
QUADRATIC FORMS OVER THE FIELD OF RATIONAL 
FUNCTIONS IN ONI VARIABLE OVER A FINITE FIELD.
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INTRODUCTION

1. Dedeklnd laid down the foundations of the
arithmetic of algebraic function fields based on the axiomatic 
characterization of fields, as generalizations of the arithmetic 
of algebraic number fields.

The starting point of Dedeklnd*s theory was ideals. The 
following definition of an ideal in K is true for any field which 
is the quotient field of an integral domain with a unit element,

; j i

Ideals ±n K s Let k be a prime field of characteristic
p j j. and &£*), the field of rational functions in * over k • 
An ideal in K is defined,, relative to the ring k[*] of 

polynomials in x over k , as follows*

An ideal in K is the set of elements in K with the
properties;

1. It is an additive subgroup of K.
2. If a-eU^aeUtoT any ^ and »-* > ^e&^and for

some A a c (ft/ ^
(ft is called integral if there exists A such that

A<l for every * s ^ • Otherwise it is fractional,
representable as a quotient of two integral ideals, that is, 
every element is representable as «y } belonging to one and lr 

to another integral ideal* ;
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The nonzero ideals in K form a group under this 
representation and the number of residue classes of k-t^J 
modulo it , the norm of ift , denoted N4xL is finite. These 
are the two properties on which the arithmetic of algebraic 
number fields and function fields is developed.

More important for further developments in arithmetic 
than ideals are the divisors defined as below. These give rise 
to the valuations in K defined a little later here.

Definition of a divisor in K and fields containing K 

(Chevalley: Algebraic functions of one variable).

Let A be a field and K a subfield of A , By a lA-ring 
in A (over K) is meant a subring v in & which satisfies the 
following conditions:
1. A> contains K.
2. 'O' is not identical with A
3. If is an element of A not in & then x-1 is in •

Let ~tr be a TT-ring. Those elements *• in & for 
which x"1 are not in V~ (we call them nonunit£$) form an 
ideal Q. in & .

The ring & is integrally closed in Is (Ghevalley)
The ring O' (of contains an element *£ * such that $ = 
and 0 -t*1# *

If x e A} there is, (by assumptions in Chevalley) a 
largest number such that X ~ j denote by
\)g [xj this integer. (fr i* a c
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If % and ^ are elements f o in 4J- then

°ti(±-) * %($) = vs C±z)
and} if j 4^ ^ ^

*3 (z*t) ?' w- [ *a CiJ , ^li))

As consequences we have

% (-1?] =■ va C&) + ^3 C%) x,d 6 ^

vaf O'O ‘ d*0
0 - u# CO

^C°) - 40 where is defined by ** for every •n- an

integer «»£«>— , **=» •* **■ * ^ for every , an integer,

<*o -* *o ~ c*» ; further whenever

vs CO -t va 13)
~ ■»'**' J 'oi )

Actually ^ satisfies the more general

properties of a valuation and ^ is called a place, A formal 

multiplication is defined between the places and it gives 

to the divisors. The places themselves are called the prime 
divisors under this multiplication. Because &= £00 =&£4J,-x 

is also a place.

K admits infinitely many places. The prime ideals in E 

can be identified with a subset of these places. Because the 

nonzero ideals in K form a group, these can be imbedded 

isomerphically in the group of all divisors.
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Definition of a valuation: A valuation of the field K is a
.. *mapping of n of the nonzero elements of K on to an ordered 

multiplicative group W (Generally a subgroup of the real numbers) 

satisfying the following conditionst

(1) For a, le K* , ''Cc.-fcJ -- u-foj *t4)

(2) For a- j i t k* , a.* -t t k
V~ (tx.i -6) £ 'hrxa.n. J *C4)J

ay V- Qa-A (jJ y, 9vUVv (JWoj j v- (^))

(5) v is nontrivial j that is, the*© exists an ol & K* 

with v(&) p

satisfies the properties of a valuation*
at

If all the places in K = k pc) ( defined by the prime 

polynomials j- in increasing order of the degree of f and fa ) 

are taken suitably ordered the set of elements

p ^£ vft*J j- and (A) when €r K. define an 

Idele of the elements.

