.

Table	Title	Page
No.		No.
3.1	Regressed calibration curve of ETO in ACN at 284 nm	40
3.2	Regressed calibration curve of ETO in PBS pH 7.4 at 284 nm	41
3.3	Intraday precision and accuracy of ETO in ACN ($n=6$)	42
3.4	Interday precision and accuracy for ETO in ACN (n= 6)	42
3.5	Intraday precision and accuracy of ETO in PBS pH 7.4 (n= 6)	43
3.6	Interday precision and accuracy for ETO in PBS pH 7.4 (n= 6)	43
3.7	Regressed calibration curve of ETO in cell lysate.	46
3.8	Intraday and interday precision and accuracy of ETO from cell lysis	47
•	solution (n= 5)	
3.9	Extraction recovery of ETO from cell lysate (mean \pm S. D., n= 5)	47
3.10	Regressed calibration curve of CH ₃ O-PEG-OH (M.W. 2000) at λ	49
	525 nm	
3.11	Regressed calibration curve of CH ₃ O-PEG-OH (M.W 5000) at λ	50
	525 nm	
3.12	Regressed calibration curve of YIGSR-NH ₂ at λ 345 nm	51
3.13	Regressed calibration curve of EILDV-NH ₂ at λ 345 nm	52
4.1	Synthesis of PEG-PCL di-block copolymer of various molecular	57
	weight	
4.2	Characteristics of synthesized PEG-b-PCL di-block copolymers	59
5.1	Effect of different organic solvent on particle size and percent drug	80
	entrapment of MPCL micelles	
5.2	Effect of stirring speed on particle size and percent drug entrapment	81
	of MPCL micelles	
5.3	Effect of rate of addition of organic solvent to aqueous phase on	82
	particle size and drug entrapment of MPCL micelles	
5.4	Influence of ratio of drug to polymer on particle size and percent	85
	drug entrapment of MPCL220, MPCL235 and MPCL250 micelles	
5.5	Influence of ratio of drug to polymer on particle size and percent	85
	drug entrapment of MPCL550, MPCL570 and MPCL5100 micelles	

.

5.6	Influence of ratio of aqueous to organic phase on particle size and	86
	percent drug entrapment of MPCL220, MPCL235 and MPCL250	
	micelles	
5.7 ·	Influence of ratio of aqueous to organic phase on particle size and	86
	percent drug entrapment of MPCL550, MPCL570 and MPCL5100	
	micelles	
5.8	Percent drug loading of ETO in MPCL220, MPCL235 and	89
	MPCL250 micelles with different amount of ETO	
5.9	Percent drug loading of ETO in MPCL550, MPCL570 and	90
	MPCL5100 micelles with different amount of ETO	
5.10	Average zeta potential of MPCL micellar formulation	93
5.11	Critical micelle concentration (CMC) of various MPCL micelles	95
5.12	Zeta potentials of MPCL micelles in ionic solution containing	98
	various concentration of NaCl	
5.13	Fixed aqueous layer thickness (FALT) of ETO loaded and placebo	98
	MPCL micelles	
5.14	Influence on particle size of MPCL220, MPCL235 and MPCL250	102
	micelles incubated with PBS in absence and presence of BSA	
5.15	Influence on particle size of MPCL550, MPCL570 and MPCL5100	103
	micelles incubated with PBS in absence and presence of BSA	
5.16	PEG surface density and average distance (nm) between two	106
	neighboring chain of MPCL micelles	
5.17	Effect of ETO injection and ETO loaded micelles on the hemolytic	108
	effect after incubation with erythrocyte at different time interval	
6.1	Effect of incubation condition on percent conjugation of peptide	122
6.2	Effect of time of incubation on percent conjugation of peptide	123
6.3	Effect of ratio of functional polymer to peptide on percent	123
	conjugation of peptide	
6.4	Effect of peptide conjugation on particle size, zeta potential and	124
	percent drug entrapment	
6.5	Redispersibility index of micellar formulations at various weight	129
	ratios of total solid content to sucrose	

