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3.1 INTRODUCTION

To predict the soil temperatures (ST) at different depths, it is required to 

study its annual cycle by computing their mean values for each month or a 

season. Plotting of the weather parameters, here soil temperatures (ST) against 

time point can explain its periodical variations (Fig. 3.1 and Fig. 3.2). Here time 

point is the standard week (SW) numbers from 1 to 52 (Ghadeker [39]). List of 

these weeks according to dates are given in the Table A-3.1 in the Appendix. 

Figure 3.1 and 3.2 show the ST at morning (MN) and afternoon (AN), 

respectively for the selected three depths namely, 5 cm, 10 cm and 20 cm.
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Fig: 3.2

Annual range of the soil temperature at the depth 5 cm is the result of 

long-term thermal equilibrium between the soil and the atmosphere. During the 

warm season, soil temperature decreases with depth and the associated 

downward heat flux builds up the soil's heat store. In the season of winter the 

gradient is reversed and the heat store is gradually depleted. The spring and 

autumn are transitional periods when the ST gradients reverse the sign.

These reversals are important biological triggers to soil pathogens, soil 

born insects and many other chemical activities. This shows the importance of 

soil temperature and so its estimation in Agriculture. Bocock et nl. [16] have
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estimated the soil temperatures from air temperatures and other climatic 

variables.

3.2 PROBLEM FORMULATION

In this chapter we predict the soil temperature at three depths namely, 5 

cm, 10 cm and 20 cm for morning and afternoon hours by using Artificial Neural 

Network algorithm and harmonic analysis techniques. Anand station is selected 

for a case study. In ANN we prove a convergence theorem for McChulloch type 

network. The proof is based on fixed-point theorem approach from functional 

analysis.

If we consider random values of weather parameters like soil temperature 

at fixed time interval like an hour, a week or a year then that parameter can be 

considered as a discrete random variable. Soil temperature can be considered as 

time dependent fandom variable But soil temperature is also highly correlated 

to Air Temperature (AT), Wind Speed (WS), Relative Humidity (RH), Rainfall 

(RF) etc.

In this chapter prediction of soil temperature is carried out by two 

methods. These are

(I) Prediction of soil temperature by Artificial Neural Network with

(a) Three inputs,

(b) Two inputs,

(c) One input.

and
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(II) Prediction of soil temperature by Harmonic Analysis (HA)

3.3 (I) (a) PREDICTION OF SOIL TEMPRATURE BY ANN USING

3-INPUTS AND 3-OUTPUTS.

Meteorological parameters are always interlinked or highly affected by 

other parameters like relative humidity, wind speed air temperature etc. We 

consider a general set up where we have m weather parameters, y, ,y 2 ,y 3. ..y m

and each one is affected by n factors x,, x2 x„. That is, we have the following

functional relationship between x, 's and y ('s:

Yi ~ fi(x, ,x2,x3......xn)
y2=f2(Xi ,x2,x3 .....xn) 
y3=f3(x1 ,x2,x3......xn)

ym=fm(x, ,x2,x3......xn)

(3.1)

where, the functions/, 's are unknown Now the prediction is possible only if we 

identify these functions There are various techniques to approximate these 

functions in which we assume some forms to the functions. Commonly used 

method is Multiple Regression technique (Walker [164]; Murphy [110]).

We consider a single layer neural network having McCulloch- Pitts Type 

neurons (McCulloch et al. [105]) and use the generalized Widrow-Hoff (Widrow 

et al. [169]) algorithm to train the network. We give conditions on the learning 

rate and the transfer functions, which will guarantee the convergence of the 

generalized Widrow-Hoff algorithm To prove the convergence we make use of
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Fixed- point theorem. Our convergence theorem generalizes an earlier 

convergence theorem proved by Hui et al. [67].

3.3.1 METHOD: (I)

MULTIPLE REGRESSION TECHNIQUE 

Let us assume a linear relationship

,/j (-L J ^7 ’ ) — ^i2^2 ^|3^"3

where a^'s are unknown constants to be determined. For each equation if we 

have k-samples then (3.1) becomes

V =a„V +fl)2*27 + • + alnxnJ
y/ =a21x,J +a22x2J + ..

y3 = a3lXl ”** anX2 + •••
. + a,„xj5n n

>
y,«J +am2X2J + . + amnxnJmn n

where, j-1,2,3. k

where x{ 's are assumed to be 1 for j = 1,2,.. .k. These are mk equations in 

mn unknowns alf/ i<i<m,l< j<n. Let us define the following matrices 

and vectors.

"l
*2 • .. x\

1 ' yi
2

~au a2l amx
1 x\ . <

; yi =
yt

;A=
(2,2 a22 am2

_1 xkx2 kLvi J _ain a2n ®mn _

The mk equations in (3.2) can be represented in the following matrix equation
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We want to find the matrix A satisfying the above matrix equation. In 

general X is a singular rectangular matrix. Therefore, we find a least square 

solution as described below:

To find A which minimizes the error

E= - | | XA-Y| |2 
2

We write E in the inner-product form

E=I{j£4_y5X4-T).

The necessary condition for minimum is

11- = ^{{XA-Y,X ) + (X,XA-Y ) )= 0.

Since, the matrices and vectors are real we have,

<XA-Y,X>= 0

This implies that (X*(XA-Y),I ) = 0

(X*X)A~X*Y = 0 

A = (X*Xy!X*Y 

That is, A = X+Y

where, X ' = (X * X)~l X*, the pseudo - inverse of X.

For any given x = [xx,x2, x J the prediction is done by the equation

y = Ax (34)
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3.3.2 DATA

Here, three inputs Relative Humidity (RH), Wind Speed (WS) and Air 

Temperature (AT) are considered to predict the soil temperature (ST) at surface 

of the earth. These data for Anand station are obtained from the Land Surface 

Process Experiment held for Sabarmati River Basin in the year 1997 (LASPEX- 

1997).

3.3.3 RESULTS AND DISCUSSION

Figure 3.3 is the plotting of standard week number and predicted soil 

temperature by Multiple Regression technique and actual soil temperature. 

Actual soil temperature and predicted soil temperature have non-significant 

difference. During the rainy season, that is in the standard week of 30th to 40th (in 

the month of August) this difference is large but it is non significant.
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3.4 METHOD II
NEURAL NETWORK APPROACH: (MCCULLOCH TYPE NEURONS)

It is observed that if the number of parameters and number of

observations are large, the regression method will be very difficult due to 

involvement of inverse of large matrices, whereas for ANN, increasing of 

parameters may not make the method impossible, though it may take long time 

to train a network.