Starting with a set of values for all the J- and fa 

arranged as above we can make these correspond to a * -aflic1 

number in the rational number field.
[

2* In 1924, Artin, in his thesis, generalized the arithmetic 

of quadratic extensions of the rational number field to the 

quadratic extensions of the rational function field in one variable 

over a finite field, (taken as a prime field) hereafter referred 

to as the function field. Artin ai&iomatised the theory further 

by using the valuations5 more generalizations were carried out
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by students of Artin leading to important developments in 

Algebra and Algebraic geometry, Witt, in a paper published 

in 193?, generalized the arithmetic of quadratic forms to 

arbitrary fields.

In Art in's thesis is represented by power series

of the form
+0.*., -*---------- -+ a0 -* a_, -nr4 ----- ------------

belong to the pri&e field A .

These can be made to correspond by means of the Ide&Les to power 

series of the form.
< Ak-t •*------------- -t a0 -t a^t -t ------------

in the Euclidean space, Artin called
aK*,n -*-------------*

the integral part and a.,*.'1 * -------------- the fractional parts

of the elements.

The number
Q-*V />n « , p*"'*------------------------

can be imbedded in the Euclidean space to get the analogue of 
Dirichlet's lattice point principle for the field Ky^ . This 

is explained in paragraph if Chapter I.

Chapter I is devoted to a discussion of the reduction 

theory of quadratic forms over the field of rational functions 

in one variable over a finite field. Some of the known theorems 

are quoted here or given in alternative references because the 

original papers are not readily available to the Indian students 

and the author in particular.
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The theory is based on a theorem of Tsen that a form ^£*J 

in Ki. in five vatiables represents zero nontrivially
^ nT-

where T[*J is the quadratic form of a symmetric matrix ®

and <1^ is the completion at the valuation in ‘/^ of the

field K, of rational functions in one variable over wen the

finite prime field * A form in K or /C/. isl1*-
said to be definite if it does not represent zero nontrivially 
in K»/jc • Otherwise it is said to be indefinite.

The axiomatic characterization given by Dedekind enables 

us to consider some results from Hasse, Witt and Siegel as known 

results with the priibe numbers in the rational number field 

replaced by the prime polynomials in K, the integers by the 

more general polynomials and the rational numbers by the rational 

functions in K. Accordingly -adlc numbers and real numbers have 

their generalizations.

3. The main purpose of this thesis is to establish the 

analogue of Siegel's famous identity on the representation theory 

of qua-dratic forms over the rational number field f~ to 

quadratic forms over K. The notions of equivalence are primary 

in the statement of the main theorem of Siegel. Equivalence of 

symmetric matrices gives rise to the reduction theory and 

semiequivalence to the results on the genera. Let tlx], nyJ b8
two quadratic forms in the variables A,j ------, and

yu with coefficients in one of the fields

mentioned above. A quadratic form 't'[xj ~
*• ^ - - equivalent to a * Ly] «/* y

if the transformation X - transforms

4= I. m.
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TffeJinto ?Ly] and if a similar transformation takes 7^X7 

into iT^x] where A cj fc and & cj . let Urn

denote the group of unlmodular matrices from of order

m (integral matrices with determinant a unit)* Let he the

symmetric matrix of order ^ with elements in and U * Ufy,»
For U< , l/!f 1/ is said to be equivalent to Tf .

It is an equivalence relation* Equivalent forms take the same 
values if X ^ 'y* take values in h fjCJ .If U is
such that uVu - f, y is eailed a unit. Units form a group.

T LXJ and. *7 [_Vj are said to be semiequivalent if for

every polynomial there exists a linear transformation
} M>tsCct' -t^fces klLHsush that denomin at loirs

4L*5 i

of are prime to ^
"tnccA-S J-OYtvia. Alok lokCcU. 'tcdkcr, ”^^x1 >0^ "#u -sun^c ^ay

Given the value of the determinant in the set of symmetric 

matrices in , the reduced space, with this v&ue for the

determinant there are at least two equivalent classes. This fact 

is used in the construction of the fundamental space for the 

discontinuous group of mappings R, —» (/^ \J where u is the unit 
of the symmetric matrix Tf ^ e ^ and the mapping is 

into a subspace of the space of symmetric matrices with a given 

determinant equal to that of if in value with respect to .

This is done in Chapter III.

