LIST OF FIGURES

1.1	Impact of Series Compensation	22
1.2	The typical Set-up circuit diagram of a Series Capacitor	23
1.3	Stepped Distance Relaying Zones	25
1.4	Typical Impedance Diagram Showing Line and MHO Relay	
	Characteristic	26
1.5	System Transient condition	32
1.6	Voltage Reversal condition	34
1.7	Current Reversal condition	36
1.8	Series Capacitor with a conducting MOV (a) Voltage drop across	
	MOV(b)Current in Series Capacitor (c) Current in MOV	38
1.9	(a) Series Capacitor with MOV (b) Equivalent fundamental frequency	
	impedance (c) Sample MOV characteristic (d) Sample current dependent	
	parameters of equivalent impedance	38
1.10	Distance Relay overreaching due to Series Compensation	40
2.1	A simple sinusoidal function	43
2.2	Time – Frequency representation of a sinusoidal function	44
2.3	Examples of Different Wavelet Functions	49
2.4	Approximation of the input signal, (a) the input signal	
	(b) Approximation of the input signal using Haar scaling function	56
2.5	Multilevel representation of an input signal using the Haar scaling	
	Function	58
2.6	Moving to a finer space using the wavelet, $\Psi_{j,k}(t)$ and scaling	
	function, $\Phi_{j,k}(t)$	59
2.7	Multilevel representation of an input signal using wavelet function	61
2.8	One stage MRA and Wavelet Filters -(a) decomposing into detail and	
	approximated version,(b) Coiflt-5 scaling and wavelet function and their	
	frequency response,(c) Spectrum division and coefficients	
	size compression	62
2.9	Five level multi-resolution signal decomposition	63

.

13

2.10	Evolution of Wavelet Publication in Power System	64
2.11	Percentage of Wavelet publications in different power system areas	65
3.1	Parallel Power Gap	69
3.2	System Transients during Faults	70
3.3	Simplified arrangement of MOV	71
3.4	The clamping action due to MOV	72
3.5	Flow Chart of Proposed Scheme	75
3.6	Model used for simulation studies	78
3.7	Sample calculation and Capacitor protection simulation	81
3.8	MOV Protection Simulation Circuit	82
3.9	Plots for A-g Fault at 20% Line Length	83
3.10	FFT Plots for A-g Fault at 20% Line Length	84
3.11	Plots for A-B-C-g Fault at 20% Line Length	85
3.12	FFT Plots for A-B-C-g Fault at 20% Line Length	87
3.13	Plots for A-B-C-g Fault at 40% Line Length	88
3.14	Plots for A-B-g Fault at 50% Line Length	89
3.15	FFT Plots for A-B-g Fault at 50% Line Length	91
3.16	Plots for A-B-g Fault at 50% Line Length	92
3.17	FFT Plots for A-B-g Fault at 50% Line Length	94
3.18	Plots for A-g Fault at 50% Line Length	95
3.19	Plots for A-B Fault at 60% Line Length	96
3.20	FFT Plots for A-B Fault at 60% Line Length	98
3.21	Plots for A-B-C Fault at 60% Line Length	99
3.22	FFT Plots for A-B-C Fault at 60% Line Length	101
3.23	Plots for A-C-g Fault at 80% Line Length	102
3.24	Plots for A-B-C-g Fault at 80% Line Length	103
3.25	FFT Plots for A-B-C-g Fault at 80% Line Length	105
4.1	Basic Current Differential Principle	109
4.2	Operating Characteristic of Percentage Restraint Current Differential	
	Relay	110
4.3	External Fault Case $(I1-I2 = 0)$	-111
4.4	Internal Fault Case (I1-I2 \neq 0)	111
4.5	Characteristic Curves for CDPR	112
4.6	Flow Chart of Proposed Scheme	115

14

4.7	Pattern of Spikes at the end of Transmission lines for the case of	
	External Fault	117
4.8	Pattern of Spikes at the end of Transmission lines for the case of	
	Internal Fault	117
4.9	Plots showing magnitudes of fault spikes for A-B fault at	
	20% Line Length	122
4.10	Plots showing magnitudes of fault spikes for A-B-C fault at	
	40% Line Length	123
4.11	Plots showing magnitudes of fault spikes for A-B-C fault at	
	60% Line Length	125
4.12	Plots showing magnitudes of fault spikes for B-C fault at	
	60% Line Length	126
4.13	Plots showing magnitudes of fault spikes for A-C fault at	
	80% Line Length	127
4.14	Plots showing magnitudes of fault spikes for A-B-C fault at	
	80% Line Length	129
4.15	Plots showing magnitudes of fault spikes for A-B-g fault at	
	80% Line Length	130
4.16	Plots showing magnitudes of fault spikes for A-B-C-g fault at	
	20% Line Length	132
4.17	Plots showing magnitudes of fault spikes for A-B-C fault at	
	Middle of Line	133
4.18	Plots showing magnitudes of fault spikes for A-B-C fault at	
	Middle of Line	134
4.19	Plots showing magnitudes of fault spikes for A- Phase on both the	
	ends for A-B External Fault	135
4.20	Plots showing magnitudes of fault spikes for B- Phase on both the	
	ends for A-B External Fault	136
4.21	Plots showing magnitudes of fault spikes for C- Phase on both the	
	ends for A-B External Fault	137
4.22	Plots showing magnitudes of fault spikes for A- Phase on both the	
	ends for A-B External Fault	138
4.23	Plots showing magnitudes of fault spikes for B- Phase on both the	
	ends for A-B External Fault	139

