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2.1. Time and Frequency representation of signals

2.1.1 Introduction

The most common representation of signals and waveforms is in the time 

domain. However, most signal analysis techniques work only in the frequency domain. 

The concept of the frequency domain representation of a signal is quite difficult to 

understand when one is first introduced to it. The following section attempts to explain 

the frequency domain representation of signals.

2.1.2 Time and Frequency domain

The frequency domain is simply another way of representing a signal. For 

example, consider a simple sinusoid as shown in Figure 2.1.

Fig.2.1 A simple sinusoidal function

The time - amplitude axes on which the sinusoid is shown define the time plane. If an 

extra axis is added to represent frequency, then the sinusoid would be as illustrated in 

Figure 2.2.
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Fig.2,2 Time - Frequency representation of a sinusoidal function

The frequency - amplitude axes define the frequency plane in a manner similar 

to the way the time plane is defined by the time - amplitude axes. This frequency plane 

represents the frequency spectrum of the original signal with respect to time. The 

frequency plane is orthogonal to the time plane, and intersects with it on a line which is 

the amplitude axis. Note that the time signal can be considered to be the projection if the 

sinusoid onto the time plane (time - amplitude axes). The actual sinusoid can be 

considered to be as existing some distance along the frequency axis away from the time 

plane. This distance along the frequency axis is the frequency of the sinusoid, equal to 

the inverse of the period of the sinusoid.

The waveform also has a projection onto the frequency plane. If you imagine 

yourself standing on the frequency axis, looking toward the sinusoid, you would see the 

sinusoid as simply a line. This line will have a height equal to the amplitude of the 

sinusoid. So, the projection of the sinusoid onto the frequency plane is simply a line 

equal to the amplitude of the sinusoid.
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These two projections mean that the sinusoid appears as a sinusoid in the time 

plane (time - amplitude axes), and as a line in the frequency plane (frequency - 

amplitude axes) going up from the frequency of the sinusoid to a height equal to the 

amplitude of the sinusoid.

It should be noted very carefully that all the information about the sinusoid 

(frequency, amplitude and phase) is represented in the time plane projection, but all 

phase information is lost in the projection onto the frequency plane. If the full signal is 

to be reconstructed from the frequency representation then an additional graph called the 

phase diagram is needed. The phase diagram is simply a graph of the phase versus 

frequency, similar to the amplitude versus frequency graph obtained from the frequency 

plane.

2.2 Discrete Fourier Transform (DFT) and Fast Fourier Transform 

(FFT) [7-23]

2.2.1 Introduction

The Fourier Transform provides the means of transforming a signal defined in 

the time domain into one defined in the frequency domain. When a function is evaluated 

by numerical procedures, it is always necessary to sample it in some fashion. This 

means that in order to fully evaluate a Fourier transform with digital operations, it is 

necessary that the time and frequency functions be sampled in some form or another. 

Thus the digital or Discrete Fourier Transform (DFT) is of primary interest

2.2.2 The Fourier Transform

The Fourier transform is used to transform a continuous time signal into the 

frequency domain. It describes the continuous spectrum of a non-periodic time signal. 

The Fourier transform X(f) of a continuous time function x(t) can be expressed as :

(2.1)
-00
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The Inverse transform is:

+00

v(n <-"’•*,//•..................................................................... (2.2)
— 00

2.2.3 The Discrete Fourier Transform (DFT)

This is used in the case where both the time and the frequency variables are discrete 

(which they are if digital computers are being used to perform the analysis). Let x(nT) 

represent the discrete time signal, and let X(mF) represent the discrete frequency 

transform function. The Discrete Fourier Transform (DFT) is given by

X(mF) = Y.x(nT)e-l’-a’".......................................................................................... (2.3)

n

Where

^T)=~LXi’nVm,rT......................................................................................(2.4)
^ m

2.2.4 The Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) is simply a class of special algorithms which 

implement the discrete Fourier transform with considerable savings in computational 

time. It must be pointed out that the FFT is not a different transform from the DFT, but 

rather just a means of computing the DFT with a considerable reduction in the number 

of calculations required.

Since this section is intended as an introduction to the Fourier transform, a 

rigorous development of the underlying theory of the FFT will not be attempted here. 