For practical problems, X is a very large matrix and the Least Square 

Technique to obtained the coefficients is tedious due to the requirement of 

inversion (pseudo-inverse is defined in chapter 2) of large rectangular matrix. To 

overcome this difficulty we now consider neural network algorithm to get the 

functional relationship between the set of input data and output data.

We consider a neural network having McCulloch Pitts type neurons, each 

having 3 inputs value namely, Relative Humidity (RH), Wind Speed (WS) and 

Air Temperature (AT). Architecture of the ANN is shown in the Figure 3.4.

❖ STRUCTURE OF THE NETWORKS

Input layer
Bm

Fig: 3.4
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Each element of the input vector x is connected to each neuron input 

through the weight matrix W=( wy) where w denotes strength of the connection 

from the jth input to the i* neuron. The ith neuron has a summer that gathers its 

weighted input wvXj and the bias 6, to form its net input net given by

net =
J

Finally, this scalar input net is passed through the transfer function ft of 

the ith neuron to obtain its output

y, =/,(««*,)

For notational convention, we define the following vectors and matrices:

’ wn W12 •

w21 W22 • • *2. y2 b2 *2

• ; y = ■ ; b = b3 }X = *3

W(m~ 1)1 W(m-1)2
-

. . Wmn _ <y m J A,

Let us defme a nonlinear function F = 5Rm -» SR” by

F(netl,net2,net3,.

' fMeti)'

f2(netz)
>netm) =

Kfm{netm))

Using these notations the output vector y of the network can be written as

y = F(Wx + b)
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3.4.1 LEARNING ALGORITHMS

The main task in designing a neural network for a given set of input and 

out put data is determination of a suitable weight matrix W. We start with a 

random weight matrix W. For each input vector we can calculate the network's 

output y using this random weight matrix W. The difference between the 

calculated output and the actual output (target vector) is known as the error. 

Training a network means finding out suitable values for the network weights 

wtJ and biases bt such that sum of the squares of the errors is minimized

We note that if fs{netl) = netl, the network becomes a linear network 

known as ADALINE (Widrow,[170]). In this case this network is similar to the 

regression equation (3.4) where wtJ = ay , bt = an. To train a lmear network, 

Widrow and Hoff gave an algorithm known as Widrow- Hoff Algorithm. In that, 

we minimize the sum - squared error (sse) given by

^ = d{k)-y{k)\\\
k k

where dk's are the desired output and yk's are the calculated output. The 

Widrow-Hoff calculates small changes for neuron's weights and biases in the 

direction that decreases the neuron's error. This direction is found by taking the 

derivative of the sum-squared error with respect to the parameters W and b.

dsse _ j d 
dw,j 2 dwv

d(i)-y£wvxJ-bl
Therefore,
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Widrow -Hoff rule is implemented by making changes to the weights m the 

opposite direction from the direction that error is increasmg. Therefore, the 

weight change is given by AW = a etx , where a is constant known as

learning rate. In matrix form,

AW = a< e,x>.

Similarly, the change in bias is given by Ab = a e.

3.4.2 CONVERGENCE THEOREM

In this section we prove a convergence result for the generalized 

Widrow-Hoff algorithm applied to the network. We assume that the activation 

functions f are Lipschitz continuous and strictly monotone (Sec 2.5.5; Chap. 2) 

We give condition on the learning parameter a under which the generalized 

Widrow-Hoff algorithm converges. To prove the result we make use Fixed-point 

theorem. Our result generalizes the result obtained by Hui and Zak [67].

We make use of the following notations. 

wt]=b,, x = (xl, x2, . . xj,

^l=(wn» ■ • wl,Y ’
W2=(w2i, w22, w2J

K, =(wml, w,„2, . . wmJ
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Let W

W11 W12 •

w21 w22 .
■ W2.

W(m-1)1 • W(m-l)n

. wm; Wm2 • . W
' mn

-xTW,

Therefore, we have,

fxTW^ rtO
xtW2

_

u2
s

•

__
__

__
__

and the error vector is given by

e2
=r

yd2-f2(u2)

• i

\em) Jdm -/*(««),

where yd's are the desired (actual )output and f(u,)'s are the computed 

output. If a is the learning rate then the generalized Widrow - Hoff Algorithm is 

given by

Wk+l ^Wk (3.6)
xx

where Wk+1, Wk and exT are mxn matrices.

Multiplying (3.6) by x we get
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WMx = Wkx + - T
X X

uM =uk + ae

u +a

r yd,^ 

yd2 -/2(«2)

V Y dra ~

Define a nonlinear function F: 9T‘ -» 9!” by

F(m) = m + a [yd - f(u)]

"yd,"
yd2

where, yd =

lydj

f2(«2)
/(«>=

(Mm );

3.4.3 LEMMA 3.1. If_/i is strictly monotone for each i =1,2.. .m, then 

for each yd e Range(f) there exists a u* in 91m such that

(a) (u*)=yd

(b) The operator F has a fixed point.

(3 7)
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Proof:

Let yd = [ydl,yd2,...,ydm]T eRange if). Sincefi is strictly monotone for each 

i , there exist u, = ffl (yd,) in . Obviously u* = [u* ,u*2,,..,u*m]Tis the required u* 

in (a). Since F(u) = u + a [yd - f(u)], part (b) follows immediately from the fact that 

u* is a fixed point of F.

Assumptions:

|| u - v - a(f(u) - f(v)) ||< || u - v || (3.8)

Claim:
Under the above assumption (3.8), the fixed point u* of F is 
unique

Proof: Let u* and v* be two fixed points of F

i.e. u*=F(u*), 

v*=F(v*)

u * -v* = F(u*) - F(v*) = u*-v* -a(f (u*) - / (v*)

|| u *-v* 11=1) F(u*)-F(v*) ||=H u*-v*-a(f (u*)-/(v*) ||<|| u*-v*||
=>j| u * -v* ||= 0

u* = V *

❖ ANOTHER CONDITION

1) </(W)~/(V),M-V>>C|[U-V||2

2) )|f(u) -f(v)||<^||u-v|l 

3 )a fi1 <2c

Then F has a unique fixed point.
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Proof:

We show that above conditions imply Assumption (3.8).

