CHAPTER =~ II

The proof of the main theorem for definite forms :

12, The main theorem of Siegel for definite or indefinite
forms consists of two parts one of which is the arithmetical
part. The arithmetical part is a generalization of Gauss's
theorem on the representation of a positive integer as a sum
of three sequares. Eisenstein generalized it to the number of
representations of a positive integer't'by means of a certain
quadratic form '?f when t and 5 are taken from the rational
number field and when they are mutually coprime, These formulae
were generalized by Siegel for an arbitrary symmetric matrix 7
representable by the symmetric matrix'fi In this Chapter
Siegel's results for definite forms are mentioned. The results
for the indefinite forms are given in detail in the next Chapter.

Here we have a short account of the



- s 41
Methods of Biegel:

The different steps in the proofs as Siegel gave them are
(1) The convergence of the prodﬁct fﬁ* Ky (.{J #) taken
over all the prime polynomials f, such that the product of the
sequence at any stage is divisible by almost gll polynomials of

lower degree,

(2 The Generalization of the formula of Gauss and BEilsenstein
and

() The induction part of the proof of the main theorem which
is our identity. (1% is proved on the sanme lines as Siegel using
the Gaussian sums for function fields defined by Carlitz;an
account of (29 shall‘be given and the different steps in deriving
the formulae\Hasse - Witt theorems and the theorems on the genera
are used in deriving this formula. Particular cases of the
formulae, as already mentioned, were derived by Gauss and

Bisenstein for the rational number field.

In proving (1°) and (2°) for function fields the
discreteness of the valuation is made use of. Especially wherever
coprectedness or arcwise connectedness is used in Siegel's proofs
one has to make use of the discreteness of the valuation to get
the results for function fields. This is noliced at a first
instance in Lemma 9% Later on when the analytical part of the
proof has to be given agaln these methods are required, It is
desirable, therefore, to summarize here the different steps of
the analybtical part of the prooflas it is understood and
interpreted to facilitate this work. Part of it is already found
in the introduction.

g Chio Theoh
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Chapter II can be taken, as far as these results are
concerned, to be a particular case of Chapter III. So we proced

to establish the identity and our

13. THEOREM
A%
Ao (%)

where the product on the right hand side runs over all the

P L) emn ™, o (A

polynomials Jﬂ such that the product at every state is divisible
by almost all pélynomials of lower degree,

Lemmas from Siegel which can be directly generalized
are Lepmas 1 to 7 Siegel LEJ and  Lemm i page 535 (5]

Given an integral representation of ¥ by % , say I
it is possible to find a general parameter solution, This is given
by the following lemma which needs minor modifications from
Siegel [5]  pp 53¢

Lemmg 1 ¢ If Cal$1§ =% be a representation in
F() ’K)a or K,l then eny other representation Llyro~+

' ) ! ot .
in K, K, or K;/“_ for which (Lo T L - %) exists
and ¥t is given, ( with the help of an alternating matrix
0L = Y from K, kj_ or K’/x respectively and a

My
matrix B: 6L ) from the same field ) in the form,
L=k, 128 (0e-d'sd)y gL, i
g (5) fage 536 Steged I5]

If conversely 0 1s an alternating matrix from
K, Kj" K; and Z' an arbitrary matrix from the same field for
which( € - ’6"25‘2) exists thea & is a solution of & ‘62 -9



This lemma is used to give the dimension of the manifecld
defined by the equation Z'¥ & =7 . The proof of the lemnma
is given here in détail; It is the same as that given by Siegel
except that we do not have the connectedness here to be made use
of; on the other hand it is made clear that all thatdis needed
is only the continuity, in the metric defined by the valuation

in ! of
% N
/ x = )\5 - B’j X‘ '
LoR'ER
as a function of X, where B is a column matrix ; X is a row

matrix and LN is a symmetric matrix of order greater than one,

Lemma 2 : Let ¥ and 7 both lie on K Kf “’K’/'x_ '
For A <m the equation X't -9 (4) @efines an
irreducible manifold of dimen?:ion mn nz_a_gg,ﬂl = ¥V, For n=nm
by the adjunction of Uﬂ/;-ﬁj to the corresponding fieid, is
obtained, on which there exist exactly two different algebraic
manifolds of demension Y on one of whica /%[ :f and on
the other |%|= - f  if -] 1is a quedratic residue modulo p
these two manifolds can be identified.

