	· · · · · · · · · · · · · · · · · · ·	Pg. No.
Fig 1.1	Schematic diagram of various processes for Ceramic thin film deposition	5
Fig 1.2	Application of PVD coatings	7
Fig 2.1	Growth Model in Thin Films	17
Fig 2.2	Development in thin film deposition technique	22
Fig 2.3	Schematic representation of compound structure in thin films	23
Fig 2.4	Depth of the secondary and Back scattered electron within the sample	26
Fig 2.5	Corrosion mechanism in (a) Single layer, (b) multilayer with porous interlayer,(c) multilayer with dense interlayer and (d) multi layer with dense interlayer and multiconstituent top layer	32
Fig.2.6	Tribologically important properties in different zones of the coated surface	37
Fig 2.7	Improved wear resistance of multilayered coating.	38
Fig 2.8	Schematic representation of destruction of coating during wear	39
Fig 3.1	E vs Log I showing mixed open circuit potential for iron in acidic media	49
Fig 3.2	Line Diagram of various types of Corrosion	50
Fig 3.3	Schematic. Diagram of Three electrode test cell	54
Fig 3.4	Nyquist plot	56
Fig 3.5	Bode magnitude plot	57
Fig 3.6	Bode phase plot.	57
Fig 3.7	Tribological contact mechanisms related to macro mechanical changes, material transfer, micromechanical, tribochemical and nanophysical changes in the contact.	61
Fig 3.8	Interaction mechanism for main parameters influencing friction	62
Fig 3.9	The basic friction and wear mechanisms related to adhesion, ploughing and hysteresis. In the case of wear these contact mechanisms result in material fracture, detachment and removal.	65
Fig 3.10	Classification Of Wear Mechanism	65

LIST OF FIGURES

,

Fig 3.11	Schematic diagram of various types of wear(a) adhesive wear(b) abrasive wear and (c) Fatigue wear	67
Fig 3.12	Variation of coefficient of friction with Distance/time	68
Fig 3.13	Tribometer specimen table	72
Fig 4.1	Experimental setup of reactive vacuum arc deposition apparatus.	76
Fig 4.2	Set up for corrosion and impedance test.	78
Fig 4.3	Apparatus for wear testing	80
Fig 5.A.I	SEM and EDX analysis of as deposited TiN, ZrN and ZrTiN thin films without corrosion and wear	85
Fig 5.A.1.1	SEM Microstructure of TiN thin Films of Varying thickness	86
Fig 5.A.1.2	EDX analysis of macroparticle in 1.5µ TiN thin film	87
Fig 5.A.2.1	SEM Microstructure of ZrN thin Films of Varying thickness	88
Fig 5.A.2.2	Compositional analysis of 2.0µ ZrN (a) Line analysis (b)Macroparticle	89
Fig 5.A.3.1	SEM Microstructure of ZrTiN thin Films of Varying thickness	90
Fig 5.A.3.2	EDX analysis of macroparticle in 2.5µ ZrTiN thin film	91
Fig 5.A.3.3	SEM micrograph with EDX mapping of Ti, Cr, Mn, Zr and Fe	91
Fig 5.B.1.(i)	Diffractograms of Ti-N thin films at different thickness	94
Fig 5.B.1.(ii)	Combined XRD spectra of TiN thin film of varying thickness	95
Fig 5.B.1.(iii)	Equilibrium phase diagram of Ti-N binary system	97
Fig 5.B.1.(iv)	Evolution of the XRD patterns of $TiNx$ films as a function of nitrogen contents. S corresponds to the diffraction lines of the substrate.	98
Fig 5.B.2.(i)	Diffractograms of ZrN thin films at different thickness	101
Fig 5.B.2.(ii)	Combined XRD spectra of ZrN thin film of varying thickness	102
Fig 5.B.2.(iii)	XRD spectra of ZrN thin film on cemented carbide substrate	103
Fig 5.B.2.(iv)	XRD patterns of the ZrN films deposited on Si at various substrate biases	105
Fig 5.B.3.(i)	Diffractograms of ZrTiN thin films at different thickness	107
Fig 5.B.3.(ii)	Combined XRD spectra of ZrTiN thin film of varying thickness.	108