To prove that || u-v-a(f(u)-f(v)) ||2 <|| u- v||2

Consider < u - v - a (f(u) - f(v)), u-v-a (f(u) - f(v)) >
= ||u-v||2 -2a<f(u)-f(v),u-v> + a21|/(m)-/(v)||2 

<||u-v||2 -2ac[|u-v[|2 +a2/?2 ||u-v||2 

= (l-2ca + a2/?2)|| u-v||2 <|| u-v||2 by(3)

• Claim- If uk+1 =F(uk), then {uk+1} converges to the unique fixed 
point of F.

Proof: Let u* be the fixed point of F

Then 0 < || uk+1 - u* || - )| F(uk) - F(w*) ||< || uk - u* ||

The sequence |j u1 - u* ||, |] u2 - u* |[,............ is decreasing and bounded

below

By monotone convergence theorem, this sequence converges

lim II uk - u* || 
i.e. " 11

k -» oo = L <oo

Let lim(u*+l-uk) = y 
& —» oo

i.e.
lim(u*+1) = w*+y

k —> oo

F
'limF(M*)> 'limuk+°

00 , vk -» oo y
= y + u’
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Thus, y+u* is a fixed point of F. But F has a unique fixed point and
hence.

• y=o,

.\ lim uk+1 = u* 
k —^ co

This completes the proof.

The above discussion leads to the following convergence theorem.

Suppose that the transfer function fl, {2, h........fn satisfy the following

conditions:

(1) |/, (“)“/, (v)|</?, |k-v|; f°r ah u,v e R, i = l,2,.. n

(2) [fl (u) - f (v)) (u - v) > c, \u - v|2; for all u, v e R, i = 1,2,.. n

where,

/ :R" -> R" is defined by

f(ult u2 ....u„) f2(u 2)

jM.

maxLet f3= , (J3,) minc= < (c()

The generalize Widrow Hofff learning algorithm converges for the 

McCulloch Pitt type neural network if the learning rate a is satisfy

a <
2c
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3.4.4 RESULTS AND DISCUSSION (McCulloch type ANN)

Here, three inputs, Relative Humidity (RH), Wind Speed (WS) and Air 

Temperature (AT) are considered to predict the soil temperature (ST) at surface 

of the earth. Figure 3.5 shows the predicted soil temperature standard week wise. 

It is significant with actual soil temperature. Here we use f(x) = tanhx as the 

transfer function. This function is both Lipschitz continuous and monotone and 

the above theorem applies here. The McCulloch type network with generalized 

Widrow Hoff (3 6) gives better result than multiple linear regression method 

Note that when the transfer functions are identify mappings, the McCulloch type 

network produces to multiple regression model.
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3.5 METHOD III

PREDICTION OF ST BY THREE INPUTS USING MULTILAYERED 
ANN

Here we consider a multilayer network to predict the soil temperature. 

The input variables are Relative Humidity (RH%), Wind speed (WS) and Air 

Temperature (AT) and outputs are ST (Morning), ST (Afternoon) and 

Evaporation (EP).

All the standard weekly data are taken from the Land Surface Process 

Experiment (LASPEX) -1997 over Sabarmati River Basin site of Anand.

❖ STRUCTURE OF THE NEURAL NETWORKS

Input layer with 3-iputs Hidden layer 
RH, WS and AT

Output layer 
with 3-outputs 

ST (MN), ST (AN) and EP.
Fig: 3.6
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10
10 20 30 40

Week Number
50 60

Fig: 3.7

3.6 (I) Case (b) PREDICTION OF ST BY TWO INPUTS USING

MULTILAYERED ANN

Prediction of soil temperature is done by ANN method. For case (b)

3.5.1 RESULT AND DISCUSSION (Multilayered ANN)

Figure 3.7 shows the predicted soil temperature by three inputs 

employing ANN Transfer function used is fi(x) = tanh(x) for i= 1, 2,3.

Actual soil temperature and predicted soil temperature have non

significant difference. There is some large deviation but non significant, found m 

the rainy season that is in the month of August and standard Week (SW) of 30 to 

40.

Soil Temperature Actual (*) and Calculated by Multilayered Neural Network
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Artificial Neural Network (ANN) is applied for prediction of soil temperature by 

two inputs, the air temperature and time



Chapter 3 80

Two sets of Data Series (DS) namely, Air Temperature at 1-mt height and 

time in minute. Minute DS is converted in to hourly DS from 10.00 hr to 20.00 hr 

for the month of December 1997.

First a set of input and actual output data has been used for the training 

purpose of the networks. This trained network is applied for prediction of soil 

temperature. Network is shown m the Figure 3.8

In the shown network first hidden layer has five neurons and second 

hidden layer has three During the learning of the network, parameter values 

used are momentum (0.5) and learning rate (0.0005). Hyperbolic tangent 

sigmoidal function (Cybenko, [25]) and linear function are used as transfer 

functions. The hidden layer is the one in which the nodes are not connected 

directly to the input or output of the system.

3.6.1 RESULTS AND DISCUSSION (Multilayer ANN)

Figure 3.9 shows the predicted soil temperature by two inputs air 

temperature and time in hour using ANN with two hidden layers. This figure 

shows the result for 10.00 hr to 20.00 hr in the month of December 1997. 

Predicted soil temperature is smoother than actual observed. Actual soil 

temperature are highly affected by unexpected disturbances on the surface 

temperature like cloud cover, cold wind, greenery vegetation etc. while soil 

temperature obtained by ANN is not accounting such variations.
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+ STRUCTURE OF THE NN

Input layer Hidden layer-1 
With 2-nodes with 5 nodes

Hidden layer-2 Output layer 
with 3-nodes with one node

Fig: 3.8

It is evident from Figure 3.9 that result obtained by ANN has non

significant difference with actual soil temperature.
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Fig; 3.9

3.7 (I) case (c) PREDICTION OF ST BY ONE VARIABLE, (TIME) USING

(ANN) WITH BACKPROPAGATION ALGORITHM

Here we predict the soil temperature (ST) with one input variable, namely 

the time point (Standard Week (SW))

Data series 1982 to 2003 of soil temperature (ST) at the depths of 5 cm, 10 

cm and 20 cm for morning and afternoon is used to train the ANN. These trained 

network is used to predict the soil temperature (MN and AN) of the year 2004 for 

all the depths

Similarly, NN is trained by the DS 1982-2004 of soil temperature (MN and 

AN) for all the depths. Then soil temperature of the year 2005 is predicted.
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3.7.1 METHOD

We employ ANN with back propagation algorithm for training the 

network consists of one input (time point (SW 1st to 52nd)) and one out put (ST). 

