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CHAPTER - I 

PART - I

6, This chapter is devoted to a discussion of the reduction 
theory of quadratic forms over the field" of rational functions 
in one variable over a finite field* A short account of the 
Indefinite forms is also given. Results analogue to the knownA

theorems of ^iegei are mentioned. These analogues include

the improvements, due to Siegel, of the Basse - Witt theorems 
the proofs of which are also sketched here in view of their 
importance in the main theory. We begin with the following.

Definition?
A form At.**/*; , K is said to

c jVzt 4 <r J <>represent zero 9 nontrlvially if it takes the value zero 
for a set of values of (ji / j - - - ~ }

whieh are not zero simultaneously.
all of
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We start with the known theorem of Basse and Witt with a ' 

proof due to Hasse modified in a suitable way.

Theorem I : Jjiasse - Witt'J

a. If T jjxj is a quadratic form of nonzero determinant

and with coefficients from is a zero I“°rm if and only

it is an X -adic zero form for all prime polynomials i and 

at i|x

b. If if J_*J Is a quadratic form with nonzero determinant

and with coefficients from ^ then it represents in

an element j * if and only if it represents J-1 in

for all ^ and at ; that is, for values of in k.^

and Inhere the are the variables of the form T [xj ./*•

Definitions

A unit of a symmetric matrix IT is an Integral matrix 

with determinant an element in k. , satisfying the equation U ^tTs T

The proof of Hasse-Witt theorem which is given here is 

only a general exposition of a known result. It is a direct 

analogue of the proof of Hasse given in the case of the rational 

number field. The generalization of the Hasse symbol is also used 

here. This symbol is also used to prove that the units of an 

indefinite symmetric matrix are infinite in number. Very elementary 

properties of the symbol are used in the proofs. A proof of this
Jkrn l4 • Ilast statement can be found in Eichler 12.0j b 103
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Pjpof..pg.fiagse.

(1) m = 2

J&tkJheojEgja;

ifj/ is of the form A * 6/ y t c y
/VC- 8*

If

then

j y
and AC h

A fW i(AAt^r r-si u -•- C.A ~ -j-
[aj is a zero form in for all J- «uu ^ / >

- Ac is the square of an element from K= £(*.)
At /1 ^f^'\ is a zero form in r<C*~} md therefore Z---C

5 a i •

L- (_/

(2) m = 3

There is no loss of generality if t j a j is taken to 

he of the diagonal and integral form rAa/v-

because a rational transformation gives the first and multiplica­
tion by an integer gives the latter. If j- be a prime polynomial 

which divides the determinant of S~ [_aJ , it can be assumed, 

without any loss of generality, that ^ divides one of A u^A3 

(say f\ ^ ) and that (At ,A2»A3)58 1® If A ^

is zero modulo f there exists a polynomial 'r such that

A,^ + A> ^ $ crvWf 'j

the transformation

takes ttl-J

y- a

<£?

into a form f &
j such that the determinant of

6 is equal to the determinant of f]T £Wj divided by ^ and G is 
a zero form in K or r<^ if and only if ^ IsJ is. G is

equivalent to a diagonal form G* in with the same

determinant as G, We can start with G* as the diagonal form and
repeat the process on iT!till we get a form the determinant

**■*
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of which is a unit* This represents zero nontrivially by a 
theorem of Chevalley [_8] . Therefore represents

B.W.Jones. [ixjJ f»j> ^ ~73zero nontrivially in K, 

(8) m 4

If Tp"j\*J is of the diagonal form and the determinant 

of is a square Tcan be taken to be of the form

A,^ ■+ -i■+ With any dividing only

two of the coefficients. In case divides A-j and A2 the

Basse symbol, f /

a*] -- h ^
can be taken to be of the form j- f~ wtee F* is 

of the form B>, y&~ '■+ 2 the
determinant of which is 4jMf • All these transformation take 

T [_?£J into G which has determinant equivalent to the 

determinant off/£ a-

If Cg * the determinant is not a square
because lTis a zero form in the field of j~ -adic numbers 

and hence ^ I implies ~ I . Then
AjXp'-fA *> 3^ is taken into J1 G where the determinant of G 

is A-jA2 and TH/J goes into ^ F* whe-re -fee determinant of G is

AiAg and—i-n-to—^--g* where the determinant of P* is the

determinant of T[yJ divided by Jp2- . Therefore, as in case 

m=3 the determinant of the form is reduced successively till it is- 

a unit. Then it has a zero for nontrivial values of the variables. 
If the determinant of is square free consMfer /Xy1 -

Because it is a zero form in j ~f~ £Xj represents N2 ,
-e \jCy > f >J is equivalent to N^2't H- • The
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Basse symbol C^(A) -I for all * Then H Is a zero form. 

