Figure	Title	Page
No.		No.
2.1	Types of block copolymers	10
2.2	Schematic diagrams of functionalized polymer micelles with active	14
	targeting to tumors and responsive drug release properties	
3.1	Wavelength scan of ETO in ACN at concentration of 20 μ g/ml	40
3.2	Regressed calibration curve of ETO in ACN	41
3.3	Regressed calibration curve of ETO in PBS pH 7.4	42
3.4	Typical chromatogram of cell lysis solution spiked with ETO along	45
••	with internal standard (diazepam)	
3.5	Regressed calibration curve of ETO in cell lysate	46
3.6	Regressed calibration curve of CH ₃ O-PEG-OH (M.W. 2000) at λ	49
	525 nm	
3.7	Regressed calibration curve of CH ₃ O-PEG-OH (M.W. 5000) at λ	50
	525 nm	-
3.8	Regressed calibration curve of YIGSR-NH ₂ at λ 345 nm	52
3.9	Regressed calibration curve of EILDV-NH ₂ at λ 345 nm	52
4.1	Schematic representation of synthesis of PEG-PCL copolymer	56 ·
4.2	Synthetic scheme of synthesis of MPEG-PCL di-block copolymer	56
4.3	Chemical structure of MPEG-PCL block copolymer	60
4.4	¹ H NMR spectrum of BCP 2-2 di-block copolymer	60
4.5	¹ H NMR spectrum of BCP 2-3.5 di-block copolymer	61
4.6	¹ H NMR spectrum of BCP 2-5 di-block copolymer	61
4.7	¹ H NMR spectrum of BCP 5-5 di-block copolymer	62
4.8	¹ H NMR spectrum of BCP 5-7 di-block copolymer	62
4.9	¹ H NMR spectrum of BCP 5-10 di-block copolymer	63
4.10	¹ H NMR spectrum of FBCP 2-3.5 di-block copolymer	63
4.11	¹ H NMR spectrum of FBCP 5-7 di-block copolymer	64
4.12	GPC chromatogram of BCP 2-2, BCP 2-3.5 and BCP 2-5 di-block	65
	copolymer	

4.13	GPC chromatogram of BCP 5-5, BCP 5-7 and BCP 5-10 di-block	65
	copolymer	
4.14	GPC chromatogram of FBCP 2-3.5 and FBCP 5-7 di-block	66
	copolymer	
4.15	FTIR spectrum of BCP 2-2 di-block copolymer	67
4.16	FTIR spectrum of BCP 2-3.5 di-block copolymer	67
4.17	FTIR spectrum of BCP 2-5 di-block copolymer	68
4.18	FTIR spectrum of BCP 5-5 di-block copolymer	68
4.19	FTIR spectrum of BCP 5-7 di-block copolymer	69
4.20	FTIR spectrum of BCP 5-10 di-block copolymer	69
4.21	FTIR spectrum of FBCP 2-3.5 di-block copolymer	70
4.22	FTIR spectrum of FBCP 5-7 di-block copolymer	70
5.1	Effect of stirring speed on particle size and percent drug entrapment	81
	of MPCL micelles	
5.2	Effect of rate of addition of organic solvent to aqueous phase on	82
	particle size and drug entrapment of MPCL micelles	
5.3	Influence of ratio of drug to polymer on particle size and percent	84
	drug entrapment of MPCL220, MPCL235 and MPCL250 micelles	
5.4	Influence of ratio of drug to polymer on particle size and percent	84
	drug entrapment of MPCL550, MPCL570 and MPCL5100 micelles	
5.5	Influence of ratio of aqueous to organic phase on particle size and	88
	percent drug entrapment of MPCL220, MPCL235 and MPCL250	
•	micelles	
5.6	Influence of ratio of aqueous to organic phase on particle size and	88
-	percent drug entrapment of MPCL550, MPCL570 and MPCL5100	
	micelles	
5.7	Maximum practical percent drug loading achieved in various MPCL	92
	micelles	
5.8	Typical particle size distributions of ETO loaded MPCL235	92
	micelles	
5.9	Zeta potential of ETO loaded MPCL 235 micelles	93
5.10	Excitation spectra of pyrene as a function of MPCL 250 micelle	94
	concentration in water at room temperature	

.

