Chapter 2

0OProduction In Presence Of |
Oscillating External Field

2.1 Introduction

In this chapter, we will discuss the process of formation of Quark Gluon Plasma in
Relativistic Heavy Ion Collision (RHIC). In particular we will concentrate on the
mechanism by which the initial beam energy in RHIC gets deposited in a small vol-
ume in the speculated form of quark gluon plasma through the production of quark
anti-quark pairs. The process of quark anti-quark production in RHIC has attracted
the attention of many workers for over a decade.

This complex process of pair production, inspite of being visited many a time
by many workers taking into account different physical conditions, till today, stands
as one of the most elegant model whose potential is far from being exhausted. The
production of ¢§ pairs from vacuum in the flux tube model 1, basically owes its ex-
istence to the classic paper of Schwinger?, where in the context of Quantum Electro
Dynamics (QED), it was shown that in the presence of very strong external electric
field, QED vacuum becomes unstable and it starts emitting e* e~ pairs at the expense
of the electric field till the field strength falls bellow a critical value comparable to
the square of the mass of the produced particles.

Along the same line, the ¢§ pair production in RHIC is also assumed to take



place by the decay of the flux tubes formed between the two receding nuclei due to.
the multiple exchange of soft gluons. This process continues till the energy stored in
the chromo-electric field/unit length becomes less than the mass of the produced ¢¢
pairs. In addition to extending Schwinger’s QED calculation to the QCD case, efforts
have also been made to include effects such as, the screening of the external electric
field®, finite size of the nuclei*, moving boundary conditions®, radial confinement® etc.
It is worth noting that in all these works the external chromo-electric field has always
been considered to be constant in both space and time.
i

In this chapter we will contest the validity of this assumption and in fact argue
that the basic nature of QCD lagrangian demands the electric field to be time depen-
dent. The actual evaluation of ¢§ pair production rate by us however has been carried
out for an external field which is homogeneous in space but oscillating sinusoidally in
time.

The organisation of this chapter is as follows. In section two we will review
briefly the Schwinger mechanism followed by the physical picture of flux tube forma-
tion in relativistic heavy ion collisions. In section three we justify, from exact solutions
of the classical SU(2) Yang-Mills equations, why the external chromo-electric field has
to be time dependent rather than constant. This is followed by section four where we
will try to give an order of magnitude estimate of the field strength and the frequency
of oscillation attainable in relativistic heavy ion collision. In section five we compute
the pair production rate in a time varying field with different values of field strength
and frequency of oscillation. Lastly we conclyde by stating the scope of further im-
provement of our results.

2.2 Schwinger Mechanism: A Brief Outline

The production of particle antiparticle pairs by a classical external field via
Schwinger mechanism is a general phenomenon that reflects a much broader physi-
cal reality, i.e instability of vacuum under external perturbations. This idea has been
used in a variety of theories in different contexts, ranging from QED, QCD, Transport
theory’, Relativistic Heavy Ion Collision, Gravitation®, Early Universe® and even in
String theory!.In the following passage, we will elaborate on the physics!? of this
process for the simple case of QED.



Let us consider a system to consist of vacuum ( including virtual particle antiparticle
pairs ) subjected to an external electric field. In order to create an on-shell particle
antiparticle pair from the vacuum, the virtual particle antiparticle have to be moved
away from each other over a distance d > the compton wave length of the particles,
with a corresponding energy loss (of the system) ~ 2m. Now in the presence of an
external electric field (with assumed strength E > E. ~ m?), because of vacuum
polarisation,if the virtual particle-antiparticle are moved apart by a distance d the-
energy gained by the system, at the expense of the external field, will be gEd. If
the distance d > Compton wave length of the particles, the energy gained by the
system in putting the pairs on shell becomes more than 2m. Since it is energetically
always favourable for a system (i.e vacuum) to go to its lowest energy state, pairs will
be emitted from vacuum till the field strength falls below the critical field strength E..