Therefore is a zero form in K* If ^
for some , H is integrally equivalent to £
and f H represents zero nontrivially in K.
Therefore "T[>^ is a z8r0 form in K* This Proves tiie 

theorem completely.

7. We shall first prove the theorem, proved by Siegel |@J 

which is more general than the theorems of Hasse proved above.

t If two quadratic forms 
are equivalent in every kf and k

i
in K.

with coefficients in K
then they are equivalent Ik,

The proof is almost the same as in Siegel [tej pp

Consider two quadratic forms F r £ ^£*4, : 1
kz,t k-i

with rational coefficients AteJ Sfc fo which are equivalent

inJ(for all f and in k 1^ • The product of the determinants,
when n=1, is a square in all kj. and kt^ and therefore it is

a square in K.

This proves the theorem in the case m~1 because the 

ratio of the determinants is the square of a trivial unit} this 

shows that the determinants are elements in K and differ at the 
most by the square of a trivial unit. Let us assume the theorem 
for m~1 instead of m. Consider now the quadratic form F. On 

account of the equivalence of F and G in all and w®
see that F»G is a zero form in all these fields, and therefore in K.
There exists an integral solution *u j Y-f1'

of F ~ G with X, f 0 • Otherwise F and G are zero forms in K
* LtmtnaZ ZU^JL [loj ft 673“ -£7ff
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and we can construct a solution j of p z (k £o in K.
Hence in any case we can find two matrices (ft and b with 

unit determinant and leading columns and . F and G

are taken by the linear transformation of the matrices and

respectively into two quadratic forms F^ and Gi of the type 

f^xf j G. 2 t A Yi3" • (Witt’s theorem) F2 and G2 are 

equivalent in all Kj and K . Therefore Fg and G2 are 
equivalent in K} and therefore F-j and Gj are equivalent in K. 

Therefore F and G are equivalent in K.

Definition:

Let F and G be two quadratic forms with integral 

coefficients* Ws say that F represents G rationally without 

essential denominator if there exists, for every polynomial 

h, a linear transformation

** ■- \Z I 4= ---J
are rational and their denominations are prime to b which 

takes F into G. If also G represents F rationally without 

essential denominator F and G are said to be in the same genus.

Theorem ill*:

( Siegel If two quadratic forms with integral

coefficients are equivalent in all jl -adic integers and^then

they are also semiequivalent.

\j^ L e.rr\h\&S ts} u ,11 pp 67^' <0 8©
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Msia

Let T be the matrix of a quadratic form with coefficients 

in K f Kj or ^ ^eilobes any skew

symmetric matrix such that the determinant J'Oi.-t “fj -jo 

then £= (M** 1) is a unit of it in that

field and j £ ~ C \ f d . Conversely if It is a unit

such that j £ - £ J j- o a skew symmetric matrix &£ exists

such that £T ~ (jjftL^-~ J

groof of the, theorem:

(Siegel) For any prime polynomial § a matrix X)^ 
of R.^ exists such that = 7 • There exists

10o e ^ Such tbat "t fae] 7 by the theorem proved above,

A matrix 1/)^ exists in R.^ such that <2f l?Qj> J -7^ 

is a diagonal matrix. Then

I
Put

/ s ^09toi xOj.
and obtain ^ j a diagonal matrix with diagonal elements ± ) 
such that '1^ - If0 * Farther [%J ] ~ y * Put

VJ* - ^ nR{ ^OJ' Wj. *R{ •?
because
(Siegel J^9 )

be any polynomial and 
is a unit of rt

Let
I

therefore a skew symmetric matrix exists in

| 4Kj 4*tf J j* o

f- a prime factor of h

in R
R:

> /£-^u

such that
o
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If is any arbitrarily large positive integer, a

skew symmetric matrix, with integral elements exists in
such that the congruence (it 2 (j P) Is satisfied

for all prime polynomials | which are factors of h. 

all elements of Xjj, are
sufficiently large p the inequality [•H. + 'Tj ^ o } and the 

rational matrix 1/^ * - is /-adieally

integral for all prime factors of h.

