
Chapter 2

QQProduction In Presence Of 
Oscillating External Field

2.1 Introduction

In this chapter, we will discuss the process of formation of Quark Gluon Plasma in 
Relativistic Heavy Ion Collision (RHIC). In particular we will concentrate on the 
mechanism by which the initial beam energy in RHIC gets deposited in a small vol
ume in the speculated form of quark gluon plasma through the production of quark 
anti-quark pairs. The process of quark anti-quark production in RHIC has attracted 
the attention of many workers for over a decade.

This complex process of pair production, inspite of being visited many a time 
by many workers taking into account different physical conditions, till today, stands 
as one of the most elegant model whose potential is far from being exhausted. The 
production of qq pairs from vacuum in the flux tube model *, basically owes its ex
istence to the classic paper of Schwinger2, where in the context of Quantum Electro 
Dynamics (QED), it was shown that in the presence of very strong external electric 
field, QED vacuum becomes unstable and it starts emitting e+e~ pairs at the expense 
of the electric field till the field strength falls bellow a critical value comparable to 
the square of the mass of the produced particles.

Along the same line, the qq pair production in RHIC is also assumed to take
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place by the decay of the flux tubes formed between the two receding nuclei due to ■ 
the multiple exchange of soft gluons. This process continues till the energy stored in 
the chromo-electric field/unit length becomes less than the mass of the produced qq 
pairs. In addition to extending Schwinger’s QED calculation to the QCD case, efforts 
have also been made to include effects such as, the screening of the external electric 
field3, finite size of the nuclei4, moving boundary conditions5, radiai confinement6 etc. 
It is worth noting that in all these works the external chromo-electric field has always 
been considered to be constant in both space and time.

In this chapter we will contest the validity of this assumption and in fact argue 
that the basic nature of QCD lagrangian demands the electric field to be time depen
dent. The actual evaluation of qq pair production rate by us however has been carried 
out for an external field which is homogeneous in space but oscillating sinusoidally in 
time.

The organisation of this chapter is as follows. In section two we will review 
briefly the Schwinger mechanism followed by the physical picture of flux tube forma
tion in relativistic heavy ion collisions. In section three we justify, from exact solutions 
of the classical SU(2) Yang-Mills equations, why the external chromo-electric field has 
to be time dependent rather than constant. This is followed by section four where we 
will try to give an order of magnitude estimate of the field strength and the frequency 
of oscillation attainable in relativistic heavy ion collision. In section five we compute 
the pair production rate in a time varying field with different values of field strength 
and frequency of oscillation. Lastly we conclude by stating the scope of further im
provement of our results.

2.2 Schwinger Mechanism: A Brief Outline

The production of particle antiparticle pairs by a classical external field via 
Schwinger mechanism is a general phenomenon that reflects a much broader physi
cal reality, i.e instability of vacuum under external perturbations. This idea has been 
used in a variety of theories in different contexts, ranging from QED, QCD, Transport 
theory7, Relativistic Heavy Ion Collision, Gravitation8, Early Universe9 and even in 
String theory10.In the following passage, we will elaborate on the physics11 of this 
process for the simple case of QED.
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Let us consider a system to consist of vacuum (including virtual particle antiparticle 
pairs ) subjected to an external electric field. In order to create an on-shell particle 
antiparticle pair from the vacuum, the virtual particle antiparticle have to be moved 
away from each other over a distance d > the compton wave length of the particles, 
with a corresponding energy loss (of the system) ~ 2m. Now in the presence of an 
external electric field (with assumed strength E > Ec ~ m2), because of vacuum 
polarisation,if the virtual particle-antiparticle are moved apart by a distance d the- 
energy gained by the system, at the expense of the external field, will be gEd. If 
the distance d > Compton wave length of the particles, the energy gained by the 
system in putting the pairs on shell becomes more than 2m. Since it is energetically 
always favourable for a system (i.e vacuum) to go to its lowest energy state, pairs will 
be emitted from vacuum till the field strength falls below the critical field strength Ec.

