
Chapter 4

Evolution In Phase Space

4.1 Introduction

In the previous two chapters color flux tube model was studied to understand the 
process of plasma formation in A-A collision. In this chapter we examine how the 
plasma will evolve before it reaches color and thermal equilibrium.

The study of this phase is crucial because, it will give information about the 
dynamic processes that are important for reaching equilibrium and also the time it 
would take to reach the equilibrium. Furthermore the signals for detecting QGP 
might get modified depending on the pre-equilibrium evolution of the system. Since 
we are interested in- the pre-equilibrium phase of the plasma , we will study the real 
time phase space evolution of the plasma through kinetic1 theory followed by hydro- 
dynamic equations.

As the number of degrees of freedom for gluons are more than the same for 
quarks and moreover since they are massless, the production rate of the gluons will 
be more than that for the quarks. This has already been evaluated in reference2. One 
can also get them, (approximately) apart from the numerical constants coming from color an/spin degiLtf freedom, from the rate expressions obtained by ns for 'narks 

by setting the, mass for the quarks equal to zero. Due to the color factors the g-g 
cross section is larger than gq and qq cross sections and as a result of this the gluons 
will equilibrate3 faster than the quarks. So in this chapter we will concentrate on the 
the pre-equilibrium evolution of the gluons.
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In the pre-equilibrium phase, right after the nuclear collision, the quarks and 
gluons will interact by means of binary (perhaps 3 body, 4 body) collisions and also 
through collective interactions to bring the system to a state of thermal equilibrium. 
The pre-equilibrium description of plasma has been studied by many authors4 using 
kinetic description, by putting a collision term on the right hand side of Boltzman- 
Vlasov equation for the plasma.

For quarks a binary collision term is justified to some extent if one assumes 
the number density of quarks to be very small. For gluons this kind of assumption 
is not justified because of the presence of 3 body, 4 body interaction term in the 
Lagrangian. Therefore instead of using the Boltzman-Vlasov equation we will use 
the Vlasov kinetic equation, with the underlying assumption that collective effects 
arising out of mean fields are more important than the collision terms. This would 
be the case when a typical time scale for collective behavior (1 /u>p) is much shorter 
than the collision time ^ j.e. u>p >> uc. Further more there must be enough number 
of particles in a Debye sphere, i.e n Aj3 1, so that the collective effects dominate. 
We follow the phase space evolution of the gluonic plasma, starting from the gauge 
covariant operator valued quantum kinetic equations of gluons given by Elze,GyuIassy 
and Vasak and taking its classical limit. The classical description of the gluonic 
plasma is obtained as we take the ensemble average of this equation and then set 
terms proportional 'to h to zero. This is justified for studying those collective effects 
where the waves with wave length A > It is also worth recalling that classical 
approaches reproduce many of the collective phenomena in quantal systems.

' 1

The organisation of this chapter is as follows. In section two we start with 
the gauge covariant distribution function1 for gluons described by Elze, Gyulassy and 
Vasak and discuss how to obtain a classical kinetic description for gluons from there. 
In the following section we study a simple model to examine whether non-abelian 
color dynamics can provide a new equilibration mechanism. Finally we conclude by 
discussing the scope of further improvement of our result.
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4.2 Kinetic Equations

In RHIC when the plasma is produced, the particles will have a character­
istic momentum distribution. For the purpose of separating collective effects from 
the non-collective ones we assume that there are two types of gluons present in the 
system. The ones with very high four momentum (i.e short scale lengths) describe 
particle like properties , whereas those with low four momentum, i.e those generated 
by the interaction amongst the high frequency gluons, describe the collective i.e wave 
like properties. Therefore, as a result of this assumption the low four momentum 
gluons are described by the Yang Mills field equations with a source term (4-current) 
on the right hand side , generated by the high momenta gluons.

We are going to describe here the dynamics of these high momentum gluon 
fields which will interact among themselves to bring the system close to color and 
thermal equilibrium. Presently we take only the interaction of these high momentum 
gluons among themselves, which will be described by a Boltzman-Vlasov like equation 
for the gluons.

To describe the dynamics of these gluons, following Elze, Gyalassy and Vasak 
(EGV) (Ref. EGV1, Elze5) one starts with the gauge covariant distribution function 
for the gluons defined as

Gu
,(x,p) = J d4y g-ip-y/* L-i/2y.D(»)

(2 Trh)
/£(*)] FXu(x)l (4.1)

which is an 3 x 3 matrix for SU(2) case, expressed as a dyadic product of a 3 com­
ponent vector (color) and its adjoint. In the component notation it can be written 
as

G*11*,P)=S J0fyip-y,h [e-‘W'DW F»(x) ]‘ [tWOW FA„(x)]‘ (4.2)

Here y.D = y°D0 + y1Di+ y2D2 + y3D3 and

Du — dji — ig [ An, ] (4.3)

[DM
-ig

(4.4)
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p and v go from 0 to 3 and a and b go from 1 to 3.

Now operating with p^.D^ term, on the distribution function one arrives at 
the kinetic equation of gluons (see ref. 1). Since we are interested in the classical 
description we set terms of the order of H equal to zero as in ref. (5) and from there 
arrive at the following expression.

+ g/2P°dTp [ far, ]+ = g () (4.5)

Here [,]+ means anti-commutator, and

Dn^dp-iglAn,] (4.6)

where

< = -i4bc^, 

fi = -‘/abc^

/abe is the antisymmetric structure constant for SU(2) 

and g is the coupling constant.