While it is possible to develop FFT algorithms that work with any number of points, 

maximum efficiency of computation is obtained by constraining the number of time 

points to be an integer power of two, e.g. 1024 or 2048.
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2.2.5 Applications of FFT

Once the waveform has been acquired and digitized, it can be Fast-Fourier- 

Transformed to the frequency domain. The FFT results can be either real and imaginary, 

or magnitude and phase, functions of frequency. The choice of output format belongs to 

the user. Since the FFT generates the frequency spectrum for a time domain waveform, 

some fairly simple applications, e.g., harmonic analysis, distortion analysis, vibration 

analysis, and modulation measurements, might suggest themselves immediately. 

Another important area is that of frequency response estimation. A linear, time-invariant 

system can be stimulated with an impulse function. Its output, the impulse response, can 

then be acquired and fast-Fourier-transformed to the frequency domain. The FFT of the 

impulse response, referred to as the frequency response function, completely 

characterizes the system. Once a system’s frequency response function is known, one 

can predict how that system will react to any waveform. This is done by Convolution. 

An important aspect of the FFT is that convolution can easily be performed through 

frequency-domain multiplication. Let’s say you know a system’s impulse response, 

given by h(t), and an input waveform given by x(t). The output, say y(t), caused by x(t), 

can be computed in the classical manner by the convolution integral. But this is tedious 

and slow. An easier and faster approach is to FFT x(t) and h(t) to the frequency domain. 

Then the product of their frequency domain functions can be formed, giving Y(f) - X(f) 

H(f). Forming this product corresponds to time domain convolution, and the convolution 

result can be obtained by Inverse-Fourier-Transforming (IFT) the Y(f) function back to 

the time domain.

Correlation is another useful operation that the FFT makes easier. 

Mathematically, correlation looks and is performed in a manner similar to convolution. 

The difference is that one of the frequency domain functions is conjugated before the 

frequency domain product is formed.

Although the operations of convolution and correlation may look similar, their 

applications are not. Correlation is a sort of searching or looking for similarities between 

two waveforms. When two waveforms have absolutely no similarity, like uncorrelated 

noise, their correlation function is zero. On the other hand, correlation two waveforms 

that are exactly alike produce a perfect correlation function.
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This property of finding similarities makes correlation a useful tool for detecting 

signals that are hidden or masked by other signals.

Another useful property of correlation is its ability to indicate delay. This is 

particularly useful in measuring things like path delay, path diversity, and echo return 

times.

2.3 Introduction to Wavelet Transforms

The wavelet transform is a mathematical tool that cuts up data, functions or 

operators into different frequency components, and then studies each component with a 

resolution matched to its scale. For example, in signal analysis, the wavelet transform 

allows us to view a time history in terms of its frequency components, which means it 

maps a one-dimensional signal of time,/(t), into a two dimensional signal function of 

time and frequency [7-23]. The wavelet transform represents the signal as a sum of 

wavelets at different locations (positions) and scales (frequency bands). The wavelet 

coefficients essentially quantify the strength of the contribution of the wavelets at these 

locations and scales.

Next sections of this chapter are devoted to representing a general introduction 

to the wavelet transform and its applications in power system areas. Wavelet types, 

conditions, efficiency, basic mathematics and applications to power systems are 

illustrated.

£.3.1 Wavelet and Multi-resolution

A wavelet is a small wave, which has its energy concentrated in time to give a 

tool for analyzing transient, non-stationary, or time-varying phenomena. A wavelet still 

has oscillating wave-like characteristics but also has the ability to allow simultaneous 

time and frequency analysis with a flexible mathematical foundation. Different wavelets 

are shown in Figure 2.3.

The wavelet transform can be accomplished in three different ways namely as: 

the Continuous Wavelet Transform (CWT), the Wavelet Series. (WS) and Discrete 

Wavelet Transform (DWT). The DWT maps a sequence of numbers into a sequence of 

numbers much the same way the Discrete Fourier transform (DFT) does.
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Fig.2.3 Examples of Different Wavelet Functions
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The discrete wavelet transform (DWT) is sufficient for most practical 

applications in power systems and for reconstruction of the signal. It provides enough 

information, and offers an enormous reduction in the computation time. It is 

considerably easier to implement when compared to the continuous wavelet transform. 