Proof: For m =n =1 the assertion is trivial. Let m > 1.
If the eguation X' % =7  has no solution in K or K,/’L
we adjoinf . Over the extended field we get two algebraic
manifolds of dimension = . Assume n =1 so that X is a

row matrix X and if X = X, 1s a solution any other solution

is given by
A

"

o -2B'FX, 4o
BB
where B! is also a row matrix.
If B is replaced by A B by the homogeneity of the

.equation we have the same relations. That is, instead of all



elements in the colomn B, m-1 ratios of the different elements

of X fix X uniquely in terms of 7\,/ . If Zal s 2,{7

when the valuation in ll a“ is chosen as a metric we have

sufficlently many solutions of the equation (4) for a continuous

passage from £, & %, , to be possible by means of the eguation
X2 X -B'¥xs B

R'E B
Ir XeTX,27F choose X, a row matrix such that
%, B %, 59, x,"fx,f? S0 that we can determine %, and
then X, in terms of X, . This gives once again a continuous
passage from X, b X, as described above, Assume that

has the i‘orm(?: D . If X =C?7Q then the
° :

equation %‘fl =1 can be decomposed@ into three equations
:9“]’13 -:'1," ?9"5‘)(,‘:0) %8 x -1 . by induction
assumption 32‘6‘19_ =,  defines an slgebraic manifold of
g(nén-_g(n-?) dimensions and the general solution can be

expressed in the neighbourhood of .9,, as a rational function
of \>‘. parameters . Because >g}'$y = %, ”9 is of rank
n-1. The general solution ?é}"b” X =0 gives X = é‘r
where é:é(m,m»n-%‘!)ofrank m=-n+1and 7 is an

arbitrary columm of m - n + 1 elements. If K., 1s such that

(R=) ’-(5) y T =RER then J, can be written

ao C#; ‘-f,_)

2 ¥ -}
If 32*=7’ then 99'%’";‘ =(F 1) Y and é:% (‘7:"71}

/&»; (DQ~’ (‘7;' EP! is a cholce of § + Then
7-9' Tx {9 ) Y
Ro - (7w

¢ E(’b-n'!_')/,



(2]
.
)
*e

where )9 ZJ is nonsingular and has an inverse; and because
' e
= ) o
DT (94) (
A
e

the matrix /a!'f é = "-74 " is of nonzero determinant.

The equation 7' 7¢, T =% goes into the equation

’X{A t by means of X = é"r ( 5 is in X WK(/ as
required) then X"b’x =1 is an irreducible manifold of V,1Mm-n
dimensions, This finishes the induction., In case m=n by
successively redueing the equation in the last stage two

irreducible manifolds are obtained corresponding to the sign of ¢

! :
For the solution of the equation X ¥ % =% the
calculation of the j-aadic. éensities is carried out next using

Gaussian sums for the rational function field introduced by

Carlitz L1 7.

The JJ? -adlc densities play an important role in the

theory as it is already known to the reader.

The number of solutions X of R'F% = F (med f )
is A} “f?) and it is denoted by AJ ('zf 9, L)
if ¥ has the greatest divisor b A} (3.7, €) = Bj (f_})
1s the number of primitive representations modulo j- This

number depends precisely on the classes of f and 7+ in Rf

% T}le SCVLjU‘l av S;?rﬂe.ﬁ 0/ SL&.IV“.S ()ﬁ S;yuayg: 0}

Po{~,ncmaals ‘b{: ttog ~ /120 - Deke Mot - wa\w{ (/94 7)
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Lemma 3 ¢ Let _-}'— be a prime polynomial which does not divide
h’{ H’\ . Then all the representations of 3 by T are

primitive, If § and &  denote the Legendre symbols
LN

-n "l ana [ 15 )F]
(¢ ) =2 ; 2

and if degree of f: Y . then

Pv,nrﬂ -mn AJ (fﬂ)

i

1!
A
™
|
-

' r -m
h=1 ,»IEW) emes (172 = )
Co-r
&2: fnoa‘of., AMO{
For calculation of Ay ,(’{J?) one can assume that the F
is a diagonal matrix the diagonal elements of which are
4_—,) — - — =3t . Let X represent the firs?j: colum of X .