The production of qq pairs in EHIC has also been explained by the same 
principle via the flux tube model. This model was introduced independently by Low1 
and by Nussinov1 to account for the observed scaling behaviour of scattering cross- 
sections in hadron hadron collisions.In nucleus nucleus collisions, it assumes that at 
high energy, when the two highly Lorentz contracted nuclei pass through each other, 
the partons of one nucleus interact with the partons of the other nucleus by the 
exchange of soft ( color octet ) gluons. If the fly by time of the nuclei is less than 
the time scale of interaction of the partons, the receding nuclei get randomly color 
charged by exchange of soft gluons. Since a colored object cannot exist free in nature 
the color octet partons in the receding nuclei get connected to each other by means 
of color flux tubes with color electric fields inside them. This color flux tube decays 
producing qq pairs in the same way as described previously for the QED case of 
Schwinger.

With this picture in mind, the dynamical evolution of the plasma produced in 
RHIC, including qq pair creation, has been studied2-7 by many others. We however 
will be content to examine the effect of oscillating external chromo-electric field on 
the pair production rate, since this has not been investigated before.

2.3 Some Exact Solutions of Yang Mills Equa
tions

In this section we will establish that, because of the presence of the nonlinear
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terms in the Lagrangian, the gluons produced in RHIC, polarise the medium between 
the two receding nuclei, generating an electric field that undergoes, characteristic 
non-linear, non-abelian oscillations in time. For this purpose we will make certain 
assumptions based on the geometry of the problem. These assumptions however do 
not change the qualitative nature of our observation.

The first assumption is that each of the color charged nucleus has a uniform 
distribution of color charge in the plane transverse to the direction of motion so that 
there exists no gradient of the fields in this direction. Our second assumption is that 
these color charges produce a chromo-electric field such that A0 and Az are the only 
nonzero potentials. Although in principle a magnetic field can also be present, we 
will not consider it here since it cannot transfer energy to the system to create pairs. 
Our third assumption is that the region between the two nuclei can be treated as 
vacuum and we will neglect the curvature effects near the boundaries. With these 
simplifying assumptions, the dynamics of the gluon fields can essentially be described 
in (1+1) dimensions rather than (3+1) dimensions. Therefore in order to get infor
mation about the nature of the classical gluon fields one needs to solve the classical 
Yang-Mills field equations in (1+1) dimensions.

2.3.1 Solution of Yang Mills equations in (1+1) dimensions.

We next show that in (1+1) dimensions the Yang-Mills equations have a so
lution with a sinusoidally time varying component whose frequency depends on the 
amplitude. We first write the sourceless Yang Mills equation in (1+1) dimensions

DliF,lv = 0 (2.1)

where the Greek indices fi and v take values 0 and 1 only. The covariant, derivative 
is defined as

Dp = 9^ + ig [AM, ] (2.2)

with g as the coupling constant and g[AM,] as the commutator bracket. Since we are 
working with an SU(2) color symmetry, AM is defined as AM = A^ara where r0 are the 
generators obeying the commutation rules

[r0,+] = kabcrc (2.3)

The indices a,b,c takes values from one to three. Further, the only non zero com
ponents of the vector field in this case are Ao and Az, and we have chosen the axial
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gauge Az — 0. With this choice of the gauge we get from equation (2.1) for v = 0,

d\Aa (2.4)

whose solution is

Aa°(t) = aa(tlz + pa (2.5)

Here aa and 0a are arbitrary integration constants. In order to find out an exact 
solution of this equation we take aa to depend on time and /3a to be a constant. 
Equation (2.1) for v — 1 gives

dQdzAa° + geabcA/dzAc° = 0 (2.6)
v

Substituting the solution (2.5) in equation (2.6) we arrive at

aa(t) + gtabcCXcPb ~ 0 (2.7)

One can derive a conservation law from this equation namely

<xa(t)ota(t) = constant (2.8)

A summation over repeated indices is implied.

We solve this set of coupled first order linear differential equations by Euler’s 
method; i.e we choose a solution of the form

aa (t) = aaept (2.9)

Substituting equation (2.9) in equation (2.7), we obtain a set of coupled algebraic 
equations whose solution is of the form

ai = /?i+ hfa [ e*"1 + e~iu,t] - iwfc [ eiwt - c“*"*] (2.10)

aa = fa + Aft [ e'w‘ + + iu,fc [ e^4 - (2.11)

a3 = fo + fa2 [ eiwt + e-'“4] - w2 [ e‘wt + e~iut] (2.12)

Here u> = [(A)2 + {fh)2 + (Ps)2]2 •
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Once the a’s are known, one gets the solution for the A0’s by substituting 
equations (2.10), (2.11) and (2.12) in equation (2.5). Without giving the unnecessary 
mathematical details, the final expression is

Al = [fa + fa fa [ e*'"* + e-'"'] - iufa [ eiwi - e-™]] z + fa (2.13)

Al = [fa + fa fa [ e*"4 + e-’"*] + iufa [ eiwt - e-"4]] z + fa (2.14)

Al = [/?3 + /?32 [ + e-*"4] -to;2 [ e'“l + e""4]] z + fa • (2.15)

Thus from the solution it is clear that the electric field inside a chromo-electric 
flux tube oscillates with frequency u = {{fix)2 + {fa)2 + (A)2]5? which depends on the 
amplitude of oscillation.