The discrete wavelet coefficients measure the similarity between the signal and the 

scaled and translated versions of a scaled wavelet, Wa>b.

On the other hand, Multi-Resolution Analysis (MRA) is used to analyze a signal 

at different frequencies with different resolutions. The goal of MRA is to develop 

representations of a complicated signal f(t) in terms of several simpler ones and study 

them separately. This goal will help in achieving two important properties. The first is 

the localization property in time of any transient phenomena, and the second is the 

presence of specific frequencies at different resolution levels.

The DWT uses selected wavelets as digital Filters with different cutoff 

frequencies to analyze a signal at different scales. In MRA, the signal is passed through 

a series of discrete filters “selected mother wavelet” to analyze and localize the high and 

the low frequencies that embedded in the signal.

2.3.2 Wavelet Properties

Wavelets have three main properties:

• They are building blocks to decompose and reconstruct signals. This means 

complicated signals can be decomposed and represented as simple building 

blocks in terms of the selected wavelets.

• The wavelet expansion gives a Time-frequency localization of the signal. This 

means most of the energy of the signal is well represented by a few expansion 

coefficients chat are localized in the time and frequency domains.

• The calculation of the wavelet coefficients from the signal can be done 

efficiently. This means that by using orthogonal wavelets, the distorted signal 

coefficients in the wavelet domain are simply given as the inner product of the 

signal with the wavelet function, which greatly simplifies the transform 

algorithm [24-30]
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2.3.3 Wavelet Efficiency

Wavelet transforms have been proven to be very efficient in signal anal^S^f^^^ 

abovementioned properties of the wavelet transfonn, the following advantages can be 

gained:

• Wavelet expansion coefficients represent a component that is itself local and are 

easier to interpret. Therefore, the location of these coefficients can be used to 

detect and localize any sudden change in the signal due to fault or abnormal 

system condition. Furthermore, the energy of these coefficients will assist in 

extracting features that can classify such transient event in terms of its 

magnitude, frequency components and duration.

• MRA that decomposes a signal at different resolution levels will allow a 

separation of components that overlap in both time and frequency. This property 

will be useful in detecting and classifying multiple transient events that may take 

place in the same monitored window.

• The wavelet transform coefficients represent the energy of the transient signal. 

These coefficients will be used to measure the magnitude of the transient signal 

and quantify the transient events.

. The rapidly drop off in the size of the coefficients, with increasing translation 

and scaling factors, will assist in representing the transient event by using only 

small number of coefficients. This will help in designing an automated 

recognition system that has the ability to store a large number of transient events 

using a small number of coefficients.

• MRA and DWT calculations are efficiently performed by digital computers. 

Discrete wavelet transfonn (DWT) computation relies on convolution and 

decimation or interpolation. These operations depend on addition and 

multiplication. Furthennore, the number of mathematical operations for DWT is 

in the order of (N) which is lower than that for the Fast Fourier Transfonn (FFT) 

algorithm which needs (N log(N))operations. This computational speed feature 

of the DWT will help in implementing the automated recognition system on-line 

and for real time applications.
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2.4 Wavelet and Multi-resolution analysis Mathematical
Representation

2.4.1 General Introduction

The Wavelet transform will be proposed in this thesis as a tool to solve 

protection problems associated with series compensated lines. Using wavelet properties, 

detection, discrimination, localization and classification of any transient phenomena 

such as fault or abnormality within the signal can be achieved. Such analysis of any 

transient event will help in localizing the transient event in the time domain and 

clarifying the presence of any specific frequency components at different resolution 

levels.

To achieve our goal and to workout wavelet-based solution technique the 

mathematical details of the proposed tool is highlighted. The mathematical concepts of 

the Wavelet transforms (WT) and Multi-Resolution Analysis (MRA) are presented and 

discussed further in this Chapter. The Analysis and Synthesis procedures of multi­

resolution analysis are discussed and applied on selected examples. The time-frequency 

“scale” plane and localization and partitioning of signal energy at different resolution 

levels are also presented in this chapter.