For the depths 5 cm, 10 cm and 20 cm at morning (MN) and afternoon (AN) time 

period, different networks are trained.

❖ STRUCTURE OF THE NETWORKS:

Input layer Hidden layer out put layer
with one with one
Input (SW) out put (ST)

Fig: 3.10

Here, ANN is trained by soil temperature data series (DS) of the year 1982 

to 2003 for the depth 5 cm (MN) to predict the ST of the year 2004 with using 

parameter values as per the Table 3.1.

During the training, error that is difference between calculated output by 

ANN and actual is minimized by Back propagation method. For each depth and 

at each time period morning (MN) and afternoon (AN) for the year of 2004 and
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2005, different networks have been trained by selecting parameters as showed m 

the Table: 3.5.

Programmes are developed in MATLAB and given in the Appendix.

3.7.2 RESULT AND DISCUSSION

Prediction of soil temperature for all the depths for morning and 

afternoon are depicted m the Figure 3.11 to 3.22. Values of the Absolute 

Maximum Difference (AMD), Root Mean Square Error (RMSE) and Percentage of 

Average Error (PAE) are given in the Table 3.1.

Prediction for 5 cm (MN) is shown in the Figure 3.11. Difference between 

predicted and actual is plotted in the same figures as subplots. High difference 

between actual and predicted soil temperature is found during the standard 

week of 5th -10* and 30* -40*.

The absolute maximum difference (AMD) for soil temperature (5 cm 

(MN)) of 2004 is 4.67 °c. Root Mean Square Error (RMSE) 1.86 °c and Percentage 

of Average Error (PAE) 7.19% is obtained during the analysis. With the help of 

student t -test predicted soil temperatures (STs) have non-significant difference 

with actual one

Predicted soil temperature at the depth of 5 cm (AN) for the year of 2005, 

depicted m the Figure 3.14. The soil temperature differences are also shown. 

AMD is 9 50 °c with RMSE 3.81 °c and PAE 8 98%. Here RMSE is higher than the 

prediction of the year of 2004 for the same depth.
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To predict the soil temperature at the depth 10 cm (MN) of the year 2004, 

DS of the year 1982-2003 has been used to train the ANN.

Difference between actual and predicted soil temperature is increasing in 

the period of rainy days that is 23rd to 42nd standard weeks and prediction by 

ANN is under estimating soil temperature (10 cm (MN, 2004)) (Figure 3.14).

Similarly, soil temperatures (ST) of the year 2004 and 2005 at depth 10 cm 

(AN), 20 cm (MN) and 20 cm (AN) are found by ANN and shown in the Figure 

3.16 to 3.22. These all the predicted temperatures are significant to actual 

temperatures by student t-test for two tails.

Actual(o) and Predicted (’)by ANN ST (Moming)at depth 5 cm for 2004

Diference of Actual(o) and Prdicted(*) ST (Morning) at depth 5 cm

Fig: 3.11
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0 10 20 30 40 50
Diference of Actual(o) and Prdicted(’) ST (Morning) at depth 5 cm

60

Actual(o) and Predicted (’)by ANN ST (Morning)at depth 5 cm for 2005

0 10 20 30 40 50 60
SW of the year 2005

Fig: 3.12

Difference Between Actual and Prdicted ST(AN) at depth 5 cm for 2004

ST
(M

N
) 0

c

Fig: 3.13
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5ii___________________________ _____________ _i_jii

0 10 20 30 40 50 60
SW 1-52(2004)

Fig: 3.15

10 20 30 40 50 60
Difference of Actual and Prdicted ST(MN) at Depth 10 cm for 2004

.10-----------------1----------------- 1------±--------- Ml--------------- 1----------------- 1-----------------
0 10 20 30 40 50 60

SW 1-52(2005)

Fig: 3.14

Actual(o) and Prdicted(') by ANN ST (MN) at Depth 10 cm for 2004

Actual(o) and Prdicted( ) by ANN ST at Depth 5 cm(AN) for 2005

0 10 20 30 40 50 60
Difference Between Actual and Prdicted ST(AN) at depth 5 cm for 2005
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Actual(o) and Prdicted(’) by ANN ST (MN) at Depth 10 cm for 2005

Difference of Actual and Prdicted ST(MN) at Depth 10 cm for 2005

SW 1-52(2005)

Fig: 3.16

Actual(o) and Prdictedp) by ANN ST at Depth 10 cm(AN) for 2004

Difference Between Actual and Prdicted ST(AN) at depth 10 cm for 2004

Fig: 3.17
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Difference Between Actual and Prdicted ST(MN) at depth 20 cm for 2004

J_____________________ L

0 10 20 30 40 50 60
SW 1-52(2004)

Fig: 3.19

Actual(o) and Prdicted(’) by ANN ST at Depth 10 cm(AN) for 2005

Difference Between Actual and Prdicted ST(AN) at depth 10 cm for 2005

Fig: 3.18

Actual(o) and Prdicted(’) by ANN ST at Depth 20 cm(MN) for 2004
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Fig: 3.20
Actual(o) and Prdicted(’) by ANN ST at Depth 20 cm(MN) for 2005
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Fig: 3.21

Actual(o) and Prdicted( ) by ANN ST at Depth 20 cm(AN) for 2004

Difference Between Actual and Prdicted ST(AN) at depth 20 cm for 2004
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Actual(o) arid Prdicted(*) by ANN ST at Depth 20 cm(AN) for 2005

Difference Between Actual and Prdicted ST(AN) at depth 20 cm for 2005

Fig: 3.22
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3.7.3 CONCLUSION

Here, prediction of soil temperatures (ST) is made by ANN with 

different training methods. Different networks are used for each depths 

of 5 cm, 10 cm and 20 cm for morning (MN) and afternoon (AN) periods 

for the year 2004 and 2005. During this analysis the following conclusion 

has been made.

i) Obtained minimum Absolute Maximum Difference (AMD) & 

Root Mean Square Error (RMSE) and Percentage of error 

(PAE) are 4.67 °C & 1.86 °C, respectively in the year of 2004, 

at the depth 5 cm (MN) (Table: 3.1)

ii) Fluctuation and variance (36.68 °C) in the soil temperatures 

(AN) at the surface (5 cm) are high (Fig: 3.2 and Table- 3.1), 

therefore, during the prediction of soil temperatures for the 

year of 2005, computed Absolute Maximum Difference 

(AMD), Root Mean Square Error (RMSE) and PAE that axe 

10 68 °C, 3 59 °C and 8.98% , respectively are highest.

lii) Due to disturbance of the nature, like highest rainfall in the 

year 2005, in each case of each depth for morning (MN) and 

afternoon periods (AN), 2005 year has large Absolute 

Maximum Difference (AMD) & Root Mean Square Error 

(RMSE) in comparison to the other years.
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iv) Each and every case of prediction by ANN with actual soil 

temperatures (ST) has large variations in the period of rainy 

days that is standard week from 22nd to 42nd

v) All the predictions by ANN are significant to actual soil 

temperatures (ST).

