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CHAPTER = I

PART - I

6. This chapter 15 devoted to a discussion of the reduction
theory of quadratic forms over the field of rational functions
in one variable over a finite field. A short account of the
indefinite forms is also given. Results analoé%s to the known
theorems of Siegel [§J are meéntioned. These analogues include
the Improvements, due to Siegel, of the Hasse -~ Witt theorems
the proofs of which are also sketched here in view of their

importance in the main theory. We begin with the following.

Definition:

A form Zc;';/ A‘.J' X‘:x} , Agd;e K is said to
represent zero nontrivially if it takes the value zero
for a set of values of (X, - - - = ,%M) all of

which are not zero simultaneously.



We start with the known theorem of Hasse and Witt with a

prcof due to Hasse modified in a suitable way.

Theoxem I Elasse - Wittj

a. Ir TL;(J is a quadratic form of nonzerc determinant
and with coefficients from K y K 5 it 1s a zeroc form if and only
it is an :{.-adic zero form for sall prime polynomigls JC and

at ‘17'

b, If 'EY LXJ is a quadratic form with nonzero determinant
and with coefficients from K (‘99 then it represents in ,é (%)
an element fle k(x) if and only if it representg _ gc. in k}
for all §  and at'[, ; that is, for values of X in k:f

ande{;here the X { .are the varigbles of the form T[_X] .
X - :

De tion:

A unit of a symmetric matrix ¥ is an inte‘gral matrix
i
with determinant an element in R, satisfying the equation U U: 7

The proof of Hasse-Witt theorem which is given here is
only a general exposition of a known result. It is & direct
analogue of the proof of Hasse given in the case of the rationsal
number field, The generalization of the Hasse symbol is also used
here, This symbol 1is also used to prove that the units of an
indefinite symmetric matrix are infinite in number, Very elementary
properties of the symbol are used in the proofs. A proof of this
_last statement can be found in Eichler L}gj Jhm I 1 plo3



'&Lﬂ is of the form AX +0Bxy + 7 ,
| Q*j\b\, _,(A)\rfél\> TA’C /, 7’4‘
If 7 L)\J is a zero form in f\j: for &1 § ana K(/@’
then [ - AC  1is the square of an element from K= Q(})}
i “ 5 Yy
Af[%j is a zero form in K(«" eand therefore / L/fi/"'

(2) m =3

There is no loss of generality if ‘U\Z}j is taken to
be of the diagonal and integral form A x7 tA, A5 LA
because a rational transformation gives the first and multiplica-
tion by an integer gives the latter, If J« be a prime polynonmlsgl
which divides the determinant of 0 |~ , it can be assumed,
without any loss of generality, that { divides one of AL 4,,,/15['5
(say A, ) and that (A,Ag,An)= 1. Ir A Ao 4 hn s

is zero modulo \P there exists a polynomial 7 such that

A]!“L —\—A} = o (:madf)

takes T |x | into a form f G such that the determinant of

G is equal to the determinaht of 7P [x] divided by § and G is
a zero form in K or %{;_ if and only if Qd\L?Q] is, G 1is
equivalent to a diagonal form G' in z‘? £ with the same
determinent as G, We can start with G' as the diagonal form and

repeat the process on U |A] till we get a form the determinent



of which is a unit; This represente zero nontrivially by a
theorem of Chevalley Lfﬂ . Therefore 13 L“j represents
zero nontrivially in K, LB.W.Jones. IIJ.;)J PP 66 -8

(3) m=4

I 7 [x] 1s of the diagonal form and the determinant
of T [x| 4s a square 1)~] can be taken to be of the form
A x5+ AX f ’%A&%é' + A;ﬁ‘f} with eny f dividing only
two of the coefficients, In case JC divides A1 and Ag the
Hasse symbol,

/ !
¢ Tlx] = ~hg Ai/f y Ao ~fhs oA Ay

/{5’%&3‘ - Li)(:’ can be taken to be of the form | Fowe 7 1s
of the form %,)'(;’"4- 2 8.3 Yo 53 )‘;- the
determinant of which is 43/76:; « A1l these transformation take
T|#] into G which has determinant equivalent to the

u det ;gg:.gant og‘b7

If C’oc C’ﬂ;%]— -/, the determinant is not a square
because ‘fﬂ)ﬂj is a zerc form in the fleld of j— ~adic numbers
and hence *ﬁ‘} implies @ A = o Then