2.4.2 General Mathematical Preliminaries

The purpose of this section is to introduce the mathematical notations and tools 

that are useful to present Wavelet Transform theory. Some definitions of vector spaces 

and related mathematical relations are introduced.

2.4.3 Vector Spaces
The totality of vectors that can be constructed by scalar multiplication and vector 

addition from vectors in a given set is called a vector space. A set of vectors that is 

capable of generating the totality of vectors by these operations is said to span the space. 

If the set consist of the least number of vectors chat span the space, the set is called a 

Basis of the space. The number of vectors in the basis is called the dimension of the
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space. N-basis vectors generate an n-dimensional space. Any subset of r-basis vectors 

from the basis of an r-dimensional subspace.

2.4.4 Norms

The concept of the distance is generalized in the case of vectors through the use 

of norms. The norm of a vector x, | \x\| is a real non negative number such that:

\\x\\ = 0 if and only ifx = 0

||cxfl = |c||xj|| for all scalars c vectors x........................................................................  (2.5)

|x,+x2|<||X|||+|x2||
for all xj and X2..............................................................

There exist many norms for vectors. Three of the commonly used ones are:

IWHEW
IWHa/ER2.....................................................
ML = maxkl

2.4.5 Inner Product

It is a scalar “a” obtained from two vectors f(t) and g(t), by an integral. It is
denoted as:

a = {fit), gif)) = \fit)gif)dt......................................................................................(2.8)

The length of a vector “ norm ” can be defined in terms of the inner product as:

l!/WI = #/(')?(<)))[...................................................................... (2-9)

2.4.6 Hilbert Spaces

It is a complete inner product space with orthogonal basis, where any signal 
/(t) € L2® satisfies the following condition:

\f(t}2dt{ co ...................................................................................................... ....... (2.10)
-co

This means that the signal/(t) has finite energy.

(2.6)

(2.7)
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2.4.7 Basis

A set of vectors 0k(t) spans a vector space F. if any element f(t) in that space 

can be expressed as a linear combination of members of that set. This means that/ft) can 

be written as:

/(<)=!MW............................................................................(2-n)
k

with k € Z the set of integers and a, t€ R. 0k (t) is known as the expansion set and a* 

is known as the expansion coefficients. The expansion set 0k(t) forms a basis set or 

basis if the set of expansion coefficients {a* } are unique for any particular f( t) € F. 

There may be more than one basis for a vector space. However, all of them have the 

same number of vectors, and this number is known as the dimension of the vector space.

The expansion set 0k (t) forms an orthogonal basis if its inner product is zero:

<$,(*),#;(t)> = 0 For all**/................................................................................... (2.12)

The expansion set 0k(t) forms an orthogonal basis if the inner product can be 

represented as:

<f*»(<u(o>=<*(*-')={; k*\
k-l

(2.13)

This means that in addition of being orthogonal, the basis is normalized to unity norm.

Pt (fl= 1 for oil k..................................................................................................... . .(2.14)

For an orthonormal basis, the set of expansion coefficients {a%} can be calculated using 

the inner product,

a, =(*(')./(<))....................................................................................................... (2.15)

Therefore, having an orthonormal basis, any element in the vector space/ft) 6’F, can be 

written as:

/(<)=!(«», W/(<M(0.................................................................. (2-16)
i
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This expansion formulation is extremely valuable. The inner product of f(t) and 0k(t) 

produce the set of coefficients This set of coefficients a, can be used linearly with the

basis vectors 0k(t) to give back the original signal f(t) .

2.5 Wavelet Transform and Multilevel representation

The Wavelet Transform is a tool that can cut any signal into different frequency 

components and then study each component at a certain resolution level. The WT 

depends on two sets of functions known as scaling functions and wavelet functions. In 

order to implement a multi-level presentation of a signal we will start by defining the 

scaling function and then use it to represent the wavelet function.

2.5.1 The Scaling Function

The scaling function 0(t) is a function that belongs to the Hilbert space. The 

scaling set &k(t) is defined as a set of integer translations of a basis scaling function 0(t) 

, where:

$k(t) = -k)forall k <= Z;$k e L2(r)................................. .............. ......................(2-17)

and L2 ® is the Hilbert space, which can be represented by a set of subspaces (Vj(j € 

Z}), where Z is the set of integers.