Chapter II consists mainly of the proof of the main theorem 
for definite forms over K* Results of Artinjsl* using quadratic 

extensions of K and their arithmetic are exhibited as special 
eases of these results. In fact results of Artin l?J from Sis 

thesis are used initially in the induction part of the proof of the 

main theorem. * pt iS2>" 5 ^ f>f> 2.27
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These results cannot he considered as particular cases 

of results on algebraic function fields over because the

evaluations of certain quantities connected with the main theorem 

of Siegel are made strictly for K. Also it is not proper to 

consider the algebraic function fields, as far as this identity 

is concerned, as generalizations of K or the algebraic number 

fields. These can be dealt on their own right though one has to 

borrow the ideas from the techniques given here to give the more 

general results. Besides the jT-adic densities must also be 

defined as measures of representation for algebraic function fields. 

This is not difficult because the reduction theory in Chapter I 

and the results on the units in Chapter III can be carried out for 

discretely valued and complete fields over a finite field using 

the power series representations. But the explicit evaluation of 

A* if } 7) could be more involved though it might be simplified 

using the Diriehlet lattice point principle. The results for the 

indefinite forms are given in detail in Chapter - III.

4. The equivalence and semiequivalence of symmetric 

matrices have already been defined! it follows that if a 

matrix belongs to a genus the whole class of the matrix belongs 

to the genus so that there are only a finite number of genera of 

matrices with a given determinant and in each genus a finite 

number of classes. Let he the representants of
the classes in a genus| let A be defined as the
number of integral 1^' ^ such that X'TX. ~ 1 when ^ 

and are integral and definite.

w tJ~ = * (X
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Notice is the same as r (*1) when *$2

is equivalent to ~f 5 otherwise zero * Let 
be the number of solutions of ^ (motif.*} for

irreducable and *T an integer from the rational number field.

lirts. A/V1 (jf, *?)
fro J"

If!y ~*rJ
exists and is denoted by oU (2D U 

Then following the statement

* fpr) j,[rj7j --------------a)

it is proved that the right hand side converges. The proof is 
the same as it was done by Siegel W for the rational number 

field. It is included here for the sake of completeness.

Also the arithmetical part of the results can be 
obtained as a generalization of the results of Siegel for the 
indefinite forms.

A o is a quantity depending on the values
of the determinants of lC and 3 and the orders of 
and ^ • Siegel defined it for the rational number

#■ 3i Y -v*} h^‘ ^C tP avl U\ Ifc- cf,iLyin.£ ,



field in the following fashion. is represented as a
point in the space f —~£~ , r** Cm'#0^ dimensional

product space of f and as a point in the space r-m(m+1)

For a certain neighbourhood of with the ordinary distance 
metric the point 7L , satisfying the equation - % is

represented as a point in the mn dimensional space and is

taken as a point in the neighbourhood of . The volume of the
% space traced when , traces the neighbourhood of 'Zj

divided by the volume of the ^ neighbourhood tends to a finite 

limit when the ^ neighbourhood shrinks to * .As it would 

be expected Siegel used integration as the available tool in the 

rational number field.

Pirichle^s lattice point principle with special reference

In Chapter II of this thesis a set of Lemmas due to 
Siegel are generalized to kc*), the field of rational functions 

over the prime field k. .

Let “jT and t both lie in K, Kt or K,, » For
I * J*~

the equation £ # £ = % defines an irreducible manifold of 

dimension mn -n(n-KO = o . For n = a by the adjunction of
ft-if »V*- ■ ^

//rt ) to corresponding field an extension field, is 

obtained, on which there exist exactly two different algebraic

n=m



manifolds of dimension on one of which /*■! a f and 

on the other , ij -t is a quadratic residue

modulo j? these two manifolds can be Identified.

In virtue of this lemma for the solutions of the equation 

trb ■** Dirichlet's lattice point principle can be applied 
which justifies the following evaluation of A. for

function fields.

Dirichlet’s lattice point principle for the rational 

number field states that the number of lattice points or points 

with integral coordinates in a convex bounded domain of the 

Euclidean space tends to the volume of the domain as its boundary 

tends to infinity.

