QUADRATIC FORMS OVER THE FIELD OF RATIONAL
FUNCTIONS IN ONE VARIABLE OVER A FINITE FIELD.

INTROPUCTION

1. Dedekind [1,2] 1ald down the foundations of the
arithmetic of algebraic function fields based on the axiomatic
characterizstion of ﬁelds, as generallzations of the arithmetic

of algebraie number fields.

The starting point of Dedekind's theory was ideals. The
following dei’inition of an ideal in X is true for any field which
" 1s the quotient field of an integral domain with a unit element,

Ideals in K s Let - R be a prime field of characteristic
b#2 end R(x) the £16ld of rational functions in X overk .

An 1deal in K is defined,, relative to the ring k[x] of
polynomieals in 2 -over ’Z X as followse

An 1deal o :Ln K i the set of elements in K vith the
propertiess A B

1. It is an -additive subgroup of K.

2. If aelt, *aemfor any A ekm and € '{wa AE&gand for

some 1¢K, lactX, A¢klr]

(L 1is called integral if there exists A ekLaj such that
Aa e U for every & € At . Otherwise it is fractional,
representable as a quotient of two integral ideals, that is, |

every element is representable as a[ , & belonging to one and s

to another 1ntegral ideal. ;
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The nonzero ideals in X form a group under this
representation and the number of residue classes of k[*]
modulo 41 , the norm of U1 s denoted NUL is finite, These
are the two properties on which the arithmetic of algebraic
number flelds and function fields is developed.

More important for further develcpments in arithmetic
than ideals are the divisors defined as below, These give rise
to the valuvations in K deﬁned a little later here,

Definition of a divisor in XK and fields containing X
(Chevalley: Algebraic functions of one variable).

Let R  be a field and K a subfield of A . By a v-ring
in R (over K) is meant a subring U in R vhich satisfies the
following conditions:

1. 4" contains K. ”
2. U is not identieal with R _
3. If X is an element of & not in & then '  is in ¢+ .

Let ' be a V-ring. Those elements % in 4 for
which %~  are not in ¢ (we call them nonunitds) form an

idealy in U,

The ring ¢ 1is integrally closed in R (Chevalley)
The ring {+ (of 4 ) contains an element *f * such that ;;:{1}
and (] MY = ?0}

n

If xe A there is, (by assumptions in Chevalley) a
largest number M such that 24 = £™e «950; denote by
Uy (1) this integer, (8 o a wx{—)
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If T and g  are elements + 0o in 4 then

and, 1f 2 _,_} f”

":l (}, -t]) 2 n (1); (A, ua_z(a))

As consequences we have
’s’& (2(_3) = Vy (&) + Vy Cy) 'LJJ e L
vg (’"—') = =Yy ()

o = Db 4
4 ()
vgco) = ¢  where o is defined by * > for every v an
integer eeze= , o tRe = for every ", an integer,
oo 4 8o + o= 3 further whenever

Vy (2) T V& @)
vy (R27) = T C\’E;,CEJ s Yy ()))

“1

properties of a valuation and Y 1s called a place, A formal

Actually satisfies the more general
multiplication is defined between the places end it gives *ise
tc the divisors. The places themselves are called the prime
divisors under this multiplication, Becamse K= &(x) =&(L),%

is also a place,

K admits infinitely many places, The prime ideals in K
can be identified with a subset of these places, Because the
nonzero ideals in K form a group, these can be imbedded

isomerphically in the group of all divisors.



L 1)
N
-

Definition of a valuation: A valuation of the field X is a

*
mapping of K" of the nonzere elements of K on to an ordered
multiplicative group W (Generally a subgroup of the real numbers)
satisfying the following conditions :

(1) For a, be kK* , viad) = v v(4)
(2) TFor o, bekK’ , o+ d ¢ k*
v (out '(:) L ‘maoax CV(@) J "[“!))

o V‘Co.a(!)) 2, Mo Lb@») 2 "("))

(3) v is nontrivial; that is, these exists an a ¢ K*
with via teo

\)i satisfies the properties of a valuation.

If all the places in K =4&(x) ( defined by the prime
polynomials # in increasing order of the degree of f and T )

are taken suitably ordered the set of elements

*
{ uat(qg} and V; (a) when o eK define an
x

Idele of the elements.

