331"
cx(l,l).*ssy(:,l)

-0.4117
cx(l,2).*ssy(:,2)

-0.9002
r\ = cx(2,l)-*ssy(:,l)

0.4946
; rle = cx(2,2).*ssy(:,2)

0.8080

- -0.6467 - _ 0.8731

ssx(l,l).*cy(',l)

r2 =
ssx(2,l).*cy(:,l)];

-0.5943

0.4913

0.4946

-0.4089

r2e=[ssx(l/2) *cy(:,2}; ssx(2,2) *cy(:,2) ]; r2e=[-0.0205;-0.0587;0.0407/0.1163]; 

r3 =[ssx(l,l) *ssy(:,l); ssx(2,l) *ssy(:,2)];r3=[ -0.6882;0.8997;-0.6368;- 6882];
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r3e= [ssx(l,2) *ssy(:,2); ssx(2,2) *ssy(-,2)];r3e=[0.1187; 0.1283;-0,2351;-0.2541]; 

D=[ iwl ;ac;as; r re;rl rle;r2 r2e;r3 r3e]';

0 2500 -0 3268 -0 0728 -0 2081 -0 3268
-0 3784 0 4947 0 4546 -0 3784
0 2720 -0 2248 0 4272 -03531
0 3149 -04117 0 4946 -0 6467

-0 5943 0 4913 0 4946 -0 4089
-0 6882 0 8997 -0 6368 -0 6882

0 2500 0 2702 -0 2081 -04950 0 4801
0 4207 0 4546 0 0706 -0 1397
0 1440 0 4119 -0 1397 -0 3995 

-0 8331 -0 9002 0 8080 0 8731 
-0 0205 -0 0587 0 0407 01163 
0 1187 0 1283 - 0 2351 -0 2541

ul=pinv(D)25 x 2; Coefficient matrix 6
4

ix

J/25XI

; where,
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0 0412 0 0519
-0 0627 0 064
-0 0100 -0 0452
0 0301 -0 1070

-0 0658 01116
-0 0742 0 0992
0 0822 0 0938
0 0807 0 0090

-0 0659 -0 0255
0 0468 0 0280
0 0465 0 0949
0 0788 -0 0374

-0 0576 -0 0836
0 0689 -0 1899

-0 0607 -0 1941
0 0770 01724

-0 1291 0 2037
-01065 0 0042

0 0892 -0 0203
00883 0 0017

-0 0752 0 0319
0 1254 0 0366
0 1598 0 0152

-0 1110 -0 0429
-01199 -0 0463

04551 
-0 1167 
-02409 
-0 6086 
0 0514 
-0 0488 
0 8684 
0 5199 
-0 4976 
0 3926 
0 1008
0 3235 
-0 6800 
-0 3463 
-1 1407
1 1514 
0 0402 
- 0 6222
0 4538 
05368 
-0 3237 
-0 6064

1 0198 
-0 8375 
- 0 9049

J25x!

This coefficient matrix c is used for prediction of the rainfall with required input

matrices x and y.

6
4

Now, z'=c' * D= = z
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Example 2: To predict the function f (x,y) = x2+ y2

Example 3: To predict the function f(x,y) =-3y/(x2 +y2+l)

Programme is given in the Appendix. Predicted values are plotted 
in the following graph.

Predicted z=(-3y/((x2 -*-y2+1)))

Fig: 2.5