It may be pointed out that there also exists an exact time dependent vacuum 
solution of (SU(2)) Yang-Mills equations of the type12

Al = (0 ,H6?,H6%,H6$) (2.16)

where
H

B_
V9 cn <o) (2.17)

In eq.(2.16), n (=0,1,2,3) is the Lorentz indexj' a (=1,2,3) is the color index and 6f is 
the Kronecker delta. In eq. (2.17) cn represents the Jacobi elliptic function and B is 
a constant determining the amplitude of the oscillating field. Physically, this solution 
represents a non-linear collective oscillation of gluons with a characteristic ampli
tude dependent time period /-v' (s/%B)~ , which is a manifestation of the intrinsic 
nonlinearity present in the system.

As we will see this time varying nature of the field changes the pair production 
rate quite significantly over that due to the constant field i.e the Schwinger estimate.

2.4 Estimating The Parameters

Having established the fact, that the chromo-electric field inside the flux tube 
(because of the self-interaction of the fields) should be oscillating in time, we next • 
explore its consequences on the rate of spontaneous pair production from vacuum.
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For this purpose, one can in principle take either of the exact solutions and compute 
the rate of pair production. But considering the computational difficulties associated 
in working with such exact solutions, we will content ourselves with a spatially homo
geneous chromo-electric field that oscillates sinusoidally in time. We take .the vector 
potential to be

Al(x) = (0,0,0, Aa(t)) and Aa(t) = * (2.18)

and for of SU(3) color symmetry a goes over (=1, 2,....8)

Here Ea's are constants and d0 is the characteristic collective frequency for the 
gauge fields. Now to determine the pair production rate one has to give an estimate of 
the frequency and amplitude of the external chromo-electric field produced in RHIC. 
For this purpose, we make use of the solution of Yang-Mills field equations given by 
equations(2.16)- (2.17).From this solution taking each Aa = A one can write the r.m.s 
chromo-electric field strength as

E = (v/8) [y/ZgB) (^) = 4B* (2.19)

apart from an uninteresting constant.
Since d0 = (y/2gB}, and replacing B in terms of E from the equations above, we get 
the expression for frequency

OJq = (2.20)

in terms of a gauge invariant chromo-electric field defined as

£= [Ea=l8£*2]" (2-21)

Once Do is known in terms of the chromo-electric field strength, one is left with the 
determination of the strength of the external field attainable in RHIC. In order to 
estimate it, one has to first make an estimate of the color charge deposited on each of 
the receding nuclei after the collision. Following Kerman, Matsui and Svetitsky13, it 
is usually assumed that at very high energy in a nucleon nucleus interaction multiple 
gluons are exchanged. In each interaction, with the exchange of each gluon there is 
an exchange of color charge ta ( where ta is the matrix in the adjoint representation of 
the symmetry group ). Thus after v such exchanges of gluons, the total color charge

13



that gets accumulated on the target nucleus is

J = 1
(2.22)

If the color orientations amongst these exchanged gluons are uncorrelated, one can 
assume, after u such interactions, that the r.m.s color charge deposited on the target 
nucleus is

(T2p = V^(t2) (2.23)

From this relation one can say that, after v interactions, the amount of color charge 
deposited on the target nucleus is proportional to the square root of the number of 
interactions i.e

Q oc \fv (2.24)

One can relate (see ref.13) the number of pairs produced to the number of interactions 
or the total color charge as

dNpatr

dy
oc \fv (2.25)

Here Npair is the number of pairs produced and y is the rapidity. Moreover if one 
assumes the number of hadrons produced to be proportional to the number of pairs 
produced then

f) -(f) *
dy JpA \4y )„

i.e the multiplicity for proton nucleus collision scales as the square root of the num
ber of interactions times the multiplicity in proton proton collisions. So, from the 
multiplicities of the produced particles one can compute the number of collision that 
each nucleon undergoes in a p-A collision.