That is w! ’5\7\ =+t ( modd’— Y. Let A be any other solution

which is a solution of this congruence, Because A is primitive A

can be completed by a complement to a unimodular matrix

@i?rt) = b, (meds )

can be so chosen that

QAR ,;,—.C, 2 (modudo £)



If there exists an 2 = [T with R = A (modulof )
then L can be completed by a complement {~() to a unimodular
matriz (&L '{7() = 4t,, C itself has the form ‘L‘(, C / '?’/)
with integral f5 L . Because [,"fﬁ is
congruent to a diagonal matrix formed by /{'2.3 - T 1"”\/)

To a given A we have an 7)1, and an 'Tp and the solutions now

depend on the number of solutions of

2/, = F (mods )

Therefore ;Aj C'fj'?) % A Co"u { ) tthere A4
satisfies ALY 4 = ¢, (mod:f) ‘
Ienst Ay (4,7,) =1

When . is a primitive JD”‘ root of unity /a" times the

number of solutions of A is the Szme as

{
S w h g (A'Sa- U evat-m 21, &ejv‘LfJ
A modd Ps4l-
where A and the elements of A run through all the integers

mal ulof and Y is the degree of.JC « There the analogy of the
Gaussian sums in function fields and the properties of the Gaussian

sums are used (Caprlitz U'?J )

QPZJZ) w‘%"‘PL: G where P is a
} .

polynomials prime to j— . Then

AS - .
9P 2 f AT ema o Steged [sT | psg
cPﬂ CP) L f

whe re (A /P>



denotes the Legendre symbol. Te calculate the number of
A we take 75‘ to be the diagonal matrix with diagonal elements
¢ A, - - -~ /3.0 the product of which is /75'] . By

the product formula of Gaussian Sums

A Sam AT - m TIN, 4 ™
A%ma—i}) * - CLF)(T)

/\ runs through all the resides modulo }1 except o

The evaluation of the Gaussian sums proceeds on the same
principle as for the number field, When m 1is even the sum
oceuring on-the right is -« 1 and < - E-‘I /J- ) G when m is
is odd. The special case m=i, |T]=1 gives

G* = (-l P

- -
and the number of A required = F¢(m )Cl- FF tf:h) mevt

= 1;" C’“’D (HCPV ':_z_'n) inode
Les | egns  23,24,25 , Siegd [S] page sa1]

where § and é are the Legendre symbols

ML L"‘Dr%.:,l’fl‘/
LU) ) )( % )
b

+
Let now ny | and the assertion be true for n-1 instead of n.
[THM)> = ¢, [S] (medidof )
Therefore

1] =/ IT14,
)



Further the number of A from what has been derived above is

fr(M‘-\) C;»? F”%ﬁ> mebtin

-

(Dv-Cm -0) / H‘ﬁ[’ W\\ e

i Pw@_g,, L") (n- Dj A (1%

equal to s
- - v h~hyy 2 r2h-m
Sy ey ey B o

Mm U, N eUMtin

m even, n even

(2) pT Y mmpin ) fg“ e C,_ Prw/\
ke

m even, n odd

(3) h\“ CM*lJCI_ealDfL}_L__V\ T 2. CI»PY‘ZL-M—f/\

=4

m odd, n odd

(-1 ,—51—’— Ci- Prm)

(4) f’ A
={

fhodd} Newt, -



That 1s )
of {4 = A (’{Jq/ n - n (nt
5 57 $ T ™
_ ’SF-V‘M) Cg-&ir n- n\>
J&.”’ 2k -m
e T (P ET)
&=
Mertn, nHevin
h'
— SF—YM 1' C,” .ZJZ M)
mertn, f\O'Jtci
i
Q-&:S"Drn M) ' C sz'h w
Mbdd,np;o‘{
- 7" C,_szé-m'i) m odd, n even
&z B ' ‘ ;

"To prove the convergence of the product of the j--adic
densities X (¥,7 Y it is enough to take all the fﬁprime
\ Ll |#] -~ . The explicit evaluation of oy (’5\,?‘_)
vhen § divides |¥#]|T| is done for some special cases at
the end of the section. This is necessary in the course of the
main theorem when the order of & 4is two and that of ¥ is one
or two especially for the estimatlon of the constant P(7)

Further, for the different powers j’“’ of 3( the nature
of A3t°~ C*S)‘:{-) is given in the next three lemmas,
Proofs are as given in Siegel LE:J . H’ Sha ~Shly
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tammat ¢ oo $% o ine nughest pover of | Srvigung [l e

let ag )2—1} and a - :f‘&' . :.\\'3‘?0/\“0“ ) ) /ii‘:%::{:(
\\Q}i:' (5’ \‘\-—‘\, . /?/C ~ r::l"

Then the numbers S v et

1£1 E/",Q;D “"‘“5 Aja CKJ?) and

n(n4t) -
;“i'%.i 'mnj B:}Q (f;?) are
independent of A . OLLMrna. I3 &'cjd. [_5J )oaae_ S44