The production of ¢ pairs in RHIC has also been explained by the same
principle via the flux tube model. This model was introduced independently by Low!
and by Nussinov! to account for the observed scaling behaviour of scattering cross-
sections in hadron hadron collisions.In nucleus nucleus collisions, it assumes that at
high energy, when the two highly Lorentz contracted nuclei pass through each other,
the partons of one nucleus interact with the partons of the other nucleus by the
exchange of soft ( color octet ) gluons. If the fly by time of the nuclei is less than
the time scale of interaction of the partons, the receding nuclei get randomly color
charged by exchange of soft gluons. Since a colored object cannot exist free in nature
the color octet partons in the receding nuclei get connected to each other by means
of color flux tubes with color electric fields inside them. This color flux tube decays
producing ¢§ pairs in the same way as described prev:iously for the QED case of
Schwinger. )

With this picture in mind, the dynamical evolution of the plasma produced in
RHIC, including ¢g pair creation, has been studied®~” by many others. We however
will be content to examine the effect of oscillating external chromo-electric field on
the pair production rate, since this has not been investigated before.

2.3 Some Exact Solutions of Yang Mills Equa-
tions '

In this section we will establish that, because of the presence of the nonlinear



terms in the Lagrangian, the gluons produced in RHIC, polarise the medium between
the two receding nuclei, generating an electric field that undergoes, characteristic
non-linear, non-abelian oscillations in time. For this purpose we will make certain
assumptions based on the geometry of the problem. These assumptions however do
not change the qualitative nature of our observation.

The first assumption is that each of the color charged nucleus has a uniform
distribution of color charge in the plane transverse to the direction of motion so that
there exists no gradient of the fields in this direction. Qur second assumption is that
these color charges produce a chromo-electric field such that Ap and A, are the only
nonzero potentials. Although in principle a magnetic field can also be present, we
will not consider it here since it cannot transfer energy to the system to create pairs.
Our third assumption is that the region between the two nuclei can be'treated as
vaguum and we will neglect the curvature effects near the boundaries. With these
simplifying assumptions, the dynamics of the gluon fields can essentially be described
in (141) dimensions rather than (3+1) dimensions. Therefore in order to get infor-
mation about the nature of the classical gluon fields one needs to solve the classical
Yang-Mills field equations in (1+1) dimensions.

2.3.1 Solution of Yang Mills equations in (1+1) dimensions.

We next show that in (1+1) dimensions the Yang-Mills equations have a so-
lution with a sinusoidally time varying component whose frequency depends on the
amplitude. We first write the sourceless Yang Mills equation in (141) dimensions

D,F* =0 (2.1)

where the Greek indices ¢ and v take values 0 and 1 only. The covariantl derivative
is defined as
Dy =08, +19[Au] (2.2)

with g as the coupling constant and g[A,,] as the commutator bracket. Since we are
working with an SU(2) color symmetry, A, is defined as A, = A,%7, where 7, are the
generators obeying the commutation rules

['r“, 'rb] = 1€4peT¢ | ': (2.3) )

The indices a,b,c takes values from one to three. Further, the only non zero com-
ponents of the vector field in this case are Ag and A;, and we have chosen the axial
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gauge A, = 0. With this choice of the gauge we get from equation (2.1) for v =0,
9%.A,° =0 (24)

whose solution is

AL(t) = 0w (£) 2 + fi | (2.5)

Here o, and f§, are arbitrary integration constants. In order to find out an exact
solution of this equation we take «, to depend on time and f§, to be a constant.
Equation (2.1) for v = 1 gives

B00; A’ + gearc AL, AL =0 (2.6)
Substituting the solution (2.5) in equation (2\;5) we arrive at
dq(t) + geapcttcBp =0 (2.7)
One can derive a conservation law from thi‘s equation namely
| aq(t)a,(t) = constani (2.8)
A summation over repeated indices is implied.

We solve this set of coupled first order linear differential equations by Euler’s
method; i.e we choose a solution of the form

e () = age?' ' (2.9)

Substituting equation (2.9) in equation (2.7), we obtain a set of coupled algebraic
equations whose solution is of the form

oy = By + BB eiw‘i + enifuz] —twfy [ €t — e (2.10)
ag = ﬂz + ﬂzﬂs { euut + e—iwt] + iwﬂl [ ez‘wt - e—-iwt] (2.11)
az = ﬁ3 + [332[ eiwt + e—iwt] — wZ{ et + e—iwt] (212)

Nop

Here w = [(81)* + (82)* + (Bs)*]2.
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Once the a's are known, one gets the solution for the Ag’s by substituting
equations (2.10), (2.11) and (2.12) in equation (2.5). Without giving the unnecessary
mathematical details, the final expression is

AL =B + Bfs| €' + e —iwfp [ € — e 2 4 By (2.13)
AS = (B2 + BoBs [ € + €] + iwpy [ € — e 2 + B (2.14)
Ag - {ﬂs +/332 { gt 4 e-—iwt} ._‘{uﬂ[ et 4 e—iwt]] 24 B . (2.15)

Thus from the solution it is clear that the electric field inside a chromo-electric

flux tube oscillates with frequency w = [(51)% + (52)? + ([33)2]%, which depends on the
amplitude of oscillation.