-

,

6.6	Redispersibility index of micellar formulations at various weight	130
	ratios of total solid content to trehalose	
6.7	Redispersibility index of micellar formulations using various ratio	132
	of total solid content to sucrose and poloxamer-188	
6.8	In vitro release study profile of MPCL235, YPCL235 and EPCL235	134
	micelles in PBS pH 7.4	
6.9	In vitro release study profile of MPCL570, YPCL570 and EPCL570	134
	micelles in PBS pH 7.4	
6.10	Influence on particle size of MPCL235, YPCL235 and EPCL235	137
	micelles at different storage conditions	
6.11	Influence on percent drug loading of MPCL235, YPCL235 and	137
	EPCL235 micelles at different storage conditions	
6.12	Influence on particle size of MPCL570, YPCL570 and EPCL570	138
	micelles at different storage conditions	
6.13	Influence on percent drug loading of MPCL570, YPCL570 and	138
	EPCL570 micelles at different storage conditions	
7.1	Percent viability of B16F10 cells treated with various	149
	concentrations of ETO at different incubation time period	
7.2	Percent viability of B16F10 cells treated with various	149
	concentrations of MPCL235 at different incubation time period	
7.3	Percent viability of B16F10 cells treated with various	150
	concentrations of YPCL235 at different incubation time period	
7.4	Percent viability of B16F10 cells treated with various	152
	concentrations of EPCL235 at different incubation time period	
7.5	Percent viability of B16F10 cells treated with various	153
	concentrations of MPCL 570 at different incubation time period	
7.6	Percent viability of B16F10 cells treated with various	154
	concentrations of YPCL 570 at different incubation time period	
7.7	Percent viability of B16F10 cells treated with various	154
	concentrations of EPCL 570 at different incubation time period	
7.8	Inhibitory concentration (50%) of various formulations at different	155
	time incubation with B16F10 cells	

.

7.9	Percent viability of B16F10 cells treated with various	158
	concentrations of MPCL235-P and MPCL570-P at different	
7 10	Subtavia daga (Half and quarter IC - value 48 h insubstion) of ETO	160
7.10	Subtoxic dose (mail and quarter 1050 value, 48 in includation) of ETO	100
	and micenar formulations and their respective code used for invitio	
711	Cell line studies	160
/ . 11	subtavia daga of plain ETO and micellar formulations	109
7 10	Paragent call migration of P16E10 calls often treatment with plain	1771
7.12	ETC non conjugated micelles and particle conjugated micelles	171
7 1 2	Broant cell adhesion of B16E10 cells after treatment with micellar	176
- 7.15	formulation against VICSP NIL and EU DV NIL coasted plate	170
714	Demonstration against TIOSK-INH2 and EILDV-INH2 coated plate	101
/.14	ETO and ETO loaded migelies for two h	101
7 15	Effort of ETO and micellar formulation induced cell cuels	10/
7.15	perturbation and aportogic in P16E10 colls	104
Q 1	Influence of the amount of steppous chloride on the labeling	107
0.1	efficiency of free ETO	197
87	Influence of amount of stannous chloride on the labeling efficiency	108
0.2	of MPCI 235, VPCI 235 and EPCI 235 micelles	190
83	Influence of amount of stannous chloride on the labeling efficiency	108
0.5	of MPCI 570, VPCI 570 and EPCI 570 micelles	190
81	Stability of ^{99m} Te labeled ETO_MPCI 235_VPCI 235 and	100
0.4	EPCI 235 micelles in normal saline	177
85	Stability of ^{99m} Tc labeled etoposide MPCI 570 VPCI 570 and	199
0.5	EPCL 570 micelles in normal saline	177
86	Biodistribution of ^{99m} Tc-labeled FTO after intravenous injection in	200
0.0	EAT hearing Balh/c mice	200
87	Biodistribution of ^{99m} Tc-labeled MPCL235 after intravenous	201
0.7	injection in EAT bearing Balb/c mice	U U I
8.8	Biodistribution of ^{99m} Tc-labeled YPCL235 after intravenous	201
0.0	injection in EAT bearing Balb/c mice	

8.9	Biodistribution of ^{99m} Tc-labeled EPCL235 after intravenous	202		
	injection in EAT bearing Balb/c mice			
8.10	Biodistribution of ^{99m} Tc-labeled MPCL570 after intravenous	202		
	injection in EAT bearing Balb/c mice			
8.11	Biodistribution of ^{99m} Tc-labeled YPCL570 after intravenous	203		
	injection in EAT bearing Balb/c mice			
8.12	Biodistribution of ^{99m} Tc-labeled EPCL570 after intravenous	203		
	injection in EAT bearing Balb/c mice			
8.13	Effect of in vitro ETO and ETO loaded micelles treated B16F10	212		
	cells on inhibition of nodule formation in C57BL/6 mice			
8.14	Effect of intravenous treatment of ETO and ETO loaded micellar	215		
	formulations on inhibition of pulmonary metastatic nodule			
	formation of B16F10 cells inoculated C57BL/6 mice			

,