Lemma 5 : Let f" be the highest power of the polynomial f
occuzﬁng in \‘TH and let a2 /{' o To each integral solution E,
of El' ftl = 3 (moa j?o‘) there exists in Qi & solution of
}:‘15'[: <4 with £ = [ (mod f“"" )
: , Letama 14 &'cgtl [s] p5uy
Lemma 6 : Let oU and vy be two coprime polynomials and
let 4,4 be in ‘RV |
A‘U* (14 - Aﬁ/ () A 73
B, (Fi1) = B (7. B, (1,7
If E,"f L =7 , is a representation in R}/
and C‘,_' “f[l =9, a representation in K,  then
there exists in va a L with L = L, (mod 9 )
[, in R and L=L (ma~ Lin K. eana
Lrr-=9 w QW* Lemma 15 Sigel [57], 744

This is an immediate consequence of the Chinese Remainder

H

theoren.

Lemma 7 : Let %-.: 6@ be in Q and let the determinant
(%} be a polynomial dividing v 7 = ?3/73 b with

integralil,) }‘:H and [H* /.-.U . Then A} (’f,?, 2/)) - M/ mm@(ﬁﬁl)
Lemema 17 &@3&([\‘5\7 p 54



Units:
. A x<d
The number of integral solutions of the equation (A=
is denoted by E(’[,:) . The solutions are called the units of ¥
when {i : ‘[ « The number of Af["[) such that 2"[71‘, =)
(mod f ) is denoted by E,c['f) for a polynomial f o If v
and T are two coprime polynomials
o () = & () & (T)
Also o C{ ) A?/ (¢) 4.(7)

Lemma 8 )C'(’ is the highest power of )C dividing /f
and l} aN_L ) g ¢ f"* then the number .zL. ['H E;F[O
is independent of a and has in the case !:e.o the value

m=-) -
TE () v g ] b ]

k=i e — Faje 547

£

according as m 1s odd or even.- In Chaptez; I three lemmas,proved
by Slegel, were stated on the genera of guadratic forms. There is
one more lemma on the eonvergence of the product of the Jf =adic
densities when the 5' run through all the polynomials, So arranged
that the product of these polynomizls at each stage is divisible
by almost all polynomials of lower degree.

Lemma 9 : Let m=2 and "[’25‘ I be a square, m=+2 and
-Ifﬂ | a square., The product of all the °<;}» [‘ZCU over

the sequence of % mentioned as above converges and its value
is gero only if one factor is zero.

Proof is the same as given in Siegel LS"} . L"'N'M /9 /°’}7‘ Sq ¢
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The next section is on the arithmetical part of the main
Bheorem of Siegel, Here no new ideas, other than those given by
Siegel, zre introduced. Subsequently in the analytical part of the
proof methods, essentiglly characteristic of the field of rational
functions, are introduced for certain quantitative estimates. A

rather brief surmmary is given of the arithmeticel part of the proof.

PART - II

The Arithmetical part of the proof of the
main theorem for definite svmmetric matrices.

15, The arithmetical part consists of two formulae which are
used directly in the analytical part.The second formula which

is to be used here will be used in the analytical part in a
limiting form, The p:e_dce&ura to the limit is possible only with
the help of lemma 1z(e%t f; a sort of comparison of formulae (1)
and (2) given below'with a method of induction true to this
theory that gives the fingl identity which is the main theorem
of Siegel, More detalls of this are given in the analytical part,
These can be derived as particular cases of the results in

Chapter IIT.

The first formula has a particular case done by Gauss and
Eisenstein andSiegel cslied it the generalized formula of Gauss

l
and Eisenstein in the small. Here jhand 7~ are of orders m and n.

Pajg 5¢ af this thesis
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1. Generalized formula of Gauss and EBisentstein (My>n )

= B : s prdt) N
£ E;{Q ¥5 (4:3) M (%)

= Z L
(%) vﬁ) =)
'fk v"[ means that ')/; and are in the same genus and

ftbu 49 S“ﬁgd l’“] /"‘)‘557

6{ runs through all the distinet genus representants of
definite (m~n). F Cé, 2/) is the number of reduced 7

such that 7 Y Leeged L] ppoeT
Ly riseqry)

is in the same genus sas 7{ N 7 and ’? are to be defined.