This means that the denominators of the elements of XQ 
are prim© to h 1 On the other hand - ^[pQoJ ~ ?

Hence represents ^ rationally without essential
denominator. Similarly 3 represents ^ , that is, ^and 7

are in the same genus (Siegel [loj )

It and 'I- are in the same genus, they have the same 

determinant differing at the most by the square of a unit.

Also the equations

(i) *

(ii) Ii ^ & £ rr\oek$ )

are solvable in R, for all £ prime or not. 1^1 Ijf)

is a -unit at all f and fct ^ and /^|J^j * as it is known,

is a square in K so that N((#i ^ ^jz is a square and a 

unit at all | and at '/^ . Therefore it is the square of a unit.

J- -adig integers. Hence for



A form 1f [jCj in kpj or Ki^ is said to be 
definite if it does not represent zero nontrivially in ^,/9u 

Otherwise it is said to be indefinite.

4. So far we defined definite and indefinite forms. For the 

actual existence of the definite forms we have, in the four 

variables, forms of the type,
Xf + «. + x ^ + ft

and other similar forms. The definite ternary forms are partial 
forms of the definite quaternary forms. Consider A«*/
If it is a definite ternary form A,*^ + A**sN As**" -fAiA^A3> 

is a definite quaternary form. If and are the
symmetric matrices the number of solutions of the equation 
Tt'f l is finite if T|*J and T-LyJ are definite, 

and infinite otherwise.

For the definite case it is proved in the following 

fashion.

Let £ be a polynomial of degree ■u or J»e

of value jb^ with elements of T and ^ in *

that is, T Ac^ ***/--/ '

has a finite number of solutions which are integral.

To prove this fact £ is represented as 

^ ^ and j^ij as the corresponding
-adic number. Consider the equation 2 4 <y'X 4 ~f 

with these values for J|i;} and J • It has a finite number
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of real integral solutions which correspond to the integral 

solutions of X. -/ that is, if are
taken as polynomials in klKj • Conversely for every integral 

solution of the equation zf x •sj? in h I'kJ there is an 
integral solution in the corresponding Sj=> -adic equation. The 

argument can he extended for the more general ~4~

We next proceed to consider

PART - II
RgDhCTfON T~ H B o

8. Given all the matrices, with a given determinant and 

witi^eiements in t we can introduce a certain equivalence
/ ^

relation between them and divide them into classes. Of all

these classes one is chosen in a certain manner depending on 

the values of the elements of the matrices and it is called 

reduced. Further if the set of symmetric matrices has its 
elements in ki*-] s it: cm proved that the reduced class contains 

only a finite number of these matrices. The proof of this 

statement is not too simple. Also reduction theory is used 

to prove that the units of an indefinite symmetric matrix are 

finitely generated. As to how this is done will be explained 

in a subsequent article.

We start with the definition of equivalence.
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Equivalence:

A quadratic form - £ . Aij ^ t ^ J, is said

to be equivalent to a form V'1 % the
transformation X^ r •C transforms T 1*3 into

and if a similar transformation takes ?bJ into f [xj where
Aii' j Scj and eke*) . Let Um denote the group of

o « ,unimodular matrices from *(*) °f order m(integral matrices
with determinant a unit). Let tT he the symmetric matrix of 

order m with elements in K u and O'I fo • For U e Um, C/f^U
Iis said to he equivalent to t" • It is an equivalence relation.

Equivalent forms take the same values if X ^y t 
take values in K /, , If U is such that ^ t U *■ Tf, tJ is

called a unit. Units form a group.

Half - Reduced Matrices:

As done by Siegel [lg[J it can he proved that in each

class of ~T there exists a matrix *zfj , satisfying (T,L^J J7f/^k J

for every integral column ^ ~ ~ / J with
"---- )**’'»■) : I' If ^ is an element attained hy

for some # j j 6 for any h because Tfj is definite.

The matrix^ is called half-reduced. Here we make use of the 
J

definiteness of tT „
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9- Reduced.Matrices in K .

From Siegel's work it is known that the matrix is
equivalent to a matrix lf| , such that {^*'16 ----- - -M*!

where A,1 j ---- -- ; aJ are diagonal elements of .

This is required again at the end of the section in order to 

give a description of the reduced space of symmetric matrices 

of a given order.