Are +4 x5 NS
is AjAp and P x| goes into f F' where the determinant-of & is

Atag and X[ X) goes—into 4= B' where the determinant of F' is the

determinant of ¥ x|  divided by #> . Therefore, as in case

18 taken into j‘ G where the determinant of G

m=3 the determinant of the form i1s reduced successively till it is
a unit, Then 1t has a zerc for nontrivial vaglues of the variables,
If the determinant of {[\_«7‘3 is square free conddfer 3»0&/“2(;.
Because it is a zero form in K ) 1 L)ﬁj represents N2 ’
Noe k[ Z”\_f] is equivalent to NZxF o | o The
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Hasse symbol Cf@ =| for all { . Then H is a gzero form.
Therefore T |%] is a zero form in K, If C:FCWD(JJ = -)

for some f{ , H is integrally equivalent to “N*YA BV FBL Y«
and NLP‘L +H represents zero nontrivially in K.

Therefore ”15\[;7“3 is a zero form in K. This proves the

theorem completely.

7 We shall first prove the theorem, proved by Siegel ﬁ_@J

which is more general than the theorems of Hasse proved above.

‘ ¥
Theorem II' : 1If two quedratic forms with coefficients in K
are equivalent inevery K} and /<, / then they are equivalent
L &
in K.
The proof is almost the same as in Siegel ﬂ?} pp 439
m n .
Consider two quadratic forms F ¢ E AxC )G;i. BrYe
=t =
with rational coefficients Ag, Br fo which are equivalent
in{(ii“or all { and in K n The product of the determinants,

when n=1, is a square in all KJL and K, and therefore it is

[x
a square in K.

This proves the theorem in the case m=1 because the
ratio of the determinants is the square of a trivial unit; this
shows that the determinants arc elements in K and differ at the
most by the Square of a trivial unit. Let us assume the theorem
for m-1 instead of m, Consider now the quadratic form F. On
account of the eguivalence of F and G in all k,i and -K;/x/ we
see that F-G 1s a zero form in all these fields, and therefore in K. _
There exists an integral solution x= X Y Y
of F=Gwith X, fo . Otherwise F and G are zero forms in K

» Lemmas @508, ¢4  Siegdh [10] PP 675 -6T6
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and we can construet a solution )}E 3 >§3’ of F:G fo in X.
Hence in any case we can find two matrices { and b  with
unit determinant and leading columns ?&w and };“) « Fand G
are taken by the linear transformation of the matrices ‘{l'( and &
respectively into two quadratic forms Fy and Gi of the type
F.eAxE ) G, 4+ AY* o (Witt's theorem) Fp and Gy are
equivalent in all K; and K e * Therefore F, and G are
equivalent in K; and therefore Fy and Gy are equivalent in K.

Therefore F and G are equivalent in K.
De ion:

Let F and G be two quadratic forms with integrsl
coefficlents, We say that F represents G rationally without
essential denominator if there exists, for every polynomial‘

hy a linear trasnsformation

| - _
Xe= 3. hetYe § Auesketa, smmem ]

/{\é 2 are rational snd their denominat{om®s are prime to /» which
takes F into G. If also G represents F rationally without

essential denominator F and G are ssld to be in the same genus.

Theore I*:

( Siegel |101#57) If two quadratic forms with integral
FE2

coefficients are equivalent in all :f ~adic integers and then
they are also semiequivalent. -

&l’?&é L{cj Lemmas !S‘; [Q(l—l PP 67% ™ G e
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Lemma

Let T be the matrix of a quadratic form with coefficients
in K, Ky or K, e
symmetric matrix such that the determinant / M+ T [ 7! 0
then L= (B4 (25D 15 4 unit or ¥ in that
field and |E-L ) ¢ . Conversely if [O is a unit

such that [ E-L| f o a skew symmetric matrix (¢ exists
such that &£ = (A¢+Y) ™ (¢ - 'f)