iii

Fig 5.B.3.(iii)	Partial experimental (110.5Zr0.5) –N phase diagram: (♦) These results, (—) dilatometric results () nitride	110
Fig 5.C.1.(a)(P)	Potentiodynamic corrosion test of S.S substrate & Ti-N thin films of varying thickness in $1N H_2SO_4$	111
Fig 5.C.1.(a)(B)	Electrochemical impedence diagram of Ti-N thin films of varying thickness in $1N H_2SO_4$	112
Fig 5.C.1.(a)(S)	Typical SEM morphologies of the (I) 1.5 μ Ti-N and (II)2.0 μ Ti-N coating which had been subjected to the anodic polarization tests 1N H ₂ SO ₄ solution	115
Fig 5.C.1.(a)(E)	The EDX analysis of 1.5μ Ti-N thin film subjected to potentiodynamic test in $1N$ H ₂ SO ₄	117
Fig 5.C.1.(b)(P)	Potentiodynamic corrosion test of S.S substrate & Ti-N thin films of varying thickness in 3.5%NaCl	118
Fig 5.C.1.(b)(B)	Electrochemical impedence diagram of Ti-N thin films of varying thickness in 3.5%NaCl	118
Fig 5.C.1.(b)(S)	Typical SEM morphologies of the 2.0 μ Ti-N coating which had been subjected to the anodic polarization tests in 3.5%NaCl solution at different magnification	121
Fig 5.C.1.(b)(E)	The EDX analysis of 2.0 μ Ti-N thin film subjected to potentiodynamic test in 3.5%NaCl	122
Fig 5.C.1.(c)(P)	Potentiodynamic corrosion test of S.S substrate & Ti-N thin films of varying thickness in 0.1N HCl	123
Fig 5.C.1.(c)(B)	Electrochemical impedence diagram of Ti-N thin films of varying thickness in 0.1N HCl	123
Fig 5.C.1.(c)(E)	The EDX analysis of 2.0 μ Ti-N thin film subjected to potentiodynamic test in 0.1N HCl	126
Fig 5.C 1 (d)(P)	Potentiodynamic corrosion test of S.S substrate & Ti-N thin films of varying thickness in 11pH Na ₂ SO ₄	127
Fig 5.C.1.(d)(B)	Electrochemical impedence diagram of Ti-N thin films of varying thickness in 11pH Na ₂ SO ₄	127
Fig 5.C.1.(d)(E)	The EDX analysis of 2.0 μ Ti-N thin film subjected to potentiodynamic test in 11pH Na ₂ SO ₄	129
Fig 5.C.1.P (a,b,c,d)	Potentiodynamic Corrosion behaviour of Ti-N thin film in various environment.	132
Fig. 5.C.1.B (a,b,c,d)	Electrochemical Impedence behaviour of Ti-N thin film in various environment	133
Fig 5.C.2.(a)(P)	Potentiodynamic corrosion test of S.S substrate & ZrN thin films of varying thickness in $1N H_2SO_4$	134'