We shall find a matrix 0 - (J\c^ equivalent to 

and satisfying the following properties:

(1) *fc is half-reduced

0» |A„l .4 |tyo|
(3) | A,I | >/ /Ay’l -jiP1

(4) If U the fora corresponding^ vlth
first row and column of deleted then ^ has th®

same properties.

Construction of :

(1) is fat is f led following Siegel ^§J (2), (3)

and (4) will he proved by induction. The construction for
% it

binary forms has been done by Artin [3J • Actually (4) is 
a consequence of (1),(2) and (3)j but here it is proved first.

Let A,\ s 4ii j l&„l is the minimum that

TT" or can take with respect to the valuation in V*.

for integral values C ( of the variables -t 8 --
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tForm a unimodular matrix with u i j - --------- as
elements of the first columns This takes T [xj into a form 

with leading coefficient An * Further the transformation,

7,* C^Y> --------- +c 14 %

- ^*92 Ya. •* H

ry\ Acj *<: Xj , ii. * di»
- r

takes the latter into a form
. I

(x - S

contains 3 *

* (j

is independent of Qa.,-------- jC,L • These latter can be

- , ^whose values in terms of

depend only on £<y j /'v ? / . Hence G

1 ** > * j £/<k
aredetermined without altering G-j . The terms containing yf

A#y.* ■>* 1 fT,^c/x) y-y*

•*--------------- y,y*

The Ck can be determined so that /Ah/ *5- j&ij j jJ>I 

condition (2) is true for m-1 and the case m~2 has been done 

by Art in |sj . Assume <2) for n^-l. If B is the leading 

coefficient of G-j

|&| s | AhA^ - A,2. J 1 *
where D9 , is the determinant of G 9 determinant of /iu&.ei„D 
Determinant of G is also A11 A • Therefore A 2> - Atf\bt

Cji A lxJ j &
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From *

f Aiij i ITH1'"'

, A„|When w© take the valuation of the hfi root of D it is
the valuation which extends K,/au K

(3) is also an essential property for definite forms if the
u'dk

n values are taken respect to X .

Conclusion;

1 is the matrix corresponding to G which w© now- 

call V* \j*3 and satisfies all the requirements.

tT6 is called a reduced matrix in the class of T . 
i

If now the hcjS are assumed to be in

matrices that satisfy the above conditions and which have 

a fiven determinant is finite. This proves that the class 

number of definite symmetric matrices is finite when they 

have a given determinant. We shall next prove the same for 

indefinite symmetric matrices.

k*-l
the number of

Let it i represent the zero matrix of order

nontrivially and let t be maximal* Then there is a unimodular 
matrix U such that
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It is explained as follows. Because •T represents 

the zero matrix of order r , there exists a column
( ^i« j----- *—- j ) which is primitive and is a nontrivial
zero of the quadratic form corresponding to ^ . Me have an 

integral m by Y* matrix with the maximum number of columns

with the properties (1) the greatest common diviser of the 
-rowed minors is a unit and (2) it takes lT into a zero 

matrix ’0f of order + . Call this matrix H. H can be completed 
to a unimodular matrix by H„

u
u'-f u 0^ P,

the rows

•By the elementary

P,'
P-I is an Y by m- Y matrix. fiSeaus© 

of P-j are linearly independent, Y

divisor theorem we can find unimodular matrices Ui and Ug 

such that U<| P Ug is a ( P diagonal ) matrix ( 0, P ) such 
that

l

P
u.'x.Ui

0

F

a 1

IflirJ't•

2
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JZ does not represent aero nontrivially for if it does by 
a further reduction of this type it can be shorn that Tf" 

represents a aero matrix of order greater than f nontrivially 

which is a contradiction to the maximality of v* .

The matrix
£ e

s Vo j 
a o £ J

transforms with a suitable choice of U into one among

a finite set depending only on j 7f j because pi P can be 
chosen as those among a finite set depending on / if j

Let A r ^ /- 8 -
elements in At*-)

with

Put

u3

3
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Because this is just an addition of multiples of rows
of ( 0 0 P ) to ( 0, F, Q) and (P, Q, G ) and because

we are in elements of A and B can be chosen so that

the elements of are less in value than those of the diagonal
elements of P and therefore determinant of ^ .

Because there exist only a finite number of elements 
witha given value there exist only a finite number of such 

matrices with A and B as required, Therefore the class number 
of matrices, definite or indefinite, with a given determinant 
is finite.