3.8 SOIL TEMPERATURE PREDICTION BY HARMONIC

ANALYSIS

3.8.1 DESCRIPTION OF HA

The soil temperature is useful to estimate in and out diurnal heat 

flux of soil, which control the atmospheric air temperature and determine 

microbiological activities in the soil. The physical condition of soil is the 

key factor m determining the magnitude of daily soil temperature. Soil 

temperatures are measured at a specific observatory and the data is not 

available for all other locations. In the absence of measured soil 

temperature observation one can estimate soil temperature as a 

dependent variable of heat flux, type of the soil, and air temperature by 

different statistical/mathematical techniques.

Bocock et al. [16] reviewed different methods for estimation of soil 

temperature. These methods involved (i) Linear Regression of soil 

temperature on air temperature (ii) Multiple regression of soil 

temperature on other climatic variables and (iii) Harmonic analysis using
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average sine curves for soil and air temperature and derivation from 

these for particular years. They observed that linear regression gave the 

least precise estimates, with less difference between other methods 

Outside the period, soil temperature was over estimated slightly by other 

methods. Harmonic analysis giving the most precise and accurate 

estimation.

The observed standard weekly soil temperature at 5cm depth for 

three consecutive years (2002, 2003 and 2004) is depicted in Figure 3.23. 

Pattern indicates that the soil temperature process repeats as periodic 

phenomena with period of 52 standard weeks. Also, the soil temperature 

process is a continuous function of time, without very rapid oscillations 

Therefore, we can employ the tools of harmonic analysis to study the 

process.

The Fourier theorem ensures that a periodic function satisfying 

some smooth properties (Dirichlet's conditions) can be represented by an 

infinite series of sine and cosine function. A brief discussion of Fourier 

series is given in section 2.6 of chapter 2.

Carson [17], Krishnan et al. [89] and Bocock [15] have used the 

method of harmonic analysis to predict the weather parameters like soil 

temperature and air temperature.
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SoilTemepratureat 5 cm(MN) Depth For The Year 2002 to 2004

20
Time point, continuous number of week 1 to 156 for the year 2002 to 2004

Fig: 3.23

3.8.2 HA IN PROBLEM SOLVING

The standard weekly (SW) mean soil temperature at various depths 

follows the pattern of a periodic function (Fig: 3.23). Harmonic analysis 

employing Fourier series can be used to accurately describe the thermal 

cycle at particular depth as follows:

T(t) = T0+'£
k=1

f (In , 3 f2n , 33
ak *cos — kt + bk * sin — kt

V l P J l P )
(3.7)

So
il T

em
ep

ra
tu

re
 (O

c)

t = 0,1, 2...,51

where T(t) is the soil temperature at time point t, p = 52, N is the total 

number of Harmonics used, To is the Mean of soil temperature of the data
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series, Ck is the Amplitude of the kth Harmonic and t is time, t = 0,1, 2, 

3.. .51; fundamental period P = 52.

N ,
From this equation, T(t) = T0+^jCk *sm

k=\ '

2 TV 
~p kt + Ah (3.8)

where, Ck is the Amplitude and Ak is the Phase Angle given by

Ck = V a* +bk2 ; (3.9)
bk

where ak and bk are the Fourier Coefficients, estimated by formula 

9 17T&,=—S™ K)]; (3.W)
no P

E^COcos^*/)]; (3.11)
no P

where, k=l,2,.. .N=no/2.

3.8.3 "HARMONIC" IN DETAIL

The first harmonic has the fundamental period of P. The second

harmonic has a period of half of the fundamental period, that is, P/2

Similarly, third harmonic has period of one third of the fundamental

period, P/ 3, up to the number of harmonics N equals half of the number

of observations. This last harmonic N has period of P/ no, where no=52, is

the total number of observations. The different harmonics are treated as

an independent entity; each harmonic may have a different physical

cause.
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Complete cycle of soil temperature (ST) is fairly well described by 

the first harmonic in most of the cases (Pearce [122]). It is always not 

possible to account the complete variations in ST at once but the 

individual harmonics can be explained variance in parts.

Some times periodical function may not have sinusoidal character, 

then at this stage harmomc is simply a mathematical representation 

equivalent to a periodical function and harmonic does not have any 

physical meaning.

Thus first problem covers, soil temperature prediction by, 

Harmonic analysis and their amplitudes (Ck) are found for all the used 

number of harmonics, N=26. These amplitudes are used to find out the 

total variations m the data accounted by total number of harmonics m

C 2
percentages That isy~ 

(Kulshrestha et al. [92]).

xlOO; where, s2 is the variance in observed data.

3.8.4 DATA

In this analysis standard weekly data series of ST is used from 1982 

to 2005, for the depths of 5 cm, 10 cm and 20 cm of 'Morning (MN)(7.38 

hr)' and 'Afternoon (AN)(14 38 hr)' from the observatory, Dept, of Agril 

Meteorology, B A College of Agriculture, Anand Agricultural University,

Anand.
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In Harmonic analysis, data series from 1982 to 2003 is averaged 

(Table A- 3.2) and used to find out ak and bk; k=l,2,3....N=26, Fourier 

Coefficients (FC) from formula (3.10) and (3.11) are found. These are used 

to predict the STs of the year 2004 and 2005. Their Mean (To) and variances 

(s2) are given in the Table 3.2.

TABLE 3.2
STATISTICAL MEASURES OF DS OF THE PREDICTING YEARS.

Sr. Predicting ST at Mean Variance
No Year depth OC 0C

2004 MN. 25.85 26.88
1 2005 25.69 28.04

2004 38.97 31.06
2005 AN. 39.96 34.68

2004 MN. 26.65 12.67
2 2005

10 cm
27.68 23.73

2004. AN. 35.53 28.93
2005 35.70 26.88

3 2004 MN. 29.76 19.05
2005

20 cm
30.20 2012

2004 AN. 31.15 19.15
2005 31.27 21.20

Table 3.2 shows that in the year 2005, ST (5 cm (AN)) has highest 

variance (34.68 °C). At the depth of 10 cm (AN) in the year 2004, highest
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variance (28.93 °C) is observed At the depth 20 cm (AN) in the year 2005, 

observed variance is highest (21.20 °C).