. If {({ denotes any skew

Proof of the theorem:

(Biegel) For any prime polynomial f a matrix 30}
of R} exists such that ¥ | ¥);] =7 . There extsts
), € K such that Y L’x)o] : 7 by the theorem proved above,

A matriz 1(]5 exists in Q} such that f[‘@j =3;
is a diagonal matrix, Then W) ~' ¢ /?j_ . Put
If 2 7»0__;-‘ 70,?0}'{1-0}
and obtain K y @ diagonal matrix with diagonal elements 32 )
such that !i} - ‘&75 } 3o B‘:).rther 'B}[??JJ : )’; . Put
20 = w0, Ry 207 0, Ry LT [0] -7

because
(Siegel |97 )
Let h  be any polynomial and j—‘— a prime factor of h

CoAX -1 ) E-r
l:f -';.03 ), is awnit of T in R,‘ ) / lefo
therefore a skew symmetric matrix exists in R} such that

{'Ufﬂ-mf{ £ o



It F is any arbitrarily large positive integer, a

skew symmetric matrix, with integral elements '0‘(} exists in

R:f- such that the congruence bﬂ‘:‘ '()f} Cjﬂ) is satisfied
for all prime polynomials f vhich are factors of hy
all elements of 70; are j’. -adig integers, Hence for
sufficiently large the inequality |{H+7 1 Fo0, and the
rational matrix N)¥* ('fr( +%) - (nt-%) is f-adically
integral for all prime factors of h.

This means that the denominators of the elements of ;O*
are prime toh On the other hand '25-[?.0*} z “J‘L'DO‘, J=7
Hence 4 represents ‘3,1 rationally without essential
denominator, Similarly 7 represents ' s that is, U and 7
are in the same genus (Slegel [_10] )

If “5 and "} are in the same genus, they have the same
determinant differing at the most by the square of a unit,

Also the equations
1y  x'dx =7 (medf)

(i1) T FE =% Cmoalf)

are solvable in Q)L for all 7( prime or not. /7]/15)

is a unit at 211 § ond &t /[, and |#]]F) » a8 it is known,

is a square in K so that f‘-‘r’{{ﬁ'(/ %] is a square and a

unit et a1l § and at ‘[, . Therefore it is the square of a unit.

i



Definition:

Aform T[x] in Ry or K, 18 said to be
definite if it does not represent zero ncntrivially in K; I
Otherwise it is said to be indefinite,

4.  So far we defined definite and indefinite forms. For the
actual existence of the definite forms we havé, in the four
variables, forms of the type,

X rarl s Xy +ax,7(:
and other similar forms, The definite ternary forms are partial
forms of the definite quaternary forms. Consider A:"l‘*Aa—":"&x;""??%L
If it is a definite ternary form A ,X* +A.X 4 Aoy +AAA R
is a definite quaternary form, If T and 7% are the
symmetric matrices the number of solutions of the equation

%% % =3 is ginite 12 T|»] amma FLy] are definite,
and infinite otherwise,

For the definite case it is proved in the following

fashion.

Let :ﬁ be a polynomial of degree ~ or J.- e K;{L
of value F" with elements of 7 and. 7 in K;/K_ .

{ . VIR .
%'5‘% :J(‘ that is, iA"J’ K&XJ :f ) Acd GKVL
has a finite number of solutions which are integral.

To prove this fact 73 is represented as
Got - - — -+ Cwm }p“ and Aij as the corresponding
'o -adic number, Consider the equation 2 Aca,' X xat' =f
with these values for Bij and  § . It has a finite numbex



of real integral solutions which correspond to the integral

solutions of A‘-d'x,;)\d' =f{ that is, if X(;ﬁé’ are
taken as polynomlals in & LXJ -« Conversely for every integral
solution of the equation X'Z X -.—.JC in btx] there 1is an

\ )
integral solution in the corresponding F:nadic equation, The

argument can be extended for the more general + .