Starting with a set of values for all the f and Yz
arranged as above we can make these correspond to a * fo -adic!
number in the rational number field.(

{
26 In 1924, Artin, in his thesis, generalized the arithmetic
of quadratic extensions of the rational number field to the
quadratic extensions of the rational function field in one variable
over a finite field, (taken as a prime field) hereafter referred
to as the ;unction field. Artin akiomatised the theory further

by using the valuations; more generalizations were carried out
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by students of Artin leading to important developments in

Algebra and Algebralc geometry. Witt, in a paper published
in 1937, generalized the arithmetie of quadratic forms to

arbitrary flelds,

In Artin's thesis K'IL is represented by power seriles

of the form
-

%Ln +a, - +ta,tad x =+ -7 -

a; belong to the prime field ‘l .
These can be made to correspond by means of the Idéales to power
series of the form.

a.,\[b"‘ < Oy [’”"1 ~— HAa, ta_p1—~~

in the BEuclidean space. Artin called

a,t + ——— 1o, _
the integral part and a_z"'+ -- — — -  the fractional parts
of the elements. '
The number h
Q,\I)n-i N et

can be imbedded in the Euclidean space to_get the analogue of
Dirichlet's lattice point principle for the field K'/z, . This
is explained in paragraph 4 Chapter I.

Chapter I 1s devoted to a discussion of the reduction
theory of quadratic forms over the field of rapional functions
in one variable over a finite field. Some of the known theorems
are quoted here or given in alternative referepces because the
crigigal papers are not readily available to the Ipndian students
and the author in particular.
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The theory is based on a theorem of Tsen that a form 37,"_]
in K, . in five vatiables represents zero nontrivially
where ¥ |x] is the quadratic form of a symmetric matrix (3 _
and K'! « 18 the completion at the valuation in Y, of the
field K, of rational functions in one variable over eover the
finite prime field R , A form T [XT1 in K or l<,/w_ 18
said to be definite if it does not représent zerc nontrivially
in K,hL . Otherwise it is said to be indefinite.

The axiomatic characterization given by Dedekind enables
us to consider some results from Hasse, Witt and Siegel as known
results with the prime numbers in the rational number field
replaced by the prime polynomials in K, the integers by the
more general polynomials and the rational numbers by the rational
functions in K. Accordingly t:-aadic numbers and rezl numbers have

thelr generalizations.

3. The main purpose of this thesis 1s to establish the
analogue of Siegel's famous identity on the representation theory
of qué-dratic forms over the rational number field r; to
guadratic forms over K, The notions of equivalgnce are primary
in the statement of the main theorem of Siegel. Equivalence of
symmetric matrices gives rise to the reduction theory and
semiequivalence to the results on the genera. Let ¥ [X], FLY/ve .
two quadratic forms in the variables X,, — - —., X, and

Yio === = Yum with coefficients in one o'i"uthe fields
mentioned above. A quadratic form T[X] = 2. A?‘Xi )‘(J
is sald to be equivalent to a form 7Lyl :JJZ’_" }5‘,./. Y: );
Lf the transtormation X, {_:" LAY, T

transforms

Q:IJ‘“”"’»’VL
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Yldinto 70Y]  and if o similar trensformation takes 7LY/
inte §[x]  vhere AcJ‘ ¢ R[2] and Bcj ¢k [~] . Let Um
denote the group of unimodular matryices from R[] of order

m (integral matrices with determinant a unit)., Let e be the grvew
symmetric matrix of order ™ vwith elements in kL*J ang Ue Um'
For UeuU,, , U'TU . is sald to be equivalent to ¥ .

It is an equivalence relagtion, Equivglent forms take the same

values if X. Yy, take values in R |a] .12 U s
such that U'FU= F, | is called a unit, Units form a group.

¥ Lx] ana 7[Vv] are said to be semiequivalent if for
every polynomial 4\« there exists a linear transformation

m
X z, hoe Yo s Abhich takes 7|x] 87 [flsych that denominatioms
of A’Id are prime to A and a el o

mr\.sj—ovma,hbn Lohich, /fﬂk@ 4[)’] ‘tO T!_XJ An T same L’“J'
Given the value of the determinant in the set of symmetric

matrices in &, the reduced space, with this va ue for the
determinant there are at least two equivalent classes, This fact

is used in the construction of the fundamental space for the
discontinuous group of mappings R — M’R U where U is the unit
of the symmetric matrix 7 , R e r and the mapping is
into a subspace of the Space of symmetric matrices with a given
determinant equal to that of ¥~ in value with respect to '/x .
This is done in Chapter IIT. ’