3.8.5 COMPUTATION

In our case T (t) is the soil temperature, at time t=0,1,2...51, that is 

to be predicted from formula (3.7). In this formula,

To = mean soil temperature (Appendix, Table: A-3.1),

P=52, k= 1,2,3. .26.

There, are A-l =25 sine and A =26 cosine terms in the equation

(3.7) , Fourier coefficient (FC), h26 is always zero. The first two terms of the 

series (3.7) is completing the complete one cycle in the one fundamental 

period that is 52 weeks. The third and fourth terms varies rapidly twice, 

that means these two terms completing the one cycle in half of the 

fundamental period, 26 weeks (Figure * 3.31, 3.37 and 3 41). The last two 

terms have very less period to complete the cycle. That is (2P/no) =2 

weeks. The period of k* harmonic is inversely proportional to k.

3.8.6 COMPUTATION OF FOURIER COEFFICIIENTS

Harmonic analysis starts with finding the values of FCs of series

(3.8) from historical data. During the computation of Fourier coefficicients, 

T(t) are the recorded historical values (Table : A-3.1) of soil temperature 

Generally, maximum number of harmonics is no/2 (Guenni [51])
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Computations of the Fourier coefficients are earned out as per the 

following steps:

Step I

All the sines and cosines are computed for the value of ~P ktior

k =1,2,...26. Table A-3.3 in Appendix shows these sines and cosines values 

for k =1,2,3. Then each element in the columns are multiplied by the 

corresponding soil temperature observed at time point, t=0,l,2,.. .51.

Step II

This is repeated in the columns corresponding to all 26 harmonics. 

Step III

These columns sums for every column is found out and multiplied 

by the 1/26.

Denote these cosines and sines sums after multiplying with 1/26 

by ai, &2 a3 ak and bi, hi, t>3 bk , respectively. These are Fourier 

coefficients (FCs).

After having computed the FCs for the 26 number of harmonics, 

formula 3.7 is used for soil temperatures are prediction

3.8.7 COMPUTATION OF HARMONIC

2n life
In general, k* harmonic is ( bk sin(— kt)+ ak cos(— kt))
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After having computed the FCs for the number of harmonics then 

adds them for each value of t and adds it to its mean. If no mistake has 

been made, the sum of the mean and harmonics would add up to the 

original time series ST.

It is required to find out total variance of soil temperature which is 

accounted by the harmonics. The equation for the variance accounted for 

are given by

first harmonic is Ci2/(2*s2), 

second harmonic is C22/ (2*s2), 

third harmonic is C32/(2*s2) and similarly for 

kth harmonic is Ck2/ (2*s2)

Here s2 is the variance in the data series of soil temperature. Smce, 

all harmonics are uncorrelated and therefore no two harmonics can 

explain the same part of the s2, the variances explained by the different 

harmonics can be added.

Thus, total variance explained by total number of k harmonics is given by,

C12/ (2*s2) + C22/ (2*s2) + C32/(2*s2).......... + Ck2/(2*s2)

Required programmes are developed in MATLAB.

3.8.8 RESULTS AND DISCUSSION

Table 3.2 shows the statistical measures during the Harmonic 

analysis at all the depths for morning (MN) and afternoon periods. Soil
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temperature at 5 cm depth is also known as surface temperature Always, 

surface temperature has high variations in the afternoon (AN) hour due to 

change in solar radiations. Table 3.2 shows that soil temperature at 5 cm 

depth in the afternoon (AN) period, has large mean (39.96 °C) and 

variance (36.68 °C) in comparison to other soil temperature (ST) at other 

depths.

In the case of at 20 cm depth, in the year of 2004 variance is 19.05 °C 

which can be covered fully by first two harmonic and it approximately 

100%. (Table: 3.4). Predicted soil temperature (ST) for 5 cm depth in the 

period of afternoon are significant covering 99.45 % (year-2004) and 

88.32 % (year-2005) Highest difference found between Actual and 

Predicted soil temperature is 6.24 °C (Table: 3.4, Fig: 3.38).

The computed 26 Amplitudes are plotted in the Figure 3.32, 3.38 

and 3.42. Five phase angles out of 26 are showed in the Table 3.3.

Fig. 3.14 and Fig. 3.15 show that predicted soil temperature are 

significant to actual soil temperature. Accuracy of the predicted soil 

temperature are tested by student's t-test and found non-significant 

difference with actual soil temperature.

At 10 cm depth for morning (MN) and afternoon (AN) the 

accounted percentage of variance are 96.54% and 91.5%, 84.33% and 

90.83% for the year of 2004 and 2005 respectively (Table: 3.4). Prediction of
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soil temperature is shown in the figures 3.15 to 3.18. The highest 

difference found is 4.74 °C between actual and predicted soil temperatures 

(10 cm (AN)).

Figure 3.37 shows the plots of the harmonics (NH) used during the 

prediction of soil temperature. First harmonic has biggest amplitude, its 

period is one fundamental period of 52 weeks, and during this time 

period second harmonic oscillates two times and so on for other 

harmonics. Graphs of harmonics in the Figure 3.313.37 and 3.41 show that 

higher harmonics contribute les in covering to variance.

Same way prediction of soil temperatures by HA at depth 20 cm for 

morning and afternoon are plotted in the Figure 3.36,3.39 and 3.40.