10, The Reduced Matrices,

In the construction of the half-reduced matrices
on page si we managed to choose An 3 — —----

the diagonal elements such that /A(|j - ----- — — t !$nh J
in,

The condition (3) of the reduced matrices is obtained by 
choosing so that /A(i | >/ /Ay I j jT > * on

page 31 , Also the choice of Cft is possible in such a way

that [Ail j is the smallest value with respect to !j^
After the required Cjt' are chosen, that is C12_ €$€——<—-

c.■22. We can choose Ct3 j
———~ Cji ————- ~ so that l A ,z | is smallest with
respect to ^ . The process can be repeated by deleting the

first row and column of ; also the cardinality
of the set of matrices with elements in Ki, and each of a givenK
value, is that of the continuum. Of these matrices, those that 
are equivalent to each other are at most countable because the 
unimodular matrices (in AfxJ ) are countable. So if we
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choose one matrix to represent a certain equivalent class,

the set, of inequivalent matrices the elements of which have a given

value, has the cardinality of the continuum. Choose the inequiva-
lent classes to be represented each h a reduced matrix constructed

as abovej the set, so constructed, given the order of the symmetric
matrix and for different values of the elements from K i, for

/'*-
different values of the determinant, is called . 8^ is

also used to denote the subspace of is *aCm+1) when the 
_ 2

matrices in ^ are represented as poinsts of the space Ms+1)
1/ '/^ 2 

is compact because is itself compact.

The space $2, for the reduced indefinite symmetric 

matrices arises out of matrices of the type

P 4
&

where ^ is a definite symmetric matrix of order m-2r
and t is the order of the maximal 

represents,

0 matrix which tT

ifi fpr = i^l
Given 1f j || Pl( £ ft T|( * Also the elements of jprcan be

chosen to have the 'smallest1 possible values in the sense 

described for definite symmetric matrices. N0w the elements 
of P namely f^i j — — - - j all diagonal, can be chosen to 

have the smallest possible values. That is j=> t is chosen first as the 

smallest possible. This is possible because of the restrictions 
on the determinant of lt~ and the nature of JP once is given. 

After choosing |b, can be chosen as the smallest possible

and so on, These are effected by means of elementary transformations. 

Now Q and G can be chosen in the same fashion to have elements of
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given values less than the values of t j — ~ » h* *

The space can be constructed in the same way as for

definite symmetric matrices given the order of the elements

in • The space in P, m(m-»1) likewise constructed2
is compact.

This space plays in important role in the proof of the 

statement that the units of an indefinite symmetric matrix are 

finitely generated.

11. Finally we prove the following statement concerning 

the units of indefinite forms.

The units of indefinite forms are infinite in number. 

This has been proved by Artin for binary forms. Consider a 

ternary form, in which is indefinite Gall it
+ Aj.x/' i As*/* . If -AjAj is a square for

=1,2,3 every binary partial form of the above ternary 

form is indefinite and the units are infinite in number. This 
is true even if-4c A^‘ is a non-square for 

For consider ^ * A,/^ - F

and the binary form

/M, Xf -t 4*4, Xf » &

which shows there must be a binary partial form which is

indefinite and the units are infinite in number. This can be

extended by induction to all indefinite forms not necessarily
diagonal. A proof of this statement is found in Eichler *] ^ I

f> is,
W.B.Throught we exclude forms of the type A,*,*.
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2. Given the value of the determinant, in the set of 

symmetric matrices in , with this value for the determinant 

there are at least two equivalent classesj because the value 

of the determinant remain s unaltered if it is multiplied by 

a symmetric matrix* the determinant of which is a unit, a 

nonsquare# The resulting matrix belongs to a different equivalent 

class. This fact is used in the construction of the fundamental 
space for the discontinuous group of mappings R. OfRU 
where U is the unit of a symmetric matrix ■f, and the

mapping is into a subspace of the space of symmetric matrices 
with a given determinant equal to that of lF in value with 

respect to # This is done elaborately in Chapter III.

N.B. : ‘p-adic* is not the usual p-adic representation.

The induction part of the proof as in paragraphs 
&2j cAaybTTi, goes through for function fields with a suitable 

interpretations of the differentials and the volumes. But more 

is possible by the algebraic methods.

Results in Part I of Chapter III use reduction theory 

and these are more important than all the previous results for 

the rest of the developments in Chapter -III.