5.11	Plot of I_{338}/I_{335} (from pyrene excitation spectra) vs log C for	96
	MPCL220, MPCL235 and MPCL250 micelles	
5.12	Plot of I_{338}/I_{335} (from pyrene excitation spectra) vs log C for	96
	MPCL550, MPCL570 and MPCL5100 micelles	
5.13	Natural log of zeta potential vs. K of MPCL220, MPCL235 and	99
	MPCL250 micelles with and without drug	
5.14	Natural log of zeta potential vs. K of MPCL220, MPCL235 and	100
	MPCL250 micelles with and without drug	
5.15	Influence of serum proteins on block co-polymeric micelles as drug	101
	delivery systems	
5.16	Effect on particle size of MPCL220, MPCL235 and MPCL250	104
	micelles after incubation in presence and absence of BSA	
5.17	Effect on particle size of MPCL550, MPCL570 and MPCL5100	104
	micelles after incubation in presence and absence of BSA	
5.18	Percent hemolysis ETO injection and placebo injections (ETO) after	109
	30 min of incubation with erythrocyte dispersion	
5.19	Percent hemolysis MPCL micelles after 30 min, 4 h and 24 h of	109
	incubation with erythrocyte dispersion	
6.1	Differential scanning calorimetry thermograms of pure ETO and	125
	ETO loaded MPCL 235 and MPCL 570 micelles	
6.2	Powder X-ray diffraction patterns of ETO and ETO loaded MPCL	126
	235 and MPCL 570 micelles	
6.3	TEM images of MPCL235 micelles after negative staining with 1%	127
	uranyl acetate	
6.4	TEM images of MPCL570 micelles after negative staining with 1%	127
	uranyl acetate	
6.5	Redispersibility index of micellar formulations at various weight	129
	ratios of total solid content to sucrose	
6.6	Redispersibility index of micellar formulations at various weight	130
	ratios of total solid content to trehalose	
6.7	Redispersibility index of micellar formulations using various ratio	133
	of total solid content to sucrose and poloxamer-188	

.

•

6.8	<i>In vitro</i> release study profile of MPCL235, YPCL235 and EPCL235 micelles in PBS pH 7.4	135
6.9	<i>In vitro</i> release study profile of MPCL570, YPCL570 and EPCL570 micelles in PBS pH 7.4	136
7.1	Cell viability of B16F10 cells with ETO, MPCL235, YPCL235 and	150
	EPCL235 formulation after 24 h incubation period	
7.2	Cell viability of B16F10 cells with ETO, MPCL570, YPCL570 and	151
	EPCL570 formulation after 24 h incubation period	
7.3	Cell viability of B16F10 cells with ETO, MPCL235, YPCL235 and	152
	EPCL235 formulation after 48 h incubation period	
7.4	Cell viability of B16F10 cells with ETO, MPCL570, YPCL570 and	153
	EPCL570 formulation after 48 h incubation period	
7.5	Cell viability of B16F10 cells with ETO, MPCL 235, YPCL 235	156
	and EPCL 235 formulation after 72 h incubation period	
7.6	Cell viability of B16F10 cells with ETO, MPCL 570, YPCL 570	157
	and EPCL 570 formulation after 72 hr incubation period	
7.7	Cell viability of B16F10 cells after treatment with MPCL235-P for	158
	various time point incubation	
7.8	Cell viability of B16F10 cells after treatment with MPCL570-P for	159
	various time point incubation	
7.9	Morphological changes of B16F10 cells after treatment with ETO	162
	and untreated control (UC)	
7.10	Morphological changes of B16F10 cells after treatment with MPCL	163
	235 and YPCL235	
7.11	Morphological changes of B16F10 cells after treatment with YPCL	164
	235 and EPCL 235	
7.12	Morphological changes of B16F10 cells after treatment with MPCL	165
	570 and YPCL 570	
7.13	Morphological changes of B16F10 cells after treatment with	166
	YPCL570 and EPCL570	
7.14	Morphological changes of B16F10 cells after treatment with	167
	MPCL235-P and MPCL570-P	
7.15	Typical images of colony formation	168