Root Mean Square (RMSE) and Percentage of Error (PAE) are 

found and provided in the Table 3.5. Due to the high fluctuation in the 

surface temperature, highest RMSE (1.74 °C) and PAE (6.74%) are found at 

the depth 5 cm (MN). While, lowest RMSE (1.39) and PAE (4.44%) are 

found at the depth 20 cm (AN) for the year 2005. This is due to the fact 

that at the depth 20 cm, variation in the soil temperature is less in 

comparison with that at 5 cm and 10 cm depth.
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Fig: 3.24
Soil TempratureAt Depth 5 cm(MN) Actual(o) and Predicted(*) By HA. Year-2004
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Fig: 3.25
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-©- Actual ST
+ Cal. ST

Q 10 20 30 40 50 60
Week Number 1 to 52

Fig: 3.27
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Difference Between ActualAnd Predicted ST At 5cm (AN) By HA, year-2004
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Fig: 3.26

Soil TempratureAt Depth 5 cm(AN) Actual(o) and Predicted(*) By HA, Year-2004

0 10 20 30 40 50 60
Actual(o) And Predicted(*) ST At 5cm (MN) By HA, year-2005
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Soil TempratureAt Depth 5 cm(AN) Actual(o) and Calculated(+) By HA, Year-1984

Actual (o)And Predicted(*) ST At 5cm (AN) By HA, year-2005

Fig: 3.28

iil TempratureAt Depth 10 cm(MN) Actual(o) and Predicted(*) By HA, Year-2004

Difference Between Actual And Predicted ST At 10cm (MN) By HA, year-2004
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D ID 20 30 40 50 60
Number Of Harmonics(l to 26)

Fig: 3.31

Soil TempratureAt Depth 10 cm(MN) Actual(o) and Calculated(+) By HA, Year-1984

Fig: 3.30

26 HArmonicsFound During Prediction Of ST(10cm(MN)) of the Year 2005
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Fig: 3.33

26 Amplitudes Found During Prediction Of ST(10cm(MN)) of the Year 2005

Fig: 3.32
Soil TempratureAt Depth 10 cm(AN) Actual(o) and Predicted(*) By HA. Year-2004
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Difference Between Actual And Predicted ST At 10cm (AN) By HA. year-2004
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Soil TempratureAt Depth 10 cm(AN) Actual(o) and Calculated(+) By HA, Year-1983

Soil TempratureAt Depth 10cm (AN) Actualo) and Predicted(*) By HA, year-2005

Fig: 3.34
TempratureAt Depth 20 cm(MN) Actual(o) and Calculated(+) By HA, Year2004

Fig: 3.35
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Number of SW(1 to 52)

Fig: 3.37

Soil TempratureAt Depth 20 cm(MN) Actual(o) and Calculated(+) By HA, Year-1984

Actual (o)And Predicted(*) ST At 20cm (MN) By HA, year-2005

26 Harmonics Used To Predict The ST at20cm(MN)-2D04

60
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26 Amplitude Obtained During The Prediction Of ST at20cm(MN)-2004

Soil TempratureAt Depth 20 cm(AN) Actual(o) and Calculated(+) By HA, Year2004
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Soil Temprature At Depth 20 cm(AN) Actual(o) and Calculated(+) By HA.year 1984

10 20 30 40
Week Number 1 to 52

50 60

Fig: 3.40

26 Harmonics Obtained During The Prediction Of ST at20cm(AN)-2005
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26 Amplitude Obtained During The Prediction Of ST at20cm(AN)-2005 
30---------------- 1---------------- 1---------------- 1---------------- 1---------------- 1-------------

TABLE 3.3
FIRST FIVE HARMONICS' PHASE AN[GLE

Sr.
No

Depth
(cm)

First Five 
Phase Angle 

(Radian)

Sr.
No

Depth
(cm)

First Five 
Phase Angle 

(Radian)
1 5(MN) -1.4017 16 10(AN) -1.3939
2 -0.5553 17 -0.6075
3 -0.1064 18 -0.1577
4 0.9512 19 0.6143
5 1.4249 20 0.9584
6 5(AN) -0.7803 21 20(MN) -1.5645
7 -0.6460 22 -0.4818
8 -0.1949 23 -0.2729
9 0.0291 24 0.4953

10 0.3902 25 1.2292
11 10(MN) -1.5045 26 20(AN) -1.4958
12 -0.5330 27 -0.5215
13 -0.2712 28 -0.3306
14 0.6942 29 0.8093
15 1.4919 30 0.8129

6Ocfc

£in

yCrq' O
J

t-0

V
al

ue
s O

f A
m

pl
itu

de



TA
BL

E
 3

.4
V

A
R

IA
T

IO
N

S 
A

C
C

O
U

N
T

ED
 F

R
O

M
 T

H
E 

D
A

TA
 B

Y
 IN

D
IV

ID
U

A
L 

H
A

R
M

O
N

IC
S.

Chapter 3 115

To
ta

l o
f 

va
ri

at
io

ns
 

ac
co

un
te

d 
by

 2
6

H
ar

m
on

ic
s

(%
)

84
 3

3

90
 8

3 oo
ooV

V
ar

ia
tio

ns
 

ac
co

un
te

d 
by

 fi
rs

t 
fiv

e
ha

rm
on

ic
s

(%
)

46
 8

8
33

.8
9

CO 02
2

0 0
39

50
 5

36
.4

9

I t t 77
4

24
 7

3
3 0

9
02

3
0 

09

N
o.

 o
f 

H
ar

m
on

ic
s

m 26 26 26

ST
 a

t 
D

ep
th

10
cm

(A
N

)

10
cm

(A
N

)

20
cm

(M
N

)

Pr
ed

ic
tin

g
ye

ar

20
04

i 
20

05

20
04

oZ 00 OS orH

To
ta

l o
f 

va
ri

at
io

ns
 

ac
co

un
te

d 
by

 2
6

H
ar

m
on

ic
s

(%
)

11
21

7

11
0.

88

99
.4

5

V
ar

ia
tio

ns
 

ac
co

un
te

d 
by

 fi
rs

t 
fiv

e
ha

rm
on

ic
s

(%
)

10
0 

54
13

.8
2

2 
08

i 
0 2

3
0.

09
7 

|

95
 2

4
! 

13
.2

1
1.

94
0  

21
0 0

69
7

39
.8

2
54

 5
4.

04
0.

44
0.

01
3

N
o.

 o
f 

H
ar

m
on

ic
s

m 26 26 26

ST
 at

 
D

ep
th

5c
m

( M
N

) l

in 5c
m

(A
N

) |

Pr
ed

ic
tin

g
ye

ar

[ 
20

04

-

20
05

20
04

Sr
.

N
o

r-t <N CO

C
on

t.,



TA
BL

E
 3

.4
 (C

on
t)

Chapter 3 116

To
ta

l o
f 

va
ria

tio
ns

 
ac

co
un

te
d 

by
 2

6
H

ar
m

on
ic

s
(%

) F66

O
O

oo
a

96
.2

1

V
ar

ia
tio

ns
 

ac
co

un
te

d 
by

 fi
rs

t f
iv

e 
ha

rm
on

ic
s 

(%
)

72
.5

23
 4

2 00
oo
CM 0.

22

6S00 73
.2

5
29

.8
1

1 1 1

65
.4

6
26

.9
3.