The second formula is the relation (1) for quantities

~ modulo 5_ . It is [fj 3% ,Sin '5'/
@ HUB L D 2 4 040)
| £ () (&) &)
where ( / ) runs through 21l the class representants modulo

F (é’ ) is the number of reduced *7 for which

e 07 \ "{o ‘CD" so /Ja.ac. 559
( a' ;71"‘9447'7-'47

is equivalent to Tf modulo f / , 4 . ]f. is assumed

to e a miltiple of (|T]|H™) ¥ in order to identify

F y (é ,{) and F (é e ) with one to one correspondence

between the class representants ¢ ’é ) and the genus

representants {é‘} .



Instead of the full proofs of the formula as done by

Siegel a brief summary is given referring to the single steps
in Siegel's paper r-ffj , r\aml? egpadTons 1 b6 4T 48 ond 49,

In order to derive the formula (1) initially two other

formulae are derived, namely,

BUD . 4 8(A) —®
Ed) B e)

13('5)"1) is the number of primitive solutions of = 7
in K:kla] amd B(4) of the B(7,#) primitive
representations belong to the same class ( é). é is of
determinant ]‘ﬂ 1?( m- = « So a fivrst step is to explain
the meaning of this last statement. After this is accomplished
the next formula is - , ‘

BB - <P —w

ed)  E(h)

The definition of’é ) '0] and the reduced and é give
almost the complete statement as well as the proof of the formulae.
The preoof is really complete only after some of the summations are
"justified with the help of the Hasse -~ Wittt theorem and Lemmas
20,21 and 24 Siegel sz . Lemma 24 1s needed for the formula in
the small., In choosing } to be a multiple of (|7] I‘HD 49 in
the latter formula one can see a sufficiently large degree has to
be chosen for the polynomisls. The composite nature of j-needs the
lemna repeatedly in the proofs. Siegel LﬁJ Pp 545& - s¢|
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PART - III

16, The analytical part'qf the proof of the main theorem of
Siegel consists of (1) a comblete geometric interpretation of
A, ({ij and (2) the induction part of the proof of the main

theorem.

In function fields for this purpose one has to fall back
on the thesis of Artin. Artint's results on guadratic function
fields can be interpreted éé‘thosé.fbr binary quadratic forms by
making use of the correSpondéﬁce bépween ideal theory and quadratic
forms., By a method of inductién on binary quadratic forms it is
evaluated for the more general 7T end F . The principle is in
Siegel but this part differs considerably from Siegel's work on the

rational number field,

In the rationsl mumber field to calculate A (Y% )
which he calls the density of representation, Siegel represented
%  in the mn dimensional Bulidean space and T in the n(n+1)
L 2

dimensional Euclidean space, If t is taken as one of a set of

- 7
points 53 ’ a domain containing ? J X traces the domain S
and

A°($J#) = A;&m # V(B,)
e
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The details can be found in Siegel sz and [_16] .

f(ﬁ;) has been proved equal to one by mesns of deep analytical
methods due to Siegel L5] and it can be proved to be constant
even in the czse of function fields. This is found in a later

paragraph at the end of Chapter III.

17,

starting from m = 2, n = 2, in fupection fields,

As far as the arithmetic 1s concerned it appears as
if this part is different ( not radically) from the corresponding
analogue in the case of the rgtional number field., For instance
Dirichlet's class number formula was derived as a special case
in the rational number field‘after Siegel gave thé complete proof
&f the ildentity; whereas in function fields certain quantitative
estimates are possible only by applying Dirichlet!s formula
generalized by Artin. Ultimately, after the complete proof is
given the formula can te given a new interpretation in the
language of quadratic forms though it is not possible before
one conpletes Siegel's theory for function fields., The original

derivation was due to the arithmetic of quadratic extensions of K,

Let D be a square free polynomia;y ;<Qﬁi) be the
quadratic extension obtained by adjoining J D to K.

The analogue of the class number formula of Dirichiet for

function fields reads

A - Q;{{ Ct— C%}J)#—r -
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wvhere { 1is the number of ideals of K@ and f' rund through
primary sz* and prime polynomials. & = 2 VID| / Pt | in case
degree of D is even and S‘gn D = g , a primitive element of
the nonzero elements of the prime field k .

A- (1D if degree of D is odd.
P .
If aL,F, is any integral basis of the field K (@
and X, Y are integral elements from any ideal {o( X 13 y}

are elements of the ideal and Za(’)( + [’5'\/} are the
set of conjugates, The number of inequivalent integral ( A, Yy )
such that [¥2-Dy*[=|f| 1is the same as that of the number
of inequivalent integral ldeals with norm in value equal to that
of J(f at ‘/z.. . That is, the number of inequivalent imtegral
¢ X 17 ) such that | :
) '

wxapy] |2 Rt e p
is the same as the number of integral ideals with norm in the
value with respect to ’/z .