It may be pointed out that there also exists an exact time dependent vacuum
solution of (SU(2)) Yang-Mills equations of the type!?

A2 = (0, HEY, HES, HEY) (2.16)

where
B
H=Zen [\ f29B (i - t,,)] (2.17)

In eq.(2.16), 4 (=0,1,2,3) is the Lorentz index; a (=1,2,3) is the color index and &2 is
the Kronecker delta. In eq. (2.17) cn represents the Jacobi elliptic function and B is
a constant determining the amplitude of the oscillating field. Physically, this solution
represents a non-linear collective oscillation of gluons with a characteristic ampli-
tude dependent time period ~ (\/2—§B) ~1, which is a manifestation of the intrinsic
nonlinearity present in the system.

As we will see this time varying nature of the field changes the pair production
rate quite significantly over that due to the constant field i.e the Schwinger estimate.

2.4 Estimating The Parameters

Having established the fact, that the chromo-electric field inside the flux tube
(because of the self-interaction of the fields) should be oscillating in time, we next-
explore its consequences on the rate of spontaneous pair production from vacuum,
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For this purpose, one can in principle take either of the exact solutions and compute
the rate of pair production. But considering the computational difficulties associated
in working with such exact solutions, we will content ourselves with a spatially homo-
geneous chromo-electric field that oscillates sinusoidally in time. We take the vector
potential to be

E, cosw,t

As(z) = (0,0,0, Ay(t)) and A,(t) = (2.18)

Wy

and for of SU(3) color symmetry a goes over (=1, 2,....8)

Here E,’s are constants and wy is the characteristic collective frequency for the
gauge fields. Now to determine the pair production rate one has to give an estimate of
the frequency and amplitude of the external chromo-electric field produced in RHIC.
For this purpose, we make use of the solution of Yang-Mills field equations given by
equations(2.16)- (2.17).From this solution taking each A* = A one can write the r.m.s
chromo-electric field strength as

E=(V8) (VigB) (&) = 4B (2.19)

apart from an uninteresting constant,

Since wy = (\/ng), and replacing B in terms of E from the equations above, we get
the expression for frequency

wo = /L C(2.20)

in terms of a gauge invariant chromo-electric field defined as

E= [ *E] (221)

Once wy is known in terms of the chromo-electric field strength, one is left with the
determination of the strength of the external field attainable in RHIC. In order to
estimate it, one has to first make an estimate of the color charge deposited on each of
the receding nuclei after the collision. Following Kerman, Matsui and Svetitsky!?, it
is usually assumed that at very high energy in a nucleon nucleus interaction multiple
gluons are exchanged. In each interaction, with the exchange of each gluon there is
an exchange of color charge ¢, ( where t, is the matrix in the adjoint representation of
the symmetry group ). Thus after v such exchanges of gluons, the total color charge

13



that gets accumulated on the target nucleus is

T =31 ' (222

j=1

If the color orientations amongst these exchanged gluons are uncorrelated, one can
assume, after v such interactions, that the r.m.s color charge deposited on the target
nucleus is

o )

From this relation one can say that, after v interactions, the amount of color charge

deposited on the target nucleus is proportional to the square root of the number of
interactions i.e

Q x Vv (2.24)

One can relate (see ref.13) the number of pairs produced to the number of interactions
or the total color charge as

T x Vv (2.25)

Here N, is the number of pairs produced and y is the rapidity. Moreover if one
assumes the number of hadrons produced to be proportional to the number of pairs

produced then
(if_v..) - (ﬂ) S (2.26)
dy pA c_{y Pp '

i.e the multiplicity for proton nucleus collision scales as the square root of the num-
ber of interactions times the multiplicity in proton proton collisions. So, from the
multiplicities of the produced particles one can compute the number of collision that
each nucleon undergoes in a p-A collision.