We next proceed to consider

PART - II
RgpucTioN THEORY
“‘M.
8. Given all the matrices, with a given determinant and

witqelements in K, L e ean introduce a certain egquivalence
relation between them and divide them into classes, Of all

these classes one is chosen in a certain manner depending on

the values of the elements of the matrices and it is called
reduced., Further if the set of symmetric matrices has its

elements in Ryx] , it can be proved that the reduced class contains
only a finite numbsr of these matrices, The proof of this

statement is not too simple, Also reduction theory is used

to prove that the units of an indefinite symmetric matriz are
finitely generated, As to how this is'done will be explained

in a subseguent article.

We start with the definition of equivalence.



Eguivalence:

A éuadratic form ‘TL%J = 3,'):,\" A;‘J Xi 7‘} is sald
to be equivalent to a form 7[vy] . %"1_‘_,5?' V¥ 1f the
transformation Kk: %_:’ l‘é( Y4 transforms WI_?J into 7[7’]
and if a similar transformation takes 7L\/] into T[xj where
A‘;f , B‘:j ¢k and "é{ ‘k(%) . Let Um dencte the group of
unimodular matrices from /z( x) of order m{integral matrices
with determinant a unit), Let 'f be the symmetric matrix of
order m with elements in K e and T[40 . For U e Um, U'TV

is said to be equivalent to T~ . It is an equivalence relation.

Equivalent forms take the same values if X, V<
take values in l(,/ . If U is such that Y'® U = ¥, U is
L

called a unit, Units form a group.

‘Half - Reduced Matrices:

As done by Siegel Ugj it can be proved that in each
class of § there exists a matrix ‘D’T , satisfying {’OTLNJV//"'&‘)
for every integral column W = (& -- == M‘\‘}n) with

g1 = == p#) = If 4, 18 an element attained by
75‘,[»4] for some W, Aé' §o for any R because ’5‘ is defnite.
The matrix?f is called half-reduced. Here we make use of the
definiteness of Jd o
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g, Rednced Matrices in KJ/,‘_ o

From Siegel's woric it is known that the matrix 8 is
equivalent to a matrix 3, such that [A'[¢ - —— <[ An']
where A/ 5 _———-— /S," are diagonal elements of T, .
This is required again at the end of the section in order to
give a description of the reduced space of symmetric matrices

of a ‘given order,

We shall find a matrizx O, = CA;&) equivalent to 7/\,
and satisfying the following properties:

(1) 9, 4is half-reduced

@ (A < V5]
(3) {Aul >/ [Atd) «JOCH

- m~1
(4) Ir ‘X,"‘ ‘Lﬂj is the form corr@sponding to 'ZfoL = with

m-
first row and colum of T, deleted then U,  [X] has the

same properties.

Construction of "6} H

(1) is fatisfied following Siegel fig] (2), (3)
and (4) will be proved by induction, The construction for
binary forms has been done by Artin L:%)*o Actually (4) is
a consequence of (1),(2) and (3); but here it is proved first.

tet 4= Ay o |4, / is the minimum that
T or T, cen take with respect to the valuation in Ve

for integral values Cc of the variables X., €z)1,2, -« ,n
é ‘blﬁl
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Form a unimodular matrix with C,) - — = JC& as
elements of the first column. This takes T[_XJ into a form
with leading coefficient [, . Further the transformation,

Ky YerCava e m— - 0y,

—
S— ——

——— —

om— -

R, = Coz Yar = == TGV

takes the latter into a form

!
G - 5.07 Acd' x‘ﬂ‘x}’ ,An’/“\“
€ 9 2

contains V. , -~ — -, Yéwhose values in terms of

»

Xu — - —J)idepend only on C‘l} , 7f,.,. E“d[ > o Hence G
is independent of Cia., - — - /Clk « These latter can be
determined without altering Gy . The terms containing Y; are

All\/:& 12 (Au Ga 1 f:/'l;dc‘:. ) I
- —— TL(AHCiQ t 2 ACJCJ/Q) yt Y.Q

1 { .
The CH: can be determined so that /A n/ 2 /Ac() } WEL
condition (2) is true for m=1 and the case m=2 has been done
by Artin LSJ . Assume (2) for n=m-1., If B is the leading
coefficient of G4
{ A N
I3 = | Aubhaz=-Ai2" | @)D
, m
vhere Dy 4 is the determinant of G ; determinant of /1,, & --ﬂ,, D

3

1

Determinant of G is also Au D, « Therefore A'l;n D = Acf-m:

Can G,ana‘_ .f, LXJ ) G oand B”LXJ
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(1]

R L TR

Lr [ D] I

[ M) = |%D)

When we take the valuation of the Mm™ root of D it is
the valuation which extends k ] /"‘ /t° K C‘{}‘ D)

(3) is also an essential property for definite forms if the

1)

7
u values are takenﬁreSpect to x .