If <7p_p and <Jp-A be the cross sections for proton proton and proton nucleus 
collisions then one can write phenomenologically that

v = A— (2.27)
<?pA

(where A is the mass number of the target nucleus).From simple geometrical consid
erations one can show that scales as A~* and hence the number of collisions from

ffpA

p-p to p-A should scale as A*. This implies that the amount of color charge deposited 
in p-A collision on the target nucleus scales as times that in the p-p collision.

In high energy central collision of two heavy nuclei, the individual constituent
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nucleons of each nuclei can be thought of scattering through the other nuclei. So in 
the light of the foregoing discussion, total number of interactions, compared to p-p 
collision, should scale as At5 Ap* , where At and Ap are the target and projectile 
mass numbers respectively. This implies, that the amount of color charge deposited 
should scale as Ap%Ap« from p-p to A-A collision. The earlier relation implies that 
the chromo- electric field strength, should scale from p-p to A-A collision as At« Ap«.

After establishing the scaling behaviour of the chromo-electric field from p-p to 
A-A collision, the only task one is left with is to evaluate the strength of the chromo
electric field produced in p-p collisions. If the flux tube produced in p-p collision 
generates a string tension a then the field energy stored per unit length of the tube 
is

E2 = — (2.28)
area

From Gauss law one can write14

E area = g, where g is the coupling constant. (2.29)

On using the equations (2.28) and (2.29) one can derive that

gE = 2a (2.30)

The quantity a is usually evaluated from the Regge slope parameter and its value 
has been estimated to be around 0.2GeV2U. Because of the final state interactions15 
( basically screening effect ), the effective field strength generated initially in p-p 
collision, gets reduced to around .2 GeV2. Once we know that the field strength 
produced in p-p collision is 0.2 GeV2 one can compute the value of the field produced 
in A-A collision, from the scaling law

EAt-ap ~ AT«AprEp_p (2.31)

Following Pavel and Brink6 the magnitude of the field strength produced in the col
lision of S32 on S32 has been estimated to be, gE < 0.6GeV2 and for U - U collisions 
it is gE < 1.2GeV2. These values of gE imply a variation of wq between 0.32 GeV 
to 0.87 GeV,a number obviously not close to zero. This nonzero value of ojq certainly 
implies that caution should be exercised before estimating, the number of particles 
produced in RHIC, using Schwinger’s expression2.
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2.5 Estimation Of Pair Production Rate
Having obtained estimates of the field strengths and the frequencies of oscil

lation of the fields produced in RHIC, we will concentrate next on the computation 
of the pair production rate of spin zero bosons with SU(2) color symmetry, in the 
presence of a sinusoidally oscillating background chromo-electric field. For fermions 
the final result will get modified by numerical factors only. In the discussion of our 
calculation we will not provide derivation of the standard field theory results, instead 
we will refer to the sources where they could be found.
The probability that the vacuum remains vacuum, in the presence of an external field, 
can be written in terms of the S matrix as

| (0 | 5 | 0} |2=| S0(A) |2= exp [- J d*xW(x)
(2.32)

where (0 | S | 0) is the vacuum expectation value of S-matrix in the presence of the 
color potential A“ and W(x) is the pair creation probability per unit volume per unit 
time. The quantity 50 can be shown 16 to be equal to

So = Dei (G-'Go) = expTr [/n (CT1^)] (2.33)

where Go and G are the free propagator and the propagator in presence of the external 
field respectively, defined as

Go 1
P2 — m2 + ie

and G 1
(P — g'A)2 — m2 + ie

(2.34)

The trace in equation (2.33) is defined over spinor, color and coordinate spaces. 
In terms of scattering operators T and T defined as

T = V + V
1

P2 — to2 -f ie
T and T = V + V

1
P2 — m2 — ie

with T = 7°T^7° and V = G0~x — G x, one can show that

| S0 (A) |2 = exp [Tr/n (l — Tp+T+pJ^

W{x) = -tr(x | In (l - Tp+rV) | x)

Here p± are the projectors over positive and negative energy states defined as

p± = 2tt0± (p2) 8 (p2 - m2)

(2.35)

(2.36)

(2.37)