If 0, and o,_4 be the cross sections for proton proton and proton nucleus
collisions then one can write phenomenologically that

= AT (2.27)

Gp A
(where A is the mass number of the target nucleus) From simple geometrical consid-
erations one can show that Jﬂ scales as A~% and hence the number of collisions from

p-p to p-A should scale as Aa Thls implies that the amount of color charge deposited
in p-A collision on the target nucleus scales as A¥ times that in the p-p collision.
In high energy central collision of two heavy nuclei, the individual constituent
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nucleons of each nuclei can be thought of scattering through the other nuclei. So in
the light of the foregoing dlscusswn, total number of interactions, compared to p-p
collision, should scale as ATs Ap3 where Ar and Ap are the target and projectile
mass numbers respectxvely This 1mphes that the amount of color charge deposited
should scale as Aps Apt from p-p to A-A collision. The earlier relation 1mp11es that
the chromo-electric field strength, should scale from p-p to A-A collision as ATG Ap6

After establishing the scaling behaviour of the chromo-electric field from p-p to
A-A collision, the only task one is left with is to evaluate the strength of the chromo-
electric field produced in p-p collisions. If the flux tube produced in p-p collision
generates a string tension ¢ then the field energy stored per unit length of the tube
is

= (2.28)
area
From Gauss law one can write!
E area =g,  where g is the coupling constant. (2.29)

On using the equations (2.28) and (2.29) one can derive that

gE = 20 (230)

The quantity o is usually evaluated from the Regge slope parameter and its value
has been estimated to be around 0.2GeV?™. Because of the final state interactions!®

( basically screening effect ), the effective field strength generated initially in p-p
collision, gets reduced to around .2 GeV®. Once we know that the field strength
produced in p-p collision is 0.2 GeV? one can compute the value of the field produced
in A-A collision, from the scaling law

Epp—ap ~ ArSAptE,_, (2.31)

Following Pavel and Brink® the magnitude of the field strength produced in the col-
lision of $3 on $*? has been estimated to be, gF < 0.6GeV? and for U - U collisions
it is gE < 1.2GeV?. These values of gE imply a variation of wq between 0.32 GeV
to 0.87 GeV,a number obviously not close to zero. This nonzero value of wg certainly
implies that caution should be exercised before estlmatmg, the number of particles
produced in RHIC, using Schwinger’s expression®.

15



2.5 Estimation Of Pair Production Rate

Having obtained estimates of the field strengths and the frequencies of oscil-
lation of the fields produced in RHIC, we will concentrate next on the computation
of the pair production rate of spin zero bosons with SU(2) color symmetry, in the
presence of a sinusoidally oscillating background chromo-electric field. For fermions
the final result will get modified by numerical factors only. In the discussion of our
calculation we will not provide derivation of the standard field theory results, instead
we will refer to the sources where they could be found.

The probability that the vacuum remains vacuum, in the presence of an external field,
can be written in terms of the § matrix as

[(01510) =] $u(4) = eap |- [ d'oW(2)] (232

where (0 | S| 0) is the vacuum expectation value of S-matrix in the presence of the
color potential A% and W(z) is the pair creation probability per unit volume per unit
time. The quantity Sy can be shown ¢ to be equal to

So = Det (G"IGO) = expT'r [ln (G"IGO)] (2.33)

where G and (G are the free propagator and the propagator in presence of the external
field respectively, defined as

L and G = ! (2.34)

Co= Fr it e . (P—gA? —m?+ie

The trace in equation (2.33) is defined over spinor, color and coordma,te spaces.
In terms of scattering operators T and T defined as

T=V+Vm7' and T=V+V-I3~i—:%-2~:-i—gf’ ( (2.35)
(2.36)
with T = 4°Tt4° and V = G,”! — G, one can show that
|So(A) P = exp[Trin (1~ Tp,T*p_)] (2.37)
W(z) = —tr{z|in(1-TpT*p.) | 2) (2.38)

Here p,. are the projectors over positive and negative energy states defined as
pe = 250 (5) (5 - m?)
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It should be noted that the operators T (Tt) as well as p, are matrices in color,
spinor and coordinate space. In equation (2.37)the symbol T'r stands for integration
over the continuous variables and trace over the color and spinor indices, whereas in
equation (2.38) tr stands for trace over color and spinor indices only.
On expanding the logarithm in equation ( 2.38 ) and retaining the first term (i.e
neglecting the production probability of 2 ;3 or more pairs ) one gets
1

W= im g [ deg [ ol T ) P (239)
Here w = (p* +m?) Y2 3nd m is the mass of the spin zero colored particle. The
backward “scattering” amplitude (—w | T | w) is then evaluated by solving the color

coupled Klein Gordon equations in external color potential. For the color SU(2) group
the equations to be solved are (7, , a = 1,2,3 are Pauli matrices).