1

Fig 5.C.2.(a)(B)	Electrochemical impedence diagram of ZrN thin films of varying thickness in $1N H_2SO_4$	134
Fig 5.C.2.(a)(E)	The EDX analysis of 2μ ZrN (I) corroded sample and (II)small region in corroded sample in 1N H ₂ SO ₄	137
Fig 5.C.2.(b)(P)	Potentiodynamic corrosion test of S.S substrate & ZrN thin films of varying thickness in 3.5%NaCl	138
Fig 5.C.2.(b)(B)	Electrochemical impedence diagram of ZrN thin films of varying thickness in 3.5%NaCl	139
Fig 5.C.2.(b)(S)	Typical SEM morphologies of the 2.0µ ZrN coating which had been subjected to the anodic polarization tests in 3.5%NaCl solution	140 .
Fig 5.C.2.(b)(E)	The EDX analysis of 2.0 μ ZrN thin film subjected to potentiodynamic test in 3.5%NaCl	141
Fig 5.C.2.(c)(P)	Potentiodynamic corrosion test of S.S substrate & ZrN thin films of varying thickness in 0.1N HCl	142
Fig 5.C.2.(c)(B)	Electrochemical impedence diagram of ZrN thin films of varying thickness in 0.1N HCl	142
Fig 5.C.2.(c)(S)	Typical SEM morphologies of the 3.0μ ZrN at (a) 100X &(b) 500X coating which had been subjected to the anodic polarization tests 0.1N HCl	144
Fig 5.C.2.(c)(E)	The EDX analysis of 1.5μ ZrN thin film subjected to potentiodynamic test in 0.1N HCl	145
Fig 5.C.2.(d)(P)	Potentiodynamic corrosion test of S.S substrate & ZrN thin films of varying thickness in 11pH Na ₂ SO ₄	146
Fig 5.C.2.(d)(B)	Electrochemical impedence diagram of ZrN thin films of varying thickness in 11pH Na ₂ SO ₄	146
Fig 5.C.2.(d)(S)	Typical morphologies of the 2.0 μ ZrN coating s which had been subjected to the anodic polarization tests 11pH Na ₂ SO ₄ at (1)100X &(2) 500X	148
Fig 5.C.2.(d)(E)	The EDX analysis of 2.0 μ ZrN thin film subjected to potentiodynamic test in 11pH Na ₂ SO ₄	148
Fig. 5.C.2 P(a,b,c,d)	Behaviour of ZrN thin films in Various Environment after potentiodynamic test	149
Fig. 5.C.2 B(a,b,c,d)	Behaviour of ZrN thin films in Various Environment after Electrochemical impedence spectroscopy test	150
Fig 5.C.3. (a)(P)	Potentiodynamic corrosion test of S.S substrate & ZrTiN thin films of varying thickness in1N H ₂ SO ₄ solution	151
Fig 5.C.3.(a)(B)	Electrochemical impedence diagram of ZrTiN thin films of varying thickness in $1N H_2SO_4$	152
	1	

.

.

.

v

• •

		1 7 4
Fig 5.C.3.(a)(S)	Typical SEM morphologies of the 1.5 μ ZrTiN coating which had been subjected to the anodic polarization tests 1N H ₂ SO ₄ solution at different magnification	154
Fig 5.C.3.(a)(E)	The EDX analysis of 2.5μ ZrTiN thin film subjected to potentiodynamic test in 1N H ₂ SO ₄ (I) corroded region (II) within the pit	155
Fig 5.C.3.(b)(P)	Potentiodynamic corrosion test of S.S substrate & ZrTiN thin films of varying thickness in 3.5%NaCl	156
Fig 5.C.3.(b)(B)	Electrochemical impedence diagram of ZrTiN thin films of varying thickness in 3.5%NaCl	156
Fig 5.C.3.(b)(S)	Fig 5.C.3.(b) (S) Typical morphologies of the 1.5µ Zr TiN coating s which had been subjected to the anodic polarization tests 3.5%NaCl	158
Fig 5.C.3.(b)(E)	The EDX analysis of (i) 1. 5µ ZrTiN & (ii)2.5µ ZrTiN overall on the surface and (iii) 2.5µ ZrTiN within the pit of thin film subjected to potentiodynamic test in 3.5%NaCl	160
Fig 5.C.3.(c)(P)	Potentiodynamic corrosion test of S.S substrate & ZrTiN thin films of varying thickness in 0.1N HCl	161
Fig 5.C.3.(c)(B)	Electrochemical impedence diagram of ZrTiN thin films of varying thickness in 0.1 N HCl	162
Fig 5.C.3.(c)(S)	Typical morphologies of the $1.5 \mu Zr$ TiN coating s which had been subjected to the anodic polarization tests in 0.1N HCl	164
Fig 5.C.3.(c)(E)	The EDX analysis of 2.5μ ZrTiN thin film subjected to potentiodynamic test in 0.1N HCl	165
Fig 5.C.3.(d)(P)	Potentiodynamic corrosion test of S.S substrate & ZrTiN thin films of varying thickness in 11pH Na ₂ SO ₄	166
Fig 5.C.3.(d)(B)	Electrochemical impedence diagram of ZrTiN thin films of varying thickness. in 11 pH Na ₂ SO ₄	166
Fig 5.C.3.(d)(S)	Typical morphologies of the 1.5µ ZrTiN coating which had been subjected to the anodic polarization tests in 11pH Na ₂ SO ₄	168
Fig 5.C.3.(d)(E)	The EDX analysis of 2.5µ ZrTiN thin film subjected to potentiodynamic test in 11pH Na ₂ SO ₄	169
Fig 5.C.3. P(a,b,c,d)	Behaviour of ZrTiN thin films in Various Environment after potentiodynamic test.	170
Fig 5.C.3. B(a,b,c,d)	Behaviour of ZrTiN thin films in Various Environment after Electrochemical impedence spectroscopy test	171