The set of scaling functions 0k(t) span the subspace V0 defined as:

V0 = $pan\$k (t)] = spank - k),keZ}...................................................................(2.18)

if f(t) is a finite energy signal {f(t) € L2®} , then an approximated version of / (t) € Vo 

,can be represented in terms of the scaling function as shown in Figure 2.4 and can be 

expressed according to Equation 2.19 as:

fit) = X a ktkiO............................................................................................. (2-19)k

55



time (tee)

<•)

time (tec)
0)

Fig.2.4 Approximation of the input signal, (a) the input signal,

(b) Approximation of the input signal using Haar scaling function

Keeping in mind the containment property, the scaling function &(t) can be expressed in 

terms of a weighted sum of shifted &(2t):

0(t) = h(n)j20(2t -n) n€Z.............................................................................. (2.20)

Where the coefficients h(n) are a sequence of real or complex number called the scaling 
function coefficients (or the scaling filter coefficients) and the V2 maintains the unity 

norm of the scaling function with the scale of two. This equation is called the multi­

resolution analysis equation. It can be utilized to represent the signal at different 

resolution levels. This is presented in the following subsection.
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2.5.2 Multilevel representation using Scaling function

In order to represent a signal f(t) at different resolution levels, the used scaling function 

0(t) must be translated and scaled. Therefore, the two dimensional family of scaling 

function 0j,k(t) is presented as:

$Jtk (t) = 2J{2 </>{2Jt - k)............................................................................... (2.21)

where, j is the scaling factor and k is the translation factor. This two dimensional family 

can span different subspaces (Vj{j C Z}) as:

v, '■spanki w}=span k,! A (y 1 - *). (2.22)

for all integers k.

This means that any signal f (t) € L2® can be approximated and represented at different 

resolution levels (f(t) € Vj), as:

/(0 = Z«,2^^/-i)........................................................................(2.23)

k

The multi-level representation of the signal f(t) is shown in Figure 2.5. The Haar 

scaling function is scaled and translated to represent the input signal at five resolution 

levels. As the scale j changes in Equation 2.23 changes, more details are added to the 

approximated version and a more similar version of the original signal can be achieved. 

These details, which- exist in between each of the two approximated versions of the 

signal, are very important in analyzing and monitoring the original signal. These details 

can be extracted by using the wavelet function.
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Fig.2.5 Multilevel representation of an input signal using the Haar scaling function

2.5.3 The Wavelet Function

More important features of a signal can be extracted by using a function chat 

spans the difference between various approximated versions obtained using the scaling 

function <Pjj<(t). This can be achieved by using the wavelet function ¥j,k(t). As indicated 

by the containment property, the subspace Vo, is embedded in the subspace F/, Vo € Vi. 

In order to move to a finer subspace V/, from a coarser subspace Vo , one must add
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another subspace in between, which is known as the complement subspace Wo, This is 

illustrated clearly in Figure 2.6. Since these wavelets reside in the space spanned by the 

next narrower scaling function. Then they can be represented by a weighted sum of 

shifted scaling functions at that space. Far example W(t) resides in the space Wo„ and 

Wo € Vi .Therefore, W(t) an be represented by a weighted sum of shifted scaling 

function <P(2t). This is illustrated in Figure 2.6 and mathematically can be presented by:

i// (t) = ^ ht (n)V2(j> (21 - n) n €Z .....................................................(2.24)
n

for some set of wavelet coefficients (wavelet Filter coefficients) ht(n) , where.

*i (")=(- 0”*(!-«)........................................................................................ (2.25)

Fig.2.6 Moving to a finer space using the wavelet, Wjtk(t) and scaling function, )

Again, the scaled wavelet function can be utilized to extract different details that reside 

in between different approximated versions of the signal. This will be discussed in the 

following subsection.
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2.5.4 Multilevel representation using the Wavelet function

As the scaling function &j,k(t) spans Vo, and &u(t) spans V/„ there are particular 

functions which spans Wo, and Wi. Therefore, as the scaling function spans Vj, 

the wavelet function ¥j^(t), spans Wj, Where Wj is the orthogonal complement of Vj,. 
This means that all members of Vj are orthogonal to all members of Wj, (Vj^-Wj ).