(02 = V2) + 2igAutads + g (Aa)* +m?] ( Pt ) =0 (2.40)

with appropriate asymptotic conditions in time.

More precisely, we look for solutions of eq. (2.40) having the form'”
t — —00 <,O+(i) - e-—-iwt + b+€:’w£
‘P—-(t) -— e—iwt + b_eiwt
i — +OO (P+(t) — a+e—twt (2'41)
p-(t) = a.e™™
Since a negative energy particle at ¢ - —oo is equivalent to a positive energy antipar-
ticle at ¢ — +o0, the backward “scattering” amplitude (—w | T' | w) and hence the
pair creation probability, can be determined from the coefficients b, and b_. Actually

one has
et by 2416 P
2
In order to proceed with the solution of equation (2.40), it is easy to show that, the
above equations can be decoupled by a unitary transformation in color space defined

by,
_( (Bs+E) [Ny, (By—iE5) /N,
U+_((Ea—E)/N2, (El—iEz)/Nz) (243)

where E? = E} + E? + E}, N} = 2E? + 2E3E, N} = 2E* — 2FE3E. The (column .
vector) wave function in turn transforms into

Ut ( o ) - ( o ) (2.44)
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For the spatially homogeneous system that we are considering (note that this ignores
the confinement effect discussed by some earlier workers®), the decoupled equations
are,

2
82 + m? + p? ¥2gp3(E)coswot+g (f) cos2wot]( gJ’ ) =0 (2.45)

with p* = pi + p + 5 = pL + 15,
Following Brezin and Itzykson , these decoupled equations are solved using the
boundary conditions

Il

t— —oo W,.(t) Ae™*! 4 Be't
‘I’_(i) Clewt +Deiwt
t— oo U (t) = Ee ™
U_(t) = Feiwt

]

(2.46)

After finding the coefficients A, B, (, D we finally express them in terms of
by and b_ respectively. We have solved for the coefficients A, B, C, D from equation
(2.45) by W.K.B method, choosing a solution of the form

Vo(t) = ag(t)e~xa) 4 B, (t)eixat)

\Ilt(t) = ay(t)em M 4 By(t)eel) (2.47)
where . z

o /Ddfwa(f) and x‘:,(i) =/ d{wb(ﬂ (2 48)

and assuming .9m£2 < 1 along with the conditions i‘%((-}j < 1 and ;%((27 << 1 where

1 1
wy(t) = [m2 + (p3 - —t) ]2 and wy(t) = [m2 + (ps + Uét) }2. One assumes here
that the external field is switched on and off adiabatically.

From equation (2.46), we obtain an order of magnitude estimate of pair creation
probability, in the case w, € m,

a,B? 1 [ rm? } )
W ~ exp | ——— 2.49
21 g + 219 T g ™ (2.49)

where

2 11/2
g(z) = Eflay|Lo
and " {1 T ] : (2.50)

mw

7 = _'g_E'Q: aszg—;

18



As shown by Brezin and Itzykson!®, one can recover the static Schwinger limit from
equations (2.49) and (2.50) by taking w, — 0 independently of gF in such a way that
= ’—:—‘z‘:’;ﬁ — 0. In this case, one obtains the Schwinger result

2
W, o~ o b exp [—m] (2.51)

To consider the case of oscillating non-abelian fields we must take w, to be dependent
on E in the manner discussed after equation (2.20) i.e. that w, = \/gE/2. Equations
(2.49) and (2.50) now show that 4 = Zfe = —fy = 32 > 1 and that the pair
creation probability W takes the form of ‘multigluon’ production, viz.,

o B [ B | B [0E
W, ~ == e == .
g 8 [4m2w3] W, 2 <<m (2 52)
m

where £2 is the minimum number of gluons required to produce a pair. Incidentally
following Sakurail”, one can also compute the pair production rate using ordinary
perturbation theory, when wy > m. Here the transition amplitude is given by the S

matrix element

Spi=~gtag | [ 4587 (1), 8Osz |0) (2.53)