Z (8), the zeta function of K(ID)

Ll |

== \_L_.“_.. 2 o
,__F-(d-f_l) v =d Foxs

-5 M sSos
ol r/“ V=2 fwxs

|+ pos 407 L plos AP ATI  ——

It

, -
‘.,/5 FZ..A
+ d: 20"; A - — +to5.
S— -i - - -
F@‘f) A 7
M- Nn-
sh-t

/,a/é‘ %&LB\] 4»/5‘4}



with [NMI = P,

= 5
2(%) P nw ) B

Lo

o

i (p
(P

P
Therefore, for V2 A-l ( using the reciprocity law )

g";j‘ =0, N2,V

() = PR i
s o5 s A p°
/\«:b ,.._/:—' /QP
e

I\, ig obtained by taking the residue of the zeta function at

v= 0

~ -n-f
. A~

~

s=1 in two ways LSJ . Because there are polynomials of degree ’)/
'[Q times W ( where W =p~1 & p - according as D-zg
or not ) is the value corresponding to Ao C'fj';) .

It is the average 2 A U‘C J:’) /4\ in a neighbourhood of

in the valuation with respect to ‘/x.. + These are also neighbour-

hoods in the valuation with respect to '/1 . It is to be noticed

that as the valuation with respect to 2 tends to zero, valuation

with respect to l/x. tends to 60 and these still =k=k satisfy

the axioms for neighbourhoods, Also the integers are tgken now in

the sense of Artin [}j . Define P(‘fﬁ'> =5 A (Dhc ;?)/Aand take

-N . -N
all the elements ( when n =1 ) such that P e ]1“#’ <P
for N and M sufficiently large

;%ag/

number of #/
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as N ~—— ¢= is the value of An(‘?fﬂ) « When ny 1

the inequalities are taken for each of the elements of F

with the corresponding elements of 7' . With the above fact
that the neighbourhoods are taken when the distance matric
taken with the respect to '|x tends to © the above difinition
of A, (3 ,4) is justified for function fields, That is we have
actually taken the ‘number'of real representations in the

neighbourhood of :}' .

After this last most assentisl digression one can go back
to the calculations. Consider the principal binary quadratic
forms and take the representations, of polynomiagls of degree less
than that of degree of D = }'ﬂ by such binary forﬁs; then the
above average is calculated in the following fashion. Let §  be
the polynomial of degree ¥ less than that of degree of D .,

Keep in view the equation

2@ = It pTRrT | oy apen wom |,
0’-""’ dp.?./s
o-n -~
R O
+5% ploe 1P o P n!

Ve pret ) PVA

Consider the polynomials g such that FnH‘—' 13')‘ [ N
for ¥ and M sufficlently large. If one tgkes the average over
such polynomials of P(TJ?) and takes the limit as N S
the limit is }}Q“" .
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For example if £ 1is of degree twothe average is :
PEos 4 poiaoy 4 — — 4y (PNt —=- pM) ‘
GRS |

times 4
and the limit of the above avarage is /\![Qu and for each genus

it is *{ W ., Here one should make a note of the fact that one

considel;s the average over the polynomials of the same leading
(highest degree) coefficient and degree, It is due to this resson
that the limlt is taken as the neighbourhood shrinks to the point
represented by 3, « Thia can be given an algebraic interpretation,
For if such a polynomial } is teken as

N«--...-*a

Qo4Q,2 4 —— — Yanh + - — - taz N"H

ané .JC is represented for sufficiently large N and M by x- - Dy*
one gets a set of equations which are relations betwsen the
elements of IQ o For arbitrary D it is not true that these are
independent relations; for degree of D can %k be taken sufficiently
large and there cannot be more than a certain number of independent
relations between the finite number kof elements of R, , such a
nuwber being bounded. Therefore, whatever be Gy, —— —= &y
the probability is that as N and M tend to infinity one has the
same 1imit for given m and n. Therefore 15, is the A (T/#) for
a certain JC represented by T and 'fp is independent
of { .50 o isthe Ao(duF) for atl T of order two ana L

of order one where ¥ and F are integral.