Cénclusion:

¥ is the matrlx corresponding to G which we now
call ‘?f,‘_x] and satisfies -all the requirements.

‘fo 1s called a reduced matrix in the class of ¥ .
If now the Ae}'-s are assumed to be in »é[ a.j the number of
matrices that satisfy the above conditions and which have
a given determinant is finite. This proves that the elass
number of definite symmetric matrices is finite when they
have a given determinant, We shall next prove the same for

indefinite symmetric matrices,

Let ¢ = 'Yf&"y represent the zeroc matrix of order
nontrivially and let ¥* be maximal. Then there is a unimodular
matrix U such that

\)"‘[U - e o [
o F Q
PI al CI



It is explained as follows. Because 'lr represents
the zero matrix of order ¥ , there exists a column (hAus -~ -7 o
( l\n) -— —, ‘m;)' which is primitive and is a nontrivial
zero of the quadratic form corresponding to f « We have an
integral m by ¥ matrix with the maximum number of columns
with the properties (1) the greatest common diviser of the
¥ -rowed minors is a unit and (2) it takes ol into a zero
matrix '0' of order + . Call this matrix H. H can be completed
to a unimodular matrix by H,

(HH) = U
UI-{U =

oV P,
P' F

Py isan v bym- ¥ muatrix.‘_ cause [ﬂr{o the v rows

_ of Py are linearly iﬁdependent, e 7 »Y ;By the elemeﬁtary

divisor theorem we cen find miim_%ﬁdular matr;i.cés U1 and Ug

such that Uy P Ug is a ( P diagonal ) matrix ( O, P ) such

that

U;i o 0 Pi U:I 0
(a6 M)

-
-

o U;_'L.Uz_

P

= (&) o . ?
© F
p! a' &

[F]IP) %



J: does not represent zerc nontriviglly for if it does by
a further reduction of this type it can be shown that T
represents a zerc matrix of order greater than ¥ nontrivially

which is a contradiction tc the maximality of v .

The matrix
E ¢ ] \
6 V 2
Y [ E
transforms 7{;_ with a suitable choice of U into one among
a finite set depending only on |7 | because Ji P can be
chosen as those among a finite set depending on [¥ /
n-ar) - . ¢ ‘
Let A:-A D e AY with

--elements in R L")

Put
Ug = E A B
0 £ e
° ¢« kK
b 7, U, - . o
o £ A'Pig

P! PA+ ! G+R'PAPR



Because this is just an addition of multiples of rows

of (OO0OP) tce (0, F, Q ) and (P, Q, G ) and because

we are in z’ij elements of A and B can be chosen so that

the elements of T, are less in value than those of the diagonal

elements of P and therefore determinant of T .

Because there exist only a finite number of elements
witha given value there exist only a finite number of such
matriees with A and B as req;uirede Therefore the c¢lass number
of matrices, definite or indefinite, with a given determinant

10.

In the construction of the half.reduced matrices
on page 3/ we managed to choose A.. y — - —- )A'rm,
the diagonal elements such that [A"] < — = - - & Mnh}

The condition (3) of the reduced matrices is obtained by
choosing Cii so that ,’M:I > /A‘; [ p) &’ >} on

page 3| o Also the choice of L‘L' is possible in such a way -
th?at [A,;_[ is the smallest value with respect to //,(_