In the case of the function fields A. 
is defined thus: the above process applied to A t*. 7; is 
applied to the average L f ^ . Finally it is

proved that it is independent of the genusj with the result 

the definition can be taken to be the same as for the rational 

number field. Besides one makes note of the fact that the 

ratio of the two volumes, defined above, in the limit 

when the neighbourhood expands is the ratio of the number 

of lattice points in one to that in the other C Dirichlet’s 

Principle ) After making note of all these observations 

is defined thus, fake the average z A Cfij
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in a neighbourhood of r in the valuation with respect to
Define POTS) - Z A (fi/O/*,
and take all the elements ( when n = 1 ) such that

and M sufficiently large • ^ ^ ^ /
^or N

number of 7'

x -

as N —*> 

When Tv >i 
elements of

is the definition of f'O?) 

the inequalities are taken for each of the 
^ with the corresponding elements of .

is represented as a point in the n(n+1) 
2

dimensional space over the completion of K at *- . 
Consider the equation lti1TiL ^ « For points in the 
neighbourhood of if" , denoted by Q y It is one of a 
set of points • Instead of taking all points in the
neighbourhood of 1r m take with elements
are polynomials satisfying the conditions,

KM - Ipj-fyl

which

The remaining steps of the analytical part are once 
again the same as those in Siegel [?.«J and a few more 

observations are made in the introduction of Chapter « III.

Quite apart from the algebraic part of the proof, in order 
to formulate the theorem for the indefinite forms one needs a 
measure for the unit gro$p because the units are no more finite 
in the case of the indefinite forms. While securing the measure 
one has the result that the units of an indefinite symmetric 
matrix over K are finitely generated. Also the notion of measure of
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representation is introduced* This is a hurdle of specific 

importance in the whole work though the results that one obtains 

thereafter are not apparently different from these of Siegel 

if one makes use of the preparation in Chapter I and II* Chapter 

II can be taken, as far as these results are concerned, to be a 

particular case of Chapter - III. This is exhibited explicitly in 

Chapter III.

The equation (1) with the nature of f (i~) determined 

(proved equal to one in the rational number field) is the main 

theorem of Siegel on the representation theory of quadratic forms. 

The are the J- -adic densities of the representations
of *7 by ,

Preceding the proof of the convergence of the right hand 

side of (1) certain lemmas proved by Siegel are summarized here 

with an introduction to the methods of Siegel.

5. Siegel yj contains a collection of lemmas ( apart from 

the other preliminaries to his papers ) where actually all the 

important notions, as far as the arithmetic is concerned, are 

included. These lemmas can be classified, into three sets - one 

leading to the proof of the convergence of the J.**adic densities, 
the second leading to the formulae of Gauss and Eisenstein and 

the third leading to the induction part of the proof of the 

main theorem with the more intricate methods for the estimation 

of f (tT) • A short discussion of the lemmas leading to the

convergence of the product of the J- -adic densities is given 

in Chapter -II. The set of important lemmas leading to the proof 

of the formula of Gauss and Eisenstein has not been dealt with
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in detail. After writing the equation

“U'lrk s |?J"$ -> ^'^'*1 f"^7kJ
by lemma 24 ^ Siegel [pj* the existence of an ^7 semiequivalent 

to T with % = lT jrji J and of an integral ^
such that C, = C ( ) so that C/'f’C,-'?

have to be assumed to proceed with the rest of the proof 
(Siegel £5] equations, 50, 51, 52 ). The construction of the 
reduced and irj and also of Vt is the important step 

that precedes the above argument ( art 8, equations 45, 46 
Siegel [5j ). The equations 47, 48 and 49 Siegel [ and 

subsequently upto 52 make use of the construction of the reduced 
^ and -bjf . (Lemmas 20,21 Siegel |sj ) are applied 

repeatedly. Lemma 22 Siegel fsjf is the Hasse - Witt theorem 

for function fields.

One can see from the proofs that each of these lemmas 
20,21 and 24 Siegel [ pj is an improvement of the previous.

Lemmas 16 and 19, Siegel f_5j aremt needed here. We can have 

now a systematic discussion of (1) the seventeen lemmas generalized 
from Siegel [pj , (2) the three lemmas mentioned above and (3), 
the construction of the reduced ^ and which has to be

dealt with in detail once again in view of the modifications in 
Chapter III for indefinite forms. The ±apsx improvements on (3) 

for indefinite forms can be carried out in two ways. I call the 
one the geometrical and the other the arithmetical approach. Either 

of these is needed for further improvements ih the work. The 
geometrical approach is direct generalization of Siegel [6j and 
the arithmetical is just the procedure in Siegel [p] with a
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suitable restriction on the degrees of the elements in the matrices 

c, j and 4rt , The two methods are possible
once again because of the discreteness of the valuation*

In detail

<3) Construction of the reduced and for

definite, _an_d_lndefinlte__fo_rm s.