,

-

Fig 5.D.1(a)(I)	SEM(i& iii at 200X and 3000X) and EDX analysis(ii at 200X) of 1.5 μ Ti-N after wear testing	173
Fig 5.D.1(a)(II)	EDX analysis of Wear Track at various points in 1.5µ Ti-N after wear testing	174
Fig 5.D.1(a)(III)	Variation in COF(Coefficient of friction) with time for 1.5μ Ti-N thin film after wear testing.	176
Fig 5.D.1(b)(I)	SEM(i& iii at 200X and 3000X) and EDX analysis(ii at 200X) of 2.0µ Ti-N after wear testing	177
Fig 5.D.1(b)(II)	Variation in COF(Coefficient of friction) with time for 2.0μ Ti-N thin film after wear testing.	178
Fig 5.D.1(c)(I)	SEM (i& iii at 200X and 3000X) and EDX analysis(ii & iv at 200X & 3000X) of 2.5µ Ti-N after wear testing	180
Fig 5.D.1(c)(II)	Variation in COF(Coefficient of friction) with time for 2.5μ Ti-N thin film after wear testing.	181
Fig 5.D.1(d)(I)	SEM(i& iii at 200X and 3000X) and EDX analysis(ii at 200X) of 3.0µTi-N after wear testing	182
Fig 5.D.1(d)(II)	EDX analysis of particle in wear track of 3μ Ti-N after wear testing	183
Fig 5.D.1(d)(III)	Variation in COF(Coefficient of friction) with time for 3.0µ Ti-N after wear testing	184
Fig 5.D.1(e)(I)	SEM(i& iii at 200X and 3000X) and EDX analysis(ii at 200X) of 4.0µ Ti-N after wear testing.	185
Fig 5.D.1(e)(II)	Variation in COF(Coefficient of friction) with time for 4.0µ Ti-N after wear testing.	186
Fig 5.D.1(abcde)	COF vs Time for all thickness of Ti-N coating after wear testing	187
Fig 5.D.2(a)(I)	SEM(i& iii at 200X and 3000X) and EDX analysis(ii & iv at 200X & 3000X) of 1.5µ ZrN after wear testing	189
Fig 5.D.2(a)(II)	Variation in COF(Coefficient of friction) with time for 1.5μ ZrN after wear testing	190
Fig 5.D.2(b)(I)	SEM(i & iii at 200X and 3000X) and EDX analysis(ii & iv at 200X & 3000X) of 2.0 μ ZrN, (v) indicates presence of crack at the interface (mag. 2400X)	191
Fig 5.D.2(b)(II)	SEM and EDX analysis of (i) wear Track and (ii) particle at interface between wear track and 2.0 ZrN coating	193
Fig 5.D.2(b)(III)	Variation in COF(Coefficient of friction) with time for 2.0μ ZrN thin film after wear testing.	194