38
 

i

0.
26

0.
01

8

N
o. of

H
ar

m
on

ic
s

\oCM 26 CM

ST
 at

 D
ep

th

20
cm

(M
N

)

20
cm

(A
N

)

20
cm

(A
N

)

Pr
ed

ic
tin

g
ye

ar

i 2005 i 2004 | 
20

05

Cfi £
'pH
rH 12 CO

rH

To
ta

l o
f 

va
ria

tio
ns

 
ac

co
un

te
d 

by
 2

6
H

ar
m

on
ic

s
(%

) CM
CO
00
00 96

.5
4

91
.5

V
ar

ia
tio

ns
 

ac
co

un
te

d 
by

 fi
rs

t 
fiv

e
ha

rm
on

ic
s

(%
)

35
.7

 
|

48
.0

9
3 

55
0.

39
0.

01
7 

|
19'IZ 17

.6

I8'l 0.
17

900

71
.6

1
17

.6

18T
zro

0.
05

7

N
o.

 o
f 

H
ar

m
on

ic
s

CM
sO
CM

s£>
CM

ST
 a

t 
D

ep
th £

<
¥
io 10

cm
(M

N
)

10
cm

(M
N

)

Pr
ed

ic
tin

g
ye

ar

20
05

20
04

20
05

w 5
ca 2 ID i>-



Chapter 3 117

TABLE 3.5
RMSEs DURING HA AT DIFFERENT DEPTHS

Sr.No Predicting
year

ST at 
Depth 

(cm)

Absolute
Maximum

diff.
(AMD)

(°C)

RMSE
(°C)

Percentage
of

Average
Error
(%)

1 2004 5 (MN) 3.33 1.74 6.74

2 2005 5 (MN) 3.52 1.36 5.32

3 2004 5 (AN) 6.40 2.44 6.26

4 2005 5 (AN) 6.37 2.37 5.93

5 2004 10 (MN) 3.63 1.58 5.76

7 2005 10 (MN) 2.75 1.31 4.73

8 2004 10 (AN) 4.74 1.89 5.30

9 2005 10 (AN) 4.67 1.90 5 32

10 2004 20 (MN) 3.88 1.62 5.46

11 2005 20 (MN) 3.26 1.42 4.73

12 2004 20 (AN) 4.15 1.58 5.09

13 2005 20 (AN) 4.17 139 4 44
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3.8.9 CONCLUSION

Soil Temperatures (ST) is an important agro-meteorological element 

which influences seed germination, soil microbiological activity and chemical 

activity in the soil. Measurement of soil temperature at a large number of places 

in a region is difficult; this can be overcome by estimating soil temperature by 

Mathematical techniques. The following conclusions have been made while 

Harmonic analysis is employed.

i) The total variation accounted by the 26 of harmonics ranges 

between 84.33 to 112.17 %

ii) The testing the results of the Harmonic analysis on an individual 

year 2004 and 2005 for the depths 5, 10, and 20 for both the time 

period morning and afternoon resulted in a good agreement 

between the observed and estimated soil temperature except for the 

monsoon period of standard week from 23 to 35.

Monsoon activity does not allow a simple sine curve to 

explain the complete annual cycle. The soil temperature profiles 

during monsoon are different from those of the other seasons 

due to infiltration of rainwater and their retention capillaries.

iii) Soil temperature at different depths could be predicted with fairly 

good accuracy by Harmonic analysis.
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3.8.10 COMPARISON BETWEEN TWO METHODS

I) (a) ANN with Back Propagation algorithm and 
(b) McCulloch Type with

II) Harmonic Analysis

TABLE 3.6
LIST OF AMDS AND RMSEs OBTAINED BY BOTH THE METHODS

Sr.
No

Depth AMD
By
HA
(°C)

AMD
By

ANN
(0Q

RMSE
By
HA
(°C)

RMSE
By

ANN
(°C)

PAE
By
HA
(%)

PAE
By

ANN
(%)

1 Depth 5 cm 2004 
Morning

3.22 4.67 1.74 1.86 6.74 7.19

2005 3.42 5.70 1.36 199 5.32 7.75
2 Depth 5 cm 2004 

After noon
6.37 7.93 2.44 3.23 6.26 8.29

2005 5.27 9.50
largest

237 3.59
largest

5.93 8.98

3 Depth 10 cm 2004 
Morning

3.53 4.93 1.58 2.11 5 76 7.68

2005 2.63
smallest

5.91 1.31
smallest

223 4.73 8.06

4 Depth 10 cm 2004 
After noon

4.83 6.79 1.90 2.47 5.30 6.95

2005 4.80 8.31 1.88 2.48 5.32 6.95
5 Depth 20 cm 2004 

Morning
3 70 5.25 1.62 2.08 5.46 6.99

2005 3.08 6.07 1.42 1.93 4.73 6.39
6 Depth 20 cm 2004 

After noon
414 5.54 1.58 2.02 5.09 6.49

2005 4.20 5.31 1.39 2 02 4.44 6.46

3.8.11 ADVANTAGES OF HA

1. Soil Temperature analysis by HA gives complete study of waves of solar 

energy by deriving amplitudes and phase angels. Also, it accounts 

percentages of variances by different number of harmonics (NH).
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2. There is only one parameter, that needs to change to obtained a required 

accuracy in the model.

3. Obtained Root Mean Square Error, Percentage of Error and Absolute 

Mean Difference are very less in comparison to ANN method.

3.8.12 ADVATAGES OF ANN

1. ANN can be applied to any continuous process. ANN is a model free 

technique to establish a relationship between two variables. This model 

can be used for more than one input and output.

2. ANN can be improved by further training of the network with a suitable 

algorithm. Root Mean Square Error (RMSE) and Absolute Maximum 

Difference (AMD) obtained by both the methods are listed in the Table 3.6

3.9 CONCLUSION

In this chapter the soil temperature at 3 depth, 5 cm, 10 cm and 20 cm are 

predicted by using techniques like multiple regression, McCulloch Pitt, Multi 

layer and Harmonic analysis techniques. We have also proved a convergence 

theorem for McCulloch Pitt type network by invoking fixed-point theorem.

Though the harmonic analysis found to have less Root Mean Square Error 

(RMSE) and Percentage of Average Error (PAE) in comparison with ANN 

method, the difference is not significant. Here, RMSE and PAE are ranges by 

ANN are from 1.86 °C to 3.59 °C and 6.39% to 8.98%, respectively. During the 

application of harmonic analysis found RMSE and PAE are ranges from 1.31 0C 

to 2.44 0C and 4.44% to 6 74%. '