So far the calculations have been done only for principal
forms. For any arbitrary form A)&’“ 4 BK\/ 4 C)”" y if f is
representable by Ax" 1@%\/ + CTZ J A-;C is representable



by w2 -D\/z and if A; is representable by A% -DYy?
5, is representable by Ax* ¢ fBX\/ - C\/” rationally. Because
we consider all the representations C% ’ y) in Rz/&
in order to calculate Ao ('fJ:O it is enough to consider
the representations of ﬂ} by X* ".D\[‘z—'ationally (Chapter I,

paragraph A e

18. For more genersl n, "7' is represented as a point in
the n(n+1) dimensional space over the completion of K at ‘[z_
Considsr the equation ﬁl?fi = %+ ., For points in the neigh-
bourhood, of “F , denoted by 0 3 X is one of a set of
points ! . Instead of taking all the points in the neighbourhood
of 1 one takes 7T with elements which are polyromials g‘_
satisfying the condition - o

b g A "
It is assumed that the M, (f,7) which has been defined above is
calculated upto m,! and it is evaluated for m+!,1. Suppose C is
the value upto m and 1, That is 1if a quadratic form is considered
to represent the polynomial 3, the average is C, Consider a form
of the type,

A,'}l,?‘ t == 1 An¥n o+ Ama Xi-ﬂ
There is no loss of generality in assuming the forms to be diagonal,
This fact will be explained soon, Consider = polynomial of degree 9.
The average A, (’i(mg_, 4u)) in this case iz Cp=T
because the number of values of Xm+! is ‘zf once we fix
‘the leading coefficients., If V-7 15 odd 1t is estimated for

a polynomigl of degree v sufficiently large suvuch thrat
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2
C f'w mei, ‘k)
&~ 5’ \, - - w-rd]
Cps p™ = Cp—
P& -t
if v 1is even, & is odd.-

§ Erp-r-{
( at §+v form+1,11is C {'/"f’“‘“"“,_—_"'
C p=2
The average in the limit is therefore f’ z
because over a large number 'N' of polynomials the

arithmetic mean Cit — = +CNis equal to the

~
geometric mean M ¢ - cpn )C; being the averages the ratio
between any two elements of the set being bouhded . In analogy
with number fields take

C- oo | T ”'l} ST ferma

n-'l

Cprmetst = 82 TR F ST st

. [/ ?f@*“)[] “Na [’ 7(.0//

mil=-n=-j
LA,

and Apyi,y = Emys . The result is true for m=2,n=1 as

derived from Artin's formulze in the previous paragraph.

As (¥ ﬁ") for given 7  and arbitrary order of ¥ 1is

as follows
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19, b\o ¢ T,% ) for given ¥V and arbitrary order of 7

As a first step the value of C is assumed for m,1 and
it is evalunated for m,2, Consider the equations,
Arz + ——— fAmxmLJff —- — W
LA & —— = thaYirsf T 7@
TAxeY =9

If the average for (1) is C1 and that for (2) is Co with the
conditions (3) out of the 15l 3]
possible values of < A¢Xe Ve oniy one is relevant.
if W{ is not an integer it is to be noticed that as
before in the limit

ho(4.2) = Gt Gt 5.5.5,

(il lsal

’ ! Sz,—
o Cpl Gf
RN
&Y Cara"-' CZ F;z“
, L

I 11l FE

depending on the nature of and the degrees 5,35:.

of S‘sz— o This is easily calculated to be
m-n-i

K 161 [Ix[[ " a [J?ﬂ Y | S

That is 0('”3 ‘;d’”’dm,

»
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These evaluations would be clesarer when one notices in
Chapter III, a more general method is given suitable for definite

and indefinite forms.

Assume the theorem true for all values of m = n upto

a certain/u Cltve [® z.) it is proved true for m7 n , m - n =/‘~?.z.
A(F,%) = 5AC:’,;,X) 25(@ o
* @)

with the notation for {?’ as in Part 1T, (T|= [I4 1z

(1 (9)

m and n are replaced by men < /K
XCfJ{) =,/H@’#}ér) -
N{iF) et (1)

-~ >
> dm-n (tf“.ﬂ
Because the theorem i1s true for me-n A/A
* For the definite case /~ can take only the value 2 but the

same method of proof with suitable modlfications in true even for
rot

the indefinite forms. Any way The procedure is.repeated in Chapter
III separately. Se/A can be taken to be 2 here,
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-~ Menet )

(8 _ 1 . = €m-nAmen é (71 m.“m'} B
M)
b Aom  E3 (H4)
T e e OOk

where J. is a polynomial such that ]H —»4in such a way
that all polynomials of values less than § divide f

mso M(A14) - M(4)