Chapter II consists mainly of the proof of the main theorem
for definite forms over K. Results of Artin|3]" using quadratic
extensions of K and their arithmetic are exhibited as special
cases of these results, In fact results of Artin [377 £rom his

thesis are used initially in the induction part of the proof of the

main theorem. wpp I53- 208 ppady
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These results cannot be considered as particular cases
of results on algebraic function fields over k because the
evaluations of certain quantities connected with the main theorem
of Siegel are made strictly for K, Also it is not proper to
consider the algebrale function fields, as far as this identity
is concerned, as generalizations of K or thg algebraic number
fields., These can be dealt on their own right though one has to
borrow the ldeas from the techniques given here to give the more
general results., Besides the :f»adic densities must also be
defined as measures of representation for algebralc function fields.
This 1s not difficult because the reduction theory in Chapter I
and the results on the units in Chapter III can be c¢arried out for
discretely valued and complete fields over a finite field using
the power series representations., But the explﬂﬁx evaluation of
A@ (¥,%) could be more involved though i1t might be simplified
using the Dirichlet lattice pointlprinciple. The results for the
indefinite forms are given in detail in Chapter - III.

4, The equivalence and semiequivalenée of symmetric
matrices have already been defined; it follows that if a
matrix belongs to a genus the whole class of the matrix belongs
to the genus so that there are only a finite_number of genera of
matrices with a given determinant and in each genus a finite
number of classes. Let J, , -~ - — » ¥ be the representants of
the classes in a genus; let A (3;,7) be defined as the
number of integral X such that X7Xx=7 when T
and F are integral and definite.

Put 5 AGL® _

EG) [zL . = A (4T)
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Notice A (9, 7)  is the same as £ (90D  wnen V.

is equivalent to 7 ; otherwise zero. Let Af«r (7, %)

be the number of solutions of ¥ 7% =7 (med #7) for +
irreducable and T an integer from the rational number field.

TM"O

y A -nndl)
[£] 2
exists and is denoted by ”(Jt Cﬁj ?)
Then following the statement

AGD = ) emn N, (D ——O
A (4.7) 4

it is proved that the right hand side converges. The proof 1is
the same as it was done by Siegel [5] for the rational number
field. It is included here for the sake of completeness,

Also the arithmetical part of the results can be
obtained as a generalization of the results of Siegel for the
indefinite forms.

A C{J +) is a quantity depending on the values
of the determinants of ¥ and %  and the orders of ¥
and F . Siegel defined it for the rational number

% %ﬁ Yovi e T and T ave & M Sane Feno s .



field in the following fashion. T is represented as a

point in the space T (m*) , m Cm‘")/z dimensional
product space of [ and ¥ as a point in the space [/Q%_m .
"For a certain neighbourhood of # with the ordinary distance
metric the point % satisfjing the equation Elfre-7 1s
represented as a point in the mn dimensional space and #;  is
taken as a point in the neighbourhood of K4 o The valume of the

X space traced when F, , traces the neighbourhood of ¥,
divided by the volume of the # neighbourhood tends to a finite
1imit when the ‘7 neighbourhood Shrinks to F . As it would
be expected Siegel used integration as the available tool in the
rational number field,

In Chapter II of this thesis a set of Lemmas due to

Siegel are generalized to k(a) » the fleld of rational functions
over the prime field R

Let 4 and ?  both lie 1n K, Ky or Ky, » Por o=
the equation ¥ '"YE =7 gorines an irreducible manifold of
dimension mn gﬁ,am_), o« For n =m by the adjunction of
-+ fir1 J'17;0' the corresponding field an extension field, is

obtained, on which there exist exactly two different algebraic
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manifolds of dimension v on one of which [%]=f and
on the other iilf -, ij -1 is a quadratic residue
modulo F these two manifolds can be 1ldentified,

In virtue of this lemma for the solutions of the equation
¥FE =7 Dirichlet's lattice point principle can be applied
which justifies the following evaluation of Ase (FTo3)  for
function fields.

Dirichlet's lattice point principle for the rational
number field states that the number of lattice points or points
with integral coordinates in @ convex bounded domaln of the
Euclidean space tends to the volume of the domaln as its boundary

tends to infinity,

In the case of the function fielas A, (T 4)
1s defined thus: the above process aspplied to A (¥, 7) is
applied to the average Y. A(‘ﬁ‘,7) /J\, o Finally it 1is
proved that it is independent of the genus; with the result
the definition can be taken to be the same as for the rational
number field, Besides one makes note of the fact that the
ratio of the two vdlumes, éefined above, in the limit
when the neighbourhood expands is the ratio of the number
of lattice points in one to that in the other ( Dirichlet's
Prineiple ) After making note of all these observations
Ao(f,?) is defined thus. Take the average Z A (e, %) / L



in a neighbourhood of 7 in the va;luation with respeet to % -
Define P(1,1) = ZA (‘5’5,7)/4,
and take all the elements ( when m =1 ) such that

ple a9 & poN for N

P,
and M sufficiently large - 2 P(s3) / number of 7’/

as N—> 0o 1is the definition of A.(V)%) ~
When n »>J the inequalities are taken for each of the
elements of 7 with the corresponding elements of ',