Here ¥ are the quark fields operator, A, are the classical external fields and 7,
are the pauli matrices respectively. The square of this amplitude will give us the
probability of transition from vacuum to ¢¢ pairs. An integration over the available
phase space gives the total pair production probability. On taking the external field
as sinusoidally oscillating in time and carrying out the integration one arrives at the
pair production rate

JER( om? 4m?
W, = 2 (1+ ";) (1-——3”‘5—) (2.54)

Wy

If one considers the strong field limit i.e gF > m? then one can see that the
perturbative formula for pair production reduces to

W, ~ a,E? (2.55)

(ignoring the numerical factors). This result also follows from Schwinger’s exprefsion,
since in the limit m?/gE <« 1 we can expand the exponential in powers of 7% and
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retain only the first term ignoring the others to arrive at the same expression. Next
we consider the various limits, by defining z = ﬂg—, and n = %? One can then see

that the ratio between Schwinger and the multigluon production rate is

— o~ (zn)*e™™ (2.56)

Since an exponential dominates over any finite order polynomial this expression shows
that for n ~ 2 > 1 the multigluon ionisation process of vacuum dominates over the
Schwinger process.

Before we obtain the numerical estimate of the pair production rate , we
would like to comment on the numerical value of the particle mass to be used in the
computation. In the literature the numerical estimate of the pair production rate has
been carried out using constituent as well as current quark masses. In our view, since
the flux tube model takes into account the localisation of color flux and the effect of
confinement, it is more appropriate to consider constituent quark mass for numerical
estimation. Moreover as has been discussed éarlier, in order to produce an on shell ¢§
pair from vacuum, the external field has to move them over a distance, of the order
of compton wavelength (~ --—) of the particles. For current quark mass this distance
is around ~ 20fm, which appears unreasonable for A = A collisions. We therefore
propose that for pair creation via flux tube model mhc < 1fmie m, > 200MeV.

In any case we have numerically evaluated the pair production rate using the
expressions in the three limits i.e perturbative, multigluon ionisation and Schwinger,
with different values of the chromo-electric field and mass. The results are shown in.
Table-1. They show the following features:

1.If m = 10 MeV, then for values of gE ranging from 0.05 GeV? to 1.5 GeV?, the
pair creation probahility W, ~ W, =~ W,. For m, = 150MeV, W, is larger in p-p
collisions and W, is significant in A - A collisions.

2.For the production of uii, dd, s3, pairs with constituent quark masses and field
strength gE < 0.5GeV? the pair creation probability W, dominates in p-p and in A-
A collisions. For gFE > 0.5GeV? the multigluon ionisation of pairs from the vacuum
is larger in A-A collisions.
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Table Caption

Table 1. Pair creation probability W,, W, and W, (in units (fm)~*) for different values
of mass m (GeV) and field strength gE ((GeV)?).

Table 1

m gF W, W, W,
0.01 | 0.05 0.021 0.015 | 0.022
0.1 0.083 0.076 | 0.087

0.2 0.334 0.331 | 0.350

0.5 2.09 212 219

1.0 8.35 8.35| 8.75

1.5 18.8 18.5 | 19.7

0.15 | 0.05 0005} ~2x 1077 | 0.022
0.1 0.041 | ~4 x 10~*|0.087

0.2 0.235 0.051 { 0.350
0.5 1.81 3.03 1 2.19
1.0 7.78 245 875
L5 18.0 65.9 | 19.7

0.300 [ 0.05 | 7x 107 | ~2x 107 | 0.022
0.1]5x1073| ~6x 108 | 0.087
0.2 0.081 7x 1074 | 0.350

0.5 L19} 1.06 } 2.19
1.0 6.30 2811 8.75
1.5 15.6 112,51 19.7

0.500 | 0.05 | 3 x 1077 3 x 1072 | 0.022
0.1{3x10"° 6 x 107141 0.087
02| 7x1073 5% 1077 | 0.350

0.5 0.434 0.103.{ 2.19
1.0 3.81 175 875
1.5 11.1 133.9 | 19.7
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