Therefore, the space Vj, can be represented in terms of a set of subspaces where each 

subspace can be spanned using the scaling and wavelet functions. This is 

mathematically represented as:

Vj = Vj_x®Wj_x = V0 ®W0 ®WX ®W2 ...............................................(2.26)

Therefore, any signal f(t) € L2(R ) can be represented as a series expansion by using a 

combination of the scaling function and wavelets function:

/(0 = X YidjM2it~k).........................................................(2-27)
*—09 j=0

where, c*. are the approximated coefficients of the last approximated version and dj^, 

are the detail coefficients at different scales.

Equation 2.27 represents the signal f(t) at different resolution levels in terms of one 

approximated version and different details that exist in between different approximated 

versions. The first summation gives the approximated version of the signal f(t) in terms 

of the scaling function. The second summation gives different details that can be 

extracted in terms of the wavelet function at different scales. The summation of the 

approximated version and the different detail versions will represent the original signals

f(t).

Figure 2.7 shows the details of the input signal at different resolution levels by 

using the Haar wavelet function. It is clear form the figure that as the scale changes 

more resolution is achieved.
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Fig.2.7 Multilevel representation of an input signal using wavelet function

2.5.5 Multi resolution analysis

Multi-resolution analysis (MRA) is used to decompose any signal and represent 

it at different resolution levels. The goal of multi-resolution analysis (MRA) is to 

develop representations of a complicated signal f(t) in terms of several simpler ones and 

study them separately. This goal will help in achieving two important properties. The 

first is the localization property in time of any transient phenomena. And the second is 

the presence of specific frequencies at different resolution levels. In multi-resolution 

analysis, the signal is decomposed to find a time-frequency picture of the signal and 

then reconstructed to get back the original signal.

In MRA, the first stage divides the spectrum into two equal frequency bands; the 

second stage subdivides the lower frequency band into quarters, and so on. In other 

words, the Discrete Wavelet Transform (DWT) coefficients for any signal, periodic or 

non-periodic, can be computed by using a multi-rate filter bank. The total number of the 

resolutions that can be achieved depends on the number of sampling points, which can
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be controlled by the sampling frequency and the window size of the data. This is best 

explained by Figure 2.8.

Spttlrum dtvialon D*» Six. compmaion

<C>

Fig.2.8 One stage MRA and Wavelet Filters -(a) decomposing into detail and 
approximated version,(b) Coiflt-5 scaling and wavelet function and their frequency 

response,(c) Spectrum division and coefficients size compression
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In other words, an analysis filter bank efficiently calculates the discrete wavelet 

transform (DWT) using banks of digital filters and down-samplers, and the synthesis 

filter bank calculates the inverse discrete wavelet transform (IDWT) to reconstruct the 

signal from the transform. Figure 2.9 shows five-levels of multi-resolution signal 

decomposition using the Haar scaling and wavelet functions.

Fig.2.9 Five level multi-resolution signal decomposition
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Fig.2.10- Evolution of Wavelet Publication in Power System

The main focus in the subsection has been on identification and classification 

methods from the analysis of measured signals, however, few works use wavelet 

transform as an analysis technique for the solution of voltages and currents which 

propagate throughout the system due, for example, a transient disturbance.

2.6 Review of Wavelet Applications in Power Systems

Several works have been developed in many areas with the aim of this tool, 

specially, in the last ten years have been met the potential benefits of applying WT to 

power systems due to, among other, the interest in analyzing and processing the voltage- 

current signals in order to make a real time identification of transients in a fast and 

accurate way.

The aim of the following subsection is to provide a descriptive overview of the 

wavelet transform applications in power systems to those who are novel in the study of 

this subject. For this purpose, the main publications carried out in this field have been 

analyzed and classified by areas.

In the mainstream literature, wavelets were first applied to power system in 1994 

by Robertson [24] and Ribeiro [25]. From this year the number of publications in this 

area has increased as Fig. 2.10 shows.