After the required C;g are chosen, that is C,,_ 666ccncamna,
(G cmccmcaee Cj.x o o 5 2 o Cm,_-m-m-a-mom We can choose C;s,czs
S— CP wcmmomrma Cpns = 50 that [Ala | is smallest with
respect to */,,L . The process cam be repeated by deleting the
first row and colum of 3, =(A¢ j) 3 also the cardinality

of the set of matrices with elements in K I and each of a given
value, is that of the continuum. Of these matrices, those that
are equivalent to each other are at most countable because the

unimodular matrices ( in ,l’{[xj ) are countable, Sco if we



choose one matrix to represent a certain equivalent class,

the set, of inequivalent matrices the elements of which have a given
value, has the cardinality of the continuum, Choose the inequiva=
lent classes to be represented each ég a reduced matrix constructed
as above; the set, so constructed; given the order of the symmetric
matrix and for different values of the elements from kivq_for
different values of the determinant, is called 22 . 32 is
also used to denote the subspace of ﬁ<‘ when the
matrices in %& are represented as poinots of the space kf Q&m_l)
is compact because k:, is itself compact.

The space iﬂl for the reduced indefinite symmetric
matrices arises out of matrices of the type

5 0 P
(5 4
N\ P’ ! &

where .F 1s a definite symmetric matrix of order m=2v
and T is the order of the maximal (' natrix vhich ¥
represents,

[Flpir = |7
Given '5‘) [l FIl « \¥l| + Also the elements of Fcan be
chosen to have the 'smallest' possible values in the sense
described for definite Symmetric matrices, Now the elements
of P namely f:; — — — - ,pr ell dlagonal, can be chosen to
have the smallest possible values. That is p, is chosen first as the
smallest possible, This is possible becesuse of the restrictions
on the determinant of 7~ and the nature of [ once 3 1is given.
After choosing P,‘J p.  can be chosen as the smallest possible

and so on, These are effected by means of elementary transformations.

Now Q and G can be chosen in the same fashion to have elements of
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given values less than the values of }>, ; =~ —— 5 br .
The space ﬁ can be constructed in the same way as for
definite symmetric matrices given the order of the elements
in ® . The space X in K'/g%gj_), likewise constructed

K
is compact.

This space plays in important role in the proof of the
statement that the units of an indefinite symmetric matrix are

finitely genersted,

11, Finally we prove the following statement concerning

the units of indefinite forms,

The units of indefinite forms are infinite in ﬁumber.
This has been proved by Artin for binary forms. Consider a .
o Wiich 1s indefinite Call it |
A.%;‘" + Azxf t Aaxsk » Ie A ;AJ' is a square for

C,a =1,2,3 every binary partial form of the above termary

ternary form, in K

form is indefinite and the units are infinite in number, This
is true even if - A; Aé' is a non=~square for tJ} =1.2,3%

For conslder e Z
A;lez ’fA,_Atxa. ¥ A ,Aax:g. - F

and the binary form

A, A, xZF 4 hsh x4 = G

C'/t (F) iy C’/z(%)
which shows there must be a binary partial form which is
indefinite and the units are infinite in number. This can be
extended by induction to all indefinite forms not necessarily
diagonal. A proof of this statement is found in Eichler[* °] o 11

. plos.
N.B.Throught we exclude forms of the type /A%,



2. Given the value of the determinant, in the set of
symmetric matrices in ﬁa s with this value for the determingnt
there are at least two equivalent classes; because the value
of the determinant remain s unaltered if it is multiplied by
a symmetric matrix, the)détérminant of which is a unit, a
nonsquare, The resulting zﬁa‘grix belongs to a different equivalent
class. This fact is used in the construction of the fundamental
space for the discontinuous ‘group of mappings R—U 'RU
where U is the unit of a symmetric matrix 7?, ReR and the
mapping is into a subspace of the space of symmetric matrices
with a . given determinant eqﬁal to that of"XM in value with
respect to Vz, « This is done elaborately in Chapter III,

N.B, : 'p=adic' is not the usual p-adic representation.

The induction part of the proof as in paragraphs
82, Chapitl, goes through for function fields with a suttable
interpretations of the differentials and the valumes, But more
is possible by the algebraic methods.

Results in Part I of Chagpter III use reduction theory
and these are more important than-all the previous results for

the rest of the developments in Chspter -III.