1	~
	~
	- 1

4.24	Plots showing magnitudes of fault spikes for C- Phase on both the	
	ends for A-B External Fault	140
5.1	A multi-line Series-compensated System	145
5.2	Flowchart for fault zone identification	147
5.3	Flowchart for fault classification	148
5.4	Plots showing Im:Modal signal, d1:Value of d1 coefficients and d8:Value	:
	of d8 coefficients, ratio of spectral energy for 1-1-1-g External fault	150
5.5	Plots showing Im: Modal signal, d1: Value of d1 coefficients and d8: Value	le
	of d8 coefficients, ratio of spectral energy for l-l-l-g internal fault	151
5.6	Plots based on Modal current signal for A-g fault on backward	
	line section ($Rf = 1$ ohm)	157
5.7	Plots based on Modal voltage signal for A-g fault on backward	
	line section ($Rf = 1$ ohm)	158
5.8	Plots based on Modal current signal for A-g fault on backward	
	line section ($Rf = 0.01$ ohm)	159
5.9	Plots based on Modal voltage signal for A-g fault on backward	
	line section ($Rf = 0.01$ ohm)	160
5.10	Plots based on Modal Voltage signal for A-B-g fault on protected	
	line section ($Rf = 0.01$ ohm)	161
5.11	Plots based on Modal current signal for A-B-g fault on protected	,
	line section ($Rf = 0.01$ ohm)	162
5.12	Plots based on Modal Voltage signal for A-B-C-g fault on protected	
	line section ($Rf = 100 \text{ ohm}$)	163
5.13	Plots based on Modal current signal for A-B-C-g fault on protected	
	line section ($Rf = 100 \text{ ohm}$)	164
5.14	Plots based on Modal Voltage signal for B-C fault on protected	
	line section ($Rf = 1$ ohm)	165
5.15	Plots based on Modal current signal for B-C fault on protected	
•	line section ($Rf = 1$ ohm)	166
5.16	Plots based on Modal Voltage signal for B-g fault on protected	
	line section ($Rf = 50$ ohm)	167
5.17	Plots based on Modal current signal for B-g fault on protected	
	line section (Rf = 50 ohm)	167
5.18	Plots based on Modal Voltage signal for A-B-C fault on protected	

16

	line section ($Rf = 100 \text{ ohm}$)	169
5.19	Plots based on Modal current signal for A-B-C fault on protected	
	line section (Rf = 100 ohm)	170
5.20	Plots based on Modal Voltage signal for A-B-g fault on protected	
	line section ($Rf = 0.01$ ohm)	171
5.21	Plots based on Modal current signal for A-B-g fault on protected	
	line section (Rf = 0.01 ohm)	172
5.22	Plots based on Modal Voltage signal for B-g fault on protected	
	line section ($Rf = 1$ ohm)	173
5.23	Plots based on Modal current signal for B-g fault on protected	
	line section ($Rf = 1 \text{ ohm}$)	174
5.24	Plots based on Modal Voltage signal for B-C fault on protected	
	line section ($Rf = 50$ ohm)	175
5.25	Plots based on Modal current signal for B-C fault on protected	
	line section (Rf = 50 ohm)	176
5.26	Plots based on Modal Voltage signal for A-B-C-g fault on forward	
	line section ($Rf = 0.01$ ohm)	177
5.27	Plots based on Modal current signal for A-B-C-g fault on forward	
	line section (Rf = 0.01 ohm)	178
5.28	Plots based on Modal Voltage signal for A-C fault on forward	
	line section ($Rf = 1$ ohm)	179
5.29	Plots based on Modal current signal for A-C fault on forward	
	line section (Rf = 1 ohm)	180
5.30	Plots based on Modal Voltage signal for C-g fault on forward	
	line section ($Rf = 100 \text{ ohm}$)	181
5.31	Plots based on Modal current signal for C-g fault on forward	
	line section (Rf = 100 ohm)	182
5.32	Plots based on Modal current signal for Switching operation on Bus-B3	183
5.33	Plots based on Modal Voltage signal for Switching operation on Bus-B3	184
5.34	Plots based on Modal current signal for Switching operation on Bus-B2	185
5.35	Plots based on Modal Voltage signal for Switching operation on Bus-B2	186