(2.38)
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It should be noted that the operators T (T+) as well as p± are matrices in color, 
spinor and coordinate space. In equation (2.37)the symbol Tr stands for integration 
over the continuous variables and trace over the color and spinor indices, .whereas in 
equation (2.38) tr stands for trace over color and spinor, indices only.
On expanding the logarithm in equation ( 2.38 ) and retaining the first term (i.e 
neglecting the production probability of 2 ,3 or more pairs ) one gets

w=& f Liui / 1 I'r11">|2 <2-39)
Here w = (p2 T m2)1^2 and m is the mass of the spin zero colored particle. The 
backward “scattering” amplitude (—a? | T | w) is then evaluated by solving the color 
coupled Klein Gordon equations in external color potential. For the color SU(2) group 
the equations to be solved are (ra , a = 1,2,3 are Pauli matrices).

{(d20 - V2) + 2igAarad3 T g {Aaf T ™2] ( £ ) = 0 (2.40)

with appropriate asymptotic conditions in time.

More precisely, we look for solutions of eq. (2.40) having the form17

t —* — oo = eT'ut + b+e,u>l
ipS{t) = e~iwt + 

t —> Too (p+(t) = a+e~,u>i 
<p~\t) = a~e~>u>t

(2.41)

Since a negative energy particle at t —> — oo is Equivalent to a positive energy antipar
ticle at t —> Too, the backward “scattering” amplitude (—u> | T | cu) and hence the 
pair creation probability, can be determined from the coefficients b+ and Actually 
one has

W <x
I b+ l2 T 1 6- l2 

2
(2.42)

In order to proceed with the solution of equation (2.40), it is easy to show that, the 
above equations can be decoupled by a unitary transformation in color space defined

rr+ _ ( (Es T E) INu (Et - iE2) /Ni 
-{ (E3-E)/N2, (Ei-iEJ/Nt (2.43)

where E2 = E\ T E\ T E\, N\ = 2E2 T 2E3E,N2 = 2E2 - 2EZE. The (column . 
vector) wave function in turn transforms into

u+ 9+
H>-

(2.44)
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For the spatially homogeneous system that we are considering (note that this ignores 
the confinement effect discussed by some earlier workers6), the decoupled equations 

are,

d] + m2 + p2 T %gP3 ^ cos u0t + g2 (Jj-j cos2 u0t ^ 

with p2 = p\ + p\ + pi = pi + pl
Following Brezin and Itzykson17, these decoupled equations 
boundary conditions

t+_ ) = 0 (2-45)

are solved using the

t -» -oo *+(/) - Ae“,wt + Beiui 
«_(t) = Ce~lwt + Deiut 

t —» +oo ^+(f) = J5e~,wt 
«_(<) = Fe~iwt

(2.46)

After finding the coefficients A, B, C, D we finally express them in terms of 
b+ and 6_ respectively. We have solved for the coefficients A, B, C, D from equation 
(2.45) by W.K.B method, choosing a solution of the form

$+(f) = aa(t)e~'XaW +
«_(/) = ab(t)e-ix»W + fo(t)eiXb{t) (2.47)

where ^
Xa{t) = f dtwa(I) and xt(t) = / dtujb(t) (2.48)

Jo Jo

and assuming < 1 along with the conditions <C 1 and <C 1 where
2l 5 j] i

wa(f) = m2 + ^p3 — and u>b(t) = m2 + ^p3 + -^ij . One assumes here

that the external field is switched on and off adiabatically.
From equation (2.46), we obtain an order of magnitude estimate of pair creation 
probability, in the case u0 -C m,

w a ,E2 1
2tt g{i)Jr\'tg'{i) exp

where
g(z)

and

7

¥ i1 dv rri.
.2

mm
gE

1/2

g( t) (2.4'9)

mu0~qlf ’

l + z y 1 

2
(2.50)
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As shown by Brezin and Itzykson16, one can recover the static Schwinger limit from 
equations (2.49) and (2.50) by taking u>0 —► 0 independently of gE in such a way that 
7 = S^L -+ 0, In this case, one obtains the Schwinger result

Wt~
a^E2

2x exp
7rm2

_ (2.51)

To consider the case of oscillating non-abelian fields we must take u>0 to be dependent 
on E in the manner discussed after equation (2.20) i.e. that u0 = \JgEj2. Equations 
(2.49) and (2.50) now show that 7 = ^ ~ > 1 and that the pair
creation probability W takes the form of ‘multigluon ’ production, viz.,

a ,E2 g2E2

4m2w?