?@‘) is represented as a point in the a(n+l)
2.

dimensional space over the completion of K at 2 ,
Consider the equation ¥ T& = -} . For points in the
neighbourhood of F denoﬁed by B, %X  is one of a
set of points R . Instead of taking all points 1in the
neighbourhood of F* we take %  with elements 9‘3 which
are polynomials satisfying the conditionms,
prM = [gi Syl <N

The remaining steps of the analytical part are once

again the same as those in Siegel L5,6J and a few more

observations are made in the introduction of Chapter - III,

Quite apart from the algebrale part of the proof, in order
to formulate the theorem for the indefinite forms one needs a
measure for the unit groyp because the units are no more finite
in the case of the indefinite foims. While securing the measure
one has the result that the units of an indefinite symmetric

matrix over K are finitely generated, Also the notion of measure of



representation is introduced. This is a hurdle of specific
importance in the whole work though the results that one obtains
thereafter are not apparently different from these of Siegel[lé]
1f one makes use of the preparation in Chapter I and II. Chapter
II can be taken, as far as these results are concerned, to be a
particular case of Chapter - III, This is exhibited expliatly in
Chapter III,

The equation (1) with the nature of f (f:) determined
(proved equal to one in the rational number field) is the main
theorem of Siegel on the representation theory of quadratic forms,
The o(i(f ) ‘1) are the :{- -adic densities of the representatioms
of 7 by y .

Prgceding the proof of the convergence of the right hand
side of (1) certain lemmas proved by Siegel are summariz@d here

with an introduction to the methods of Siegel,

B. Siegel [?] contains a collection of lemmas ( apart from
the other preliminaries to his papers ) where actually all the
imporhant notions, as far as the arithmetic is concerned, are
included. These lemmas can be classified into three sets - one
leading to the proof of the convergence of the ;}madic densities,
the second leading to the formulae of Gauss and Eisenstein and
the third leading to the induction part of the proof of the

main theorem with the more intricate methods for the estimation
of ,f(i) . A short discussion of the lemmas leading to the
convergence of the produet of the ‘}-nadic densities is given

in Chapter - II. The set of important lemmas leading to the proof
of the formula of CGauss and Eisenstein has not been dealt with



in detall. After writing the equation
- -! Vg od
besle = {9 haap' e [ 7%)

by lemma 24 ) Siegel L§]} the existence of an 77' semiequivalent
to ¥ with T =7 (med jl'/,-_” ) and of an integral £
such that L, = L [ mod so that [ L, =7

1 ( f/l?/) ] !

have to be assumed to proceed with the rest of the proof
(Siegel [5] equations, 50, 51, 52 ). The construction of the
reduced 7 and 4 and slso of It 1s the important step
that precedes the above argument ( art 8, equations 45, 46
Siegel {67 ). The equations 47, 48 and 49 Siegel [5] and
subsequently upto 52 make use of the construction of the reduced
é and 47 . (Lemmas 20,21 Siegel [5] ) are applied
repeatedly, Lemma 22 Siegel |5 1s the Hasse - Witt theorem
for function fields.

One can see from the proofs that each of these lemmas
20,21 and 24 Siegel {57 1s an improvement of the previous.
Lemmas 16 and 19, Siegel | 6] aremt needed here, We can have
now a systematic discussion of (1) the seventeen lemmas generalized
from Siegel [5] , (2) the three lemmas mentioned above and (3),
the construction of the reduced 4 and o which has to be
dealt with 1n detaill once again in view of the modifications in
Chapter III for indefinite forms, The Xmpmmx improvements on (3)
for indefinite forms can be carried out in two ways. I call the
one the geometrical and the other the arithmetical spproach. Either
of these is needed for further improvements ih the work. The
geometrical approach is divect generalization of Siegel [67] and
the arithmetical is just the procedure in Siegel [5] with a



suitable restriection on the degrees of the elements in the matrices
, b( p é and AL The two methods are possible

once sggaln because of the discreteness of the valuatione

In detail

(3) Construction of the reduced é and 47' for

This construction is carried out on page
following Siegel 5] , Let L'#L =7  be a particular
primitive represéntation in R[] . I L, is a
complement of L , LK 0’(,) = 1)'1.

q, = L't u, o (:t 7)