The vglue of M ( 'é) given by (A) is substituted in the

formulae of Gauss and Eisenstein in the large, that is in

A

(B) BEe?) = 2 F(4,7) N(
k{_f _?%@ 3 (5,7) M(4)

and one makes use of the formula in the small to get

A -A- m-n
Z &0t o 151" U Ao

R =1 m-n)(M-n-1)
B0 e YTV 5 e
$1—~ £y (;’)

De fine f(*f ) by

-m-|
{H(P{) _ Ul"“"“"wg) [§] Mo

-

& =
C = Copn €m-n ) M22, &y =
mm

€y, = €2
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multiply both sides of B by ’/
N()

A

5 8 (F,.4) .
Roty — g I
E (T / k= E(%)

. Cm o 1307 1 p ()

€Em-n¥m-nmn 'th\l»e L’:——,w B} (‘{}1>
[$1
It

One-can substitute A ('5.3"7’) and A} (‘fﬁo for ]5(7!.11)
and Bf‘ (5, 4) because they vary proportionately and the

mn - N n-t
| 2

equation takes the form

A(%,%) e Em Koo Ay (1.9)
Ao("ﬂ) “}_'"- H’mn “"_LE'-D
Simss  f (%)

The nature of f (7!‘ ) 15 considered at the end of Chapter III.



It has been remarked already that in the last

paragraph the discussions were restricted tod diagonal forms.
The reason why it is enough toc consider the diagonal form is
max QALJ] ) occurs in the diagonal of - (m+!) when an equivalent
reduced form is taken and Am+1 can be taken toc be that element,
On the right side of the equation %'T % =7 once the
diagonal elements are taken into account the choice of the
nondigaonal elements is restricted, By the cholce of the
equivalent reduced F we are taking the maximum number of
possibilities of the % and of the choices of % which give
the required diagonal elements only some are releVant for the
nondiagonal elements, In fact, of all the posSsible choices only

one is relevant in the nondiagonal places,

Forfi =nr =1 the equation considered is V¥ j\) X=4)
are the two solutions « K (H)7)=2 , A, ¥) is defined
equal to 2> { ¥l + For sufficiently large values of J"' )

)
T = {(moaJLD gives Xx*z | (med f/“ 1*”) which has
z“’(,{') solutions. m(jf) is the number of prime divisors

' an
°f § end - e bem 2@l w(é-’)ﬂf(l
2}2_ “

= &y ¥
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Rest of the induction is just the same as in Siegel [§J ;

specigl reference is made toc binary forms here,

Tn order to calculate o«f;; the identity of Siegel is
compared with the class number formula of Artin. It reads

Loy (g

R - 1o :

p i1f degree of D is odd and it is
equal to % ﬁ_’; {f“” in case degree of D is even, If, in
the formula

S AHGD) eqs |
M) = P(1) 4m.~1}°§7((7,ﬂ)

s e@) Ao(4,7)

¥ and 3 are sysmetric binary matrices with the Same
determinant

/

]

gy " T 8)

that 1s,

E(de) = inwf(’f) €. T A (t,%
209 = yey (67)
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with a simple calculation of the "(f— (¢ )7 for f
dividing [F[D,ff)c jand for f not aiviaing [T =
separately, The number of gemers of 7§ where | [=D
15 2° or g4 according as D is divisible by a

prime polynomial of odd degree or not,

Case 1. Number of geners is L4, R: ]
P
Then

pliD e (39) J(3) a0 24 T (- [Pk
o, = alf 5D e -*"IC s

e l"" = FID"% % T -
oy oo P FOBIE)
(@ - ps0)
(¢p-0*
P) = g0
\“’;’3

{. 1s the number of classes in a genera; so for 244k Artin's
c¢lass number formula is used.
Case 2 : Number of genera is 24, L=2 J 1D)
f»—u
1D = [pAl >

%’.’:/ (hY) HUR G

o+

Pt (k)
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-
Case 3: Number of geners is Z’4 « The values are half of
the values given above. The rest of the induction has bsen
explained already.

e +Hwo values as éefovc
D o Ossume €

S
f1) =L & P
p®
The work done so far can be looked upon a8 a special case of the
next Chapter when gll the ‘measures’ there agre replaced by the
trival measure, Also from the methods of proof one can see that
the results remain unaltered i1f the variable x t¢ replaced
- I V= -

by Ata o | for R (=) ,kC..’L) A(zn\) _kL‘)

Xt a 2

(1}
!
!