7.16	Percent colony inhibition of B16F10 cells after treatment with two	170
	subtoxic doses of ETO, MPCL235, YPCL235, EPCL235 and	
	MPCL235-P-A	
7.17	Percent colony inhibition of B16F10 cells after treatment with two	170
	subtoxic doses of ETO, MPCL570, YPCL570, EPCL570 and	
	MPCL570-P-A	
7.18	Microscopic wound images of Zero hr reference plate, Untreated	172
	control and Plain ETO-A	
7.19	Microscopic wound images of MPCL235-A, YPCL235-A,	172
	EPCL235-A and MPCL235-P-A	
7.20	Microscopic wound images of MPCL570-A, YPCL570-A,	173
	EPCL570-A and MPCL570-P-A	
7.21	Percent cell migration of B16F10 cells treated with ETO,	173
	MPCL235, YPCL235, EPCL235 and MPCL235-P	
7.22	Percent cell migration of B16F10 cells treated with ETO,	174
	MPCL570, YPCL570, EPCL570 and MPCL570-P	
7.23	Percent cell adhesion of B16F10 cells after treatment with micellar	176
	formulations to YIGSR-NH ₂ coated plate	
7.24	Percent cell adhesion of B16F10 cells after treatment with micellar	177
	formulations to EILDV-NH ₂ coated plate	
7.25	Confocal fluorescence images of MPCL235, YPCL235 and	179
	EPCL235 micelles after incubation of 1 and 3 h	
7.26	Confocal fluorescence images of MPCL570, YPCL570 and	180
	EPCL570 micelles after incubation of 1 and 3 h	
7.27	Percent cellular uptake of ETO, MPCL235, YPCL235 and	182
	EPCL235	
7.28	Percent cellular uptake of ETO, MPCL570, YPCL570 and	182
	EPCL570 micelles	
7.29	Cell cycle analysis of untreated control and ETO treated B16F10	185
	cells	
7.30	Cell cycle analysis of B16F10 cells after treatment with MPCL235,	185
	YPCL235 and EPCL235 micelles	

7.31	Cell cycle analysis of B16F10 cells after treatment with MPCL570,	186
	YPCL570 and EPCL570 micelles	
7.32	Cell cycle analysis of B16F10 cells after treatment with MPCL235-	186
	P and MPCL570-P micelles	
8.1	Biodistribution profile of 99mTc labeled ETO and micellar	205
	formulations in blood of EAT tumor bearing mice after i.v.	
	administration	
8.2	Biodistribution profile of 99mTc labeled ETO and micellar	206
	formulations in liver of EAT tumor bearing mice after i.v.	
	administration	
8.3	Biodistribution profile of 99mTc labeled ETO and micellar	206
	formulations in spleen of EAT tumor bearing mice after i.v.	
	administration	
8.4	Biodistribution profile of 99mTc labeled ETO and micellar	208
	formulations in lung of EAT tumor bearing mice after i.v.	
	administration	
8.5	Biodistribution profile of 99mTc labeled ETO and micellar	208
	formulations in kidney of EAT tumor bearing mice after i.v.	
	administration	
8.6	Biodistribution profile of 99mTc labeled ETO and micellar	210
	formulations in heart of EAT tumor bearing mice after i.v.	
	administration	
8.7	Biodistribution profile of 99mTc labeled ETO and micellar	210
	formulations in tumor of EAT tumor bearing mice after i.v.	
	administration	
8.8	Effect of in vitro ETO and ETO loaded micelles treated B16F10	212
	cells on inhibition of nodule formation in C57BL/6 mice	
8.9	Appearance of lungs after 21 st day of invitro treated B16F10 cells	214
	inoculation	
8.10	Effect of intravenous treatment of ETO and ETO loaded micellar	215
	formulations on inhibition of pulmonary metastatic nodule	
	formation of B16F10 cells inoculated mice	

XVI

- 8.11 Appearance of lungs after 21st day of B16F10 cells inoculations 217 followed by intravenous treatment of formulations
- 8.12 Histopathological studies of lung tissues showing reduction in 218 tumor islands by invitro treated B16F10 cells with various formulations (Pre-treatment)
- 8.13 Histopathological studies of lung tissues showing reduction in 219 tumor islands by invitro treated B16F10 cells with various formulations (Post-treatment)