64



The most popular wavelet transform applications in power systems are the following:

- Power system protection

- Power quality

- Power system transients

- Partial discharges

- Load forecasting

- Power system measurement

Fig.2.11- Percentage of Wavelet publications in different power system areas

Fig 2.11 shows the percentage of publications in each area; the areas in which more 

works have been developed are the protection and power quality field. Next section will 

present the applications of the wavelet Transform in the area of Power System 

Protections.

The potential benefits of applying wavelet transform for improving the 

performance of protection relays have been recognized in recent years [26-42], In 1996, 

Chaari et al [26] introduce wavelets for the power distribution relaying domain to 

analyze transient earth faults signals in a 20 kV resonant grounded network as generated 

by EMTP; in the same year J. Momoh et al present an algorithm to develop a feature 

extractor suitable for training an Artificial Neural Network for fault diagnosis using the 

wavelet transform, in this case data was obtained from experimentation. At 1998
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Magnago and Abur set up the development of a new investigation line in the area of 

fault location using wavelets, for this purpose, the fault generated traveling wave is 

processed by the wavelet transform to reveal their travel times between the fault and the 

relay locations; EMTP simulations are used to test and validate the proposed fault 

location. In 1999 the same authors extend the method to the identification of the faulted 

lateral in radial distribution systems [27] and in 2000 present an improved method for 

their earlier papers [28]. Similar methods for fault location can be found in [29], [30]. 

High impedance fault identification [31]-[32]-[33J is other application area of wavelet 

transform, for example, in [34] Charytoniuk presents a comparative analysis for arc fault 

time location, frequency and time frequency (wavelet) domain, the author demonstrates 

that the wavelet approach is strongly affected by the choice of a wavelet family, 

decomposition level, sample rate and arcing fault behavior. The application of wavelets 

to auto-reclosure schemes [35]-[36] is develop to accelerate trip of power transmission 

lines, wavelet transform is adopted to analyze the fault transients generated by the 

secondary arc and permanent faults and the numerical results reveal that certain wavelet 

components can effectively be used to detect and identify the fault relevant 

characteristics in transmission systems and then to distinguish between transients and 

permanent fault. The wavelet transform is also applied for the bars [37] , motors [38- 

40], generators [41]-[42] and transformer protection [43-48], in most of this cases, the 

spectrum of signals is analyzed with the wavelet transform to develop online detection 

algorithm to detect insulation degradation, inrush and to carry out the precise 

discrimination between internal and external faults

2.7 Summary

Wavelet Transforms have been successively applied in a wide variety of research 

areas. Recently, wavelet analysis techniques have been proposed extensively in the 

literature as a new tool to be implemented in different power engineering areas. The 

wavelet transform analysis is proposed as a new tool for monitoring power system 

related problems.

The scaling property of the selected wavelet function to be used in decomposing 

the signal will assure the ability of the MRA technique to detect any transient event and 

localize it in the time and frequency domains. Selecting Ortho-normal wavelets, multi-
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resolution analysis will have the ability to distribute the energy of the distorted signal in 

terms of the expansion coefficients of the wavelet domain. Therefore, both the 

expansion approximated and detail coefficients will give an indication about the energy 

content of the distorted signal in certain time and frequency bands. This feature can be 

used to classify different power system protection related problems. From the other side, 

the energy of the wavelet coefficients can be combined with the localization property to 

give a measure of the transient events like initiation of any fault. The small values of the 

expansion coefficients will give us an indication about the resolution levels that contains 

low energy of the transient signal and hence can be ignored for data compression 

purposes. This can reduce the large volume of transient’s data to a manageable size. It 

will provide a higher quality of information about the transient events to be analyzed by 

power system engineers. Furthermore, the expansion coefficients of the highest 

resolution levels can be ignored for de-noising purposes. Using these properties of 

multi-resolution signal decomposition, an automated recognition system can be 

designed to detect, localize and classify different types of power system faults or 

transient events related problems.

Next chapters of this work will be describing some techniques using tools like 

Fourier Transforms and Wavelet Transforms to prevent overreach/ mal-operation of 

distance relays for protection of Series Compensated Transmission Lines.
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