Fig 5.D.2(c)(I)	SEM(i& iii at 200X and 3000X) & EDX analysis(ii & iv at	195
	200X & 3000X), (V & VI) BSE of the area within the wear track at 3000X and 2000X of 2.5µZrN	
Fig 5.D.2(c)(II)	Variation in COF(Coefficient of friction) with time for 2.5 μ ZrN after wear testing.	197
Fig 5.D.2(d)(I)	SEM(i& iii at 200X and 3000X) and EDX analysis(ii & iv at 200X & 3000X) of 3.0 μ ZrN (v) SEM image at interface at 700X	198
Fig 5.D.2(d)(II)	SEM of 3000X and EDX analysis at various point (i,ii and iii) after wear testing	199
Fig 5.D.2(d)(III)	Variation in COF(Coefficient of friction) with time for 3.0μ ZrN thin film after wear testing.	200
Fig 5.D.2(e)(I)	SEM(i& iii at 200X and 3000X) and EDX analysis(ii & iv at 200X & 3000X) of 4.0µ ZrN	201
Fig 5.D.2(e)(II)	Variation in COF(Coefficient of friction) with time for 4.0 µ ZrN after wear testing.	202
Fig 5.D.2 (abcde)	COF Vs Time for all thickness of ZrN coating after wear testing	203
Fig 5.D.2.1.	Wear Map for TiN thin films deposited on HSS	206
Fig 5.D.3(a)(I)	SEM(i& iii at 200X and 3000X) and EDX analysis(ii & iv at 200X & 3000X) of 1.5 ZrTiN	209
Fig 5.D.3(a)(II)	SEM and EDX analysis at (i) interface and (ii) within wear track of 1.5 μ ZrTiN at 3000X	211
Fig 5.D.3(a)(III)	EDX analysis of particles within the wear track of 1.5μ ZrTiN thin film after wear testing	212
Fig 5.D.3(a)(IV)	Variation in COF(Coefficient of friction) with time for 1.5µ ZrTiN	213
Fig 5.D.3(b)(I)	SEM(i& iii at 200X and 3000X) and EDX analysis(ii & iv at 200X & 3000X) of 2.0 μ ZrTiN	214
Fig 5.D.3(b)(II)	Composition of Particle within the wear track after wear testing of 2.0µ ZrTiN at 3000X	215
Fig 5.D.3(b)(III)	(i)SEM image at 2000X (ii) & (iii) EDX analysis of 2.0µ ZrTiN at various points	216
Fig 5.D.3(b)(IV)	Variation in COF(Coefficient of friction) with time for 2.0µ ZrTiN after wear testing	217
Fig 5.D.3(c)(1)	SEM(i& iii at 200X and 3000X) and EDX analysis(ii & iv at 200X & 3000X) of 2.5 μ ZrTiN	218

.

viii

	•	
Fig 5.D.3(c)(II)	(i)SEM image at 2000X (ii) & (iii) EDX analysis of 2.5μ ZrTiN at various points	219
Fig 5.D.3(c)(III)	Variation in COF(Coefficient of friction) with time for 2.5μ ZrTiN after wear testing	220
Fig 5.D.3(d)(I)	SEM(i& iii at 200X and 3000X) and EDX analysis(ii & iv at 200X & 3000X) of 3.0 μ ZrTiN	221
Fig 5.D.3(d)(II)	SEM analysis of 3μ ZrTiN within the wear track at (i) 500X and (ii) 1500X	222
Fig 5.D.3(d)(III)	(i)SEM image at 2000X (ii) & (iii) EDX analysis of 3.0µ ZrTiN at various points	223
Fig 5.D.3(d)(IV)	Variation in COF(Coefficient of friction) with time for 3.0µ ZrTiN after wear test.	223
Fig 5.D.3(abcd)	Indicates the variation in COF with time for ZrTiN of varying thickness during wear testing	224
Fig 5.D.3 (I)	Variation of oxygen gain with temperature for (Ti,Zr)N	225
Fig 6.1(A-F)	Characterisation for macroparticle within the thin film	231
Fig 6.2(A-F)	Characterisation for single phase of one orientation in thin film	233
Fig 6.3(A-F)	Characterisation for pores/insufficient coverage of thin film	234
Fig 6.4(A-H)	Characterisation for high residual stress and high coefficient of friction in thin film	236
Fig 6.5(A-F)	Characterisation for thin films which exhibits pitting corrosion	238
Fig 6.6(A-F)	Characterisation of thin films exhibiting incomplete passivity	240
Fig 6.7(A-F)	Characterisation of thin films exhibiting continuous increase in COF	241
Fig 6.8(A-F)	Characteristic of ZrTiN thin film which exhibits phase consisting of solid solution of ZrN and TiN	243

.

4

,

ix