2m

Un (2.52)

where ~ is the minimum number of gluons required to produce a pair. Incidentally 
following Sakurai17, one can also compute the pair production rate using ordinary 
perturbation theory, when w0 > m. Here the transition amplitude is given by the S 
matrix element

Sji = ~g{qq I J (_)a (7)^ | 0) (2.53)

Here $ are the quark fields operator, A^a are the classical external fields and ra 
are the pauli matrices respectively. The square of this amplitude will give us the 
probability of transition from vacuum to qq pairs. An integration over the available 
phase space gives the total pair production probability. On taking the external field 
as sinusoidally oscillating in time and carrying out the integration one arrives at the 
pair production rate

asE2
6 1 +

2m2
UJn N

4m2 \ 

/
(2.54)

If one considers the strong field limit i.e gE > m2 then one can see that the 
perturbative formula for pair production reduces to

Wp ~ <xsE2 (2.55)

(ignoring the numerical factors). This result also follows from Schwinger’s expression, 
since in the limit m2/gE C 1 we can expand the exponential in powers of jg and
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retain only the first term ignoring the others to arrive at the same expression. Next 
we consider the various limits, by defining x = ^ and n = One can then see 
that the ratio between Schwinger and the multigluon production rate is

^ ~ (xn)2ne~*x (2.56)
"a

Since an exponential dominates over any finite order polynomial this expression shows 
that for n ~ x >• 1 the multigluon ionisation process of vacuum dominates over the 
Schwinger process.

Before we obtain the numerical estimate of the pair production rate , we 
would like to comment on the numerical value of the particle mass to be used in the 
computation. In the literature the numerical estimate of the pair production rate has 
been carried out using constituent as well as current quark masses. In our view, since 
the flux tube model takes into account the localisation of color flux and the effect of 
confinement, it is more appropriate to consider constituent quark mass for numerical 
estimation. Moreover as has been discussed earlier, in order to produce an on shell qq 
pair from vacuum, the external field has to move them over a distance, of the order 
of compton wavelength (~ ~) of the particles. For current quark mass this distance 
is around ~ 20/m, which appears unreasonable for A — A collisions. We therefore 
propose that for pair creation via flux tube model ^ < 1 frn i.e mq > 200MeV.

In any case we have numerically evaluated the pair production rate using the 
expressions in the three limits i.e perturbative, multigluon ionisation and Schwinger, 
with different values of the chromo-electric field and mass. The results are shown in 
Table-I. They show the following features:

l.If m = 10 MeV, then for values of gE ranging from 0.05 GeV2 to 1.5 GeV2, the 
pair creation probability Wa « W, Wp. For ms — 150MeV, Wp is larger in p-p
collisions and Wg is significant in A - A collisions.

2.For the production of uu, dd, ss, pairs with constituent quark masses and field 
strength gE < 0.5GeV2 the pair creation probability Wp dominates in p-p and in A- 
A collisions. For gE > 0.5GeV2 the multigluon ionisation of pairs from the vacuum 
is larger in A-A collisions.
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Table Caption

Table 1. Pair creation probability Wa, Wg and Wp (in units (fm) 4) for different values 
of mass m (GeV) and field strength gE ((GeV)2).

Table 1

m gE w. w. w.0.01 0.05 0.021 0.015 0.022
0.1 0.083 0.076 0.087
0.2 0.334 0.331 0.350
0.5 2.09 2.12 2.19
1.0 8.35 8.35 8.75
1.5 18.8 18.5 19.7

0.15 0.05 0.005 ~ 2 x 10~? 0.022
0.1 0.041 ' ~4 x 10~4 0.087
0.2 0.235 0.051 0.350
0.5 1.81 3.03 2.19
1.0 7.78 24.5 8.75
1.5 18.0 65.9 19.7

0.300 0.05 7 x ib-* ~ 2 x 10~14 0.022
0.1 5 x 10~3 ~ 6 x 10"8 0.087
0.2 0.081 7 x 10~4 0.350
0.5 1.19 1.06 2.19
1.0 6.30 28.1 8.75
1.5 15.6 112.5 19.7

0.500 0.05 3 x 10“9 3 x IQ"25 0.022
0.1 3 x 10"5 6 x 10"14 0.087
0.2 X o os 5 x 10"7 0.350
0.5 0.434 0.103. 2.19
1.0 3.81 17.5 8.75
1.5 11.1 133.9 19.7
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