This construction is carried out on page 

following Siegel [5j . Let *% be a particular

primitive representation in fe[%J • If 4Xa 
complement of L , (Ji

a = c'r<x. y.

is a

V«V
ItU-tko

ITT IW ry\- n.~l <rteL

y. ft-' rt‘ } Jo
(rC M-'$,

1 -7.

/•?/''$„ +■»[,'

For any general complement ifc ~ £ * ***-*”0

with integral & and unimodular ^0 the following equations

are true.

TC *9
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Given C and is fixed uniquely and *y is in the

same class as . That is, the class of Jy is

uniquely fixed and is determined in S ( ^ ) ways,

in the case of indefinite forms instead of E ( Jy ) we have 

to us© the measure of the unit groqp, Also for the number of 

primitive representations £ the notion of measure of 

representation has to he used. These have been introduced in 

Chapter - III. At this stage the method in Siegel can be
compared with that in tel to establish the formula of Gauss 

and Eisenstein in the large. Let be a representation
of 1 by T . To a representation 

of *2 by X let (/ be a unit of X such

that UC ~C . Let %o m (m-n) be a matrix in 

such that ( C Z0 ) has a determinant different from zero. 

Then put
(Cic)' T (a st.) = /V Hy. 1 ■=(**,»». to.sc^ii]

Vf.'
so that Crt. =7. * «K. OJ

Then it shall be shown that

LCLIJ' T lyi (*i*) 2J*t
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possesses a solution & in k.,,
/*-

lie sufficiently neat to and
Chapter - II is applied.

and
9e„

*e'
, Here lemma 2,

In order to solve the equations = *j
%!tfH ^ <32 , £=£3*+^oM}
with unknown and ^ . with the

abbreviations

% - y %~’t - ^ ca
1 TI] ^ I/"? ^ > *1" ss' 3**}<J-Li]
V ty l, n C y

then l^0j ^ o and we have further the equations 
~1 -t J>jcxO - and 9 ^

In this situation ^ - must be sufficiently near to •

In the (m-n) (m-n+1 )/2 dimensional space of pairs 

that set of points, for which(4) is soluble is chosen. By 
means of (4) this space B is mapped to B' ( the m (m»n) dimensional) 
of the It space. Any two points j of the space

are called associated if for a certain unit U of the equation 
Utf Is true. If B is the reduced space of Tt in B* 

for this equivalence relation volume of B exists and is different( Le^ma MjSCtCjdi Ul)

from zero. Also for a certain neighbourhood B ofVolume of B*7 Volume of B
in the limit when B tends to is the same as f (CjiQ if £T
is a primitive representation and ( £ ) is unimodular.
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The construction of the measure f , its existence
and the interrelation with the reduced £ and are

given by lemmas 11 and 12, Siegel [6] . These reduced ^ and 

are defined just as for definite forms. Refer back to the 
equations (2) and (3). ^ is called reduced once its class

( ^ ) is fixed. Of the possibilities for (which can be

measured by ^ j) one is chosen and to t fix 91

in AK 5 * 4te*Qt] is determined uniquely so that
+J s. ? -t XQ

is a given representant ( *y ) of its left residue class modulo 7 

Here bj is reduced. If ^ and are both reduced is
also called reduced. To call ^ actually reduced for indefinite 

forms it must be chosen from a certain reduced space. There spaces 

are dealt with in Chapter - III. The quantities j
and B have their corresponding generalizations,

/MiJ ,/cCS^O "’**
formula of Gauss and Eisenstein, with all this preparation, is 

still not immediate for indefinite forms. The rest of the 

explanation is to be found in Chapter ** III. It is here the two 

methods of explanations are used, which we call the geometrical 

and algebraic approaches. In the algebraic approach a restriction 
is placed on the degrees of the terms of j £• ; % .

and along with £ and in the limit /^qC^)

a sfcCi’fJ r*J
appear automatically. But still it is not complete without a 

further explanation.
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Now all the hurdles have been crossed. The theory is 

complete with a last reference to the thesis of Artin - C for 
the time being). The constant j3 (tT^) can be evaluated for a 

binary forms and the identity is completely established for 

binary forms.

general case. The proof is a bit involved, still it is 

incorporated.

is proved to be a constant wrt*. for the more