In general, with regard to Lorentz indices, Ghas a symmetric part4-5 as 
well as an antisymmetric part. We neglect the antisymmetric part by taking a spin 
equlibration ansatz, i.e.

\

G^{xfp) =pltp„G(x,p)

where G(x,p) is a Lorentz scalar function.

So with this ansatz the r.h.s of equation(4.5) vanishes and, the gluon kinetic 
equation in color component notation takes the form

p?dllGmn + gif.Ap [/cmaG“n - C““/can ] + i\f %

[ fem&Gan + /eanGmo] F*r = 0 (4.7)

All repeated indices are to be summed over.

The assumption of spin equilibration i.e GM„(a:,p) = PfiP^G(x,p) leads to the 
following expression for the gluon current ref(4,5)
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J? = igS (4.8)

To study the collective behavior of the system, we solve the YM field equations with 
the current ( equation(4.8) ) on the right hand side. The basic idea here, as explained 
before, is that because of the self interaction the high momentum gluons generate a 
low momentum long wavelength mean field which in turn acts as a source term for 
a mean Yang-Mills field equations. For studying the collective properties one has to 
solve these equations self consistently,i.e

DpF'* = r : (4.9)

along with the gluon kinetic equations (equation(4.5)).

4.3 A New Mechanism For Equilibration

As mentioned earlier, in this section, we propose to analyse a simple model 
which exhibits mechanisms for equilibration arising entirely from the non-abelian na­
ture of the color dynamics. In this model we assume that'the equilibrium distribution 
function has the form

(4.10)<33 = (ePo^ — 1)

Here na(,’s are the elements of a matrix in color space p0 is the zeroth component 
of the four momentum and 0 is the temperature of the system and the important 
point is that, the off-diagonal elements of the distribution function are nonzero. In 
equilibrium, we have chosen the distribution to have a simple Bose-Einstein form, so 
as to avoid momentum space contribution to collective effects. The important point, 
that we would like to bring home, is the hitherto unconsidered role of the color de­
grees of freedom as a source of free energy. Further we take, the classical fields 
and A in the kinetic equations (4.8) - (4.9) to be diagonal in color space(i.e abelian 
dominance1,5 approximation) and the zeroth component of the vector field to be finite 
and other components are zero.

We then carry out a stability analysis of the resulting system of equations 
about the equilibrium distribution function G“5. On linearising the equations about 
the aforementioned equilibrium distribution, one arrives at

kfjfSGmk - 7^PuFf0 [femanak ~ fbeknmb] COsh2 (4.11)
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Using equations (4.8) and (4.11) we have solved for the current produced by 
the fluctuations and it is

On using relation (4.9) we next get

k2A0a (k) = C (w, k) [2nkkA0a - A0h (nab + n6o)] 

Here the repeated indices are summed up and

C (w, k) = (gTf
6

From equation (4.13) the matrix dispersion relation comes out to be

k2-C(u>,k)
2 (n2 2 + n33)
— (n12 + n2j)
- (n13 + n3i)

— (n12 + n2i) 
2(n33 + «n)
— (n32 + n23)

— (ni3 + n3i)
- (n32 + n23) 
2(n22 + nn)

= 0

(4.12)

(4.13)

(4.14)

(4.15)

If we set nn = n22 = n33 = j and n12 = n2i = n23 = n32 = n31 = na3 = s 
then ,in the long wavelength limit one gets the following dispersion relation ( for the 
long wavelength gluons),

2 3k2 (n — s)
1 + s — n

(4.16)

From equation (4.16) we see that if s > n there will be an instability in the system. 
Clearly the instability is related to the color degrees of freedom and would then drive 
the system towards a distribution which is diagonal in color space. This mechanism 
may provide us with some insight about the manner in which an arbitrary distribution 
function in color space becomes color diagonal and attains color equilibration.

4.4 Conclusion

In this chapter we have looked for the plasma oscillations in QGP through 
the semiclassical kinetic equations for gluons, derived by Elze, Gyulassy and Vasak. 
Though the dispersion relation has been derived under the approximations that the 
mean fields are basically abelian in nature and of them only A0 is finite, but these 
simplifying assumptions still carry some nontrivial nonabelian dynamical signatures
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in it. In particular the existence of the off-diagonal (in color space) components of 
the distribution function, is the signature of gluon gluon interactions , a purely non- 
abelian effect and is seen to be responsible for damping or instability. Incidentally on 
performing the same analysis with an equilibrium distribution function i.e diagonal 
in color space no such signature of instability or damping is found5.

Usually, the damping, can originate from three different kinds of sources; for 
instance, it can be collisional relaxation damping, decay of plasmons into particle 
antiparticle pairs or gluon gluon pairs. Production of quark antiquark pairs from 
vacuum is similar to electron positron pair production through plasmon decay as 
encountered in high T QED plasma. On the the other hand gluon going to two 
gluons is a typical non-abelian effect, typical of QCD plasma. Since the physical 
situation we are considering here does not have any collisional relaxation process in 
it, and neither have we considered the presence of quarks and antiquarks here, so 
the existence of instability or damping corresponds to the last process. This damping 
signifies passage of energy from wave mode to particle mode. Conversely an instability 
would signify the passage of energy from particle mode to wave mode.

In our view, the non-abelian interactions amongst the gluons, try to take 
the system, with strong initial color fluctuations, to a stable equilibrium. To get a 
correct picture, of the physics of this process, one ought to solve these coupled partial 
non linear set of differential equations. Instead we will try to explore some special 
solutions numerically and some more of their collective properties under different 
approximation schemes.
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