Then [he| = 1A ™ e
T B b, = ‘07.,' ! ¥t Yo
“ v [# {,;,

H

(*7 314, =4, ""*7)

For any general complement U{ = L JF¢ + ULk

with integral ¥ and unimodular () the following equations

are true,

.2)(—.-.?;(0 g % 4.7-—*’1-5‘44701.-0
T >0 b - 2 4, )
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Given L  and Uu,é, is fixed uniquely and /é is in the
same class as 4, . That is, the class of /ﬁ is
uniquely fixed and 2.{) is determined in E ( 6 ) ways.
in the case of indefinite forms instead of E ( 4 ) we have
to use the measure of the unit groyp, Also for the number of
primitive representations L the notion of measure of
representation has to be used, These have been introduced in
Chapter - IIT, At this stage the method in Siegel Lﬁ] can be
compared with that in E‘i] to establish the formula of Gauss
and Eisenstein in the large. Let K'T[:? be a representation

of 1 by ¥ « To a representation L'rr-+

of F+ vy ¥ et (J be aunit of 7T  such
that UK =L , Let X, m (men) be a matrix in K’/,l
such that ( [ %, ) has a determinant different from zero.
Then put

K x,) "f (l: L ) ( 47) "LUhMa. 10, Scegel | 1]

I ! .
so that &~ T %> =4, > % TR, =R, (2

Then 1t shall be shown that

(E@'T(Ri) =/ 7 @ %n(l:s) page 24¢
4.7’

&Cead [ ‘j
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possesses a solution X in k,/qL and K, - %7
lie sufficiently neat to 47, and  Wo . Here lemma 2,
Chapter - II is applied,

In order to solve the equations Q’T% = 47
XTx QR , fut X = LF+ X 2D

vith mknown &'  and 0™ . with the

abbreviations

% _ 4701 7-’ ‘70 - /bo and

(3

s

% -47"““"7 :réﬂ 53, Sceqed [€]
L) GHENEY T

<

“then M“l 4% ~ end we have further the equations

FI44,20 =4 ang 204, ™M) - 4

In this situation '/;) - must be sufficiently near to /éa- .

In the (m-n) (m-n+1)/2 dimensional space of pairs

that set of points, for which(4) is soluble is chosen., By

means of (4) this space B is mapped to B' ( the m (men) dimensional)

of the ¥  space. Any two points X%,, %o of the % space

are called associated if for a certain unit U of the equation-

%, - U¥, is true, If B is the reduced space of £ in B

for this eqguivalence relation volume of B exlists and if&?}ff?fﬁ?c% 1)

from zero, Also for a certain neighbourhood B of 47, & ’
Volume of B

in the 1imit when B tends to 4«7;‘92 is the same as [ (£,7) if &

1s a primitive representation and ( X %o ) is unimodular,
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The construction of the measure }’—(E, f) , its existence
and the interrelation with the reduced ‘é and ¢7 are
given by lemmas 11 and 12, Siegel [6] . These reduced % ana 7
are defined just as for definite forms, Refer back to the
equations (2) and (3). é’ is called reduced once its cléss
( *é ) is fixed. Of the possibilities for 2) (which cen be
measured by - l//«“' [é) ) one is chosen and to & fix S
in AU = L% + 4, 2.[)/17 is determined uniquely so that

-¢7 = FH o4 47,217
is a given representant ( ) of its left residue class modulo 7
Here 6] is reduced, If 9 and 47 are both reduced = is
also called reduced. To call fb actually reduced for indefinite
forms it must be chosen from a certain reduced space, There spaces
are dealt with in Chapter - III. The quantities 6(5),6(1}4) Ndi%>)
and [ (é) have their corresponding generalizations,

po(h) 0 feCR s felhad) = iy,

formula of Gauss and Eisenstein, with all this preparation, is
still not immediate for indefinite forms. The rest of the
explanation is to be found in Chapter - III, It is hére the two
methods of explanations are used, which we call the geometrical
and algebralic approaches. In the algebraic approach a restriction
1s placed on the degrees of the terms of X , ‘éo ) (’/', 470 .
and K,  along with &  and in the limit Vo 8(%)
pa(FF) L felbsF)  ant ' uilg)
appear automatically., But still it is not complete without a

further explanation.



Now all the hurdles have been crossed. The theory is
complete with a last reference to the thesis of Artin - { for
the time being), The constant f(«[) can be evgluated for a
binary forms and the identity is completely established for

binary forms.

f(‘D is proved to be a constant evtn for the more
general case, The proof is a bit involved, still it is

incorporated.



