CHAPTER IV

RESULTS

4.00 INTRODUCTION

This chapter would present the results in the sequence of description of intervening variables of intelligence and pre-achievement for subgroups (sample under Patterns I, II, III and IV) and the total sample (an additive number of subgroups), description of criterion variables of total achievement (T), knowledge (K), comprehension (C) and application (A); analytical picture classwise for all the six variables viz.(two intervening and four criterion); product-moment correlations amongst all the intervening and criterion variables; three-way analysis of variance, analysis of covariance: and 't' test. The gesults relating to the four criterion variables are obtained from two approaches of the study - global and analytical. The global approach deals with the total attainment (T) on the post-treatment attainment test and the analytical with the three criterion measures of attainment for the objectives of knowledge. comprehension and application. In order to have uniformity of presentation and convenience for comparisons, tables of similar formats and having similar statistical

80

treatments are grouped together. Sometimes a few results may appear to be redundant to the readers but it is the faith of the investigator that these results would help in the discussion of the study and would further help to float new problems and hypotheses in the area of teacher behaviour and pupil achievement. It is in this context that extra efforts have been made and results have been knowingly kept in the body of the thesis which otherwise could easily be placed in the Appendix. It may be noted that some of the terms like narration, open questions, narrow questions and narrow questions with feedback, total sample, subgroups, intelligence, pre-achievement, total attainment, attainment for knowledge, comprehension and application will be used again and again in results and discussion. To save space within tables for the presentation of results and even in the discussion part, abbreviations for these key-words have been used. Abbreviations are given in the Table 4.1.

TABLE 4.1

ABBREVIATIONS USED FOR DIFFERENT TERMS

Tems	Abbreviation
Narration - Pattern I	P ₁
Open questions - Pattern II	P2
Narrow questions - Fattern III	в _đ
Narrow questions with feedback - Pattern IV	P4
Total sample - P1+P2+P3+P4	Total Sample
Variable of Latelligence	I
Variable of Pre-achievement	FA
Total attainment on Post-treat- ment Test	T
Attainment for knowledge object:	ive K
Attainment for comprehension objective	C
Attainment for application obje	ctive A

4.10 DESCRIPTIVE STATISTICS FOR INTELLIGENCE AND PRE-ACHIEVEMENT SCORES AND CRITERION SCORES

The data for the - two variables of intelligence and pre-achievement and four criterion variables of T, K, C and A were collected from subgroups under P_1 (N = 239), P_2 (N = 235), P_3 (N = 246) and P_4 (N = 253) yielding a total sample of 973 of VII grade pupils. In order to present a comparative picture as well as to save space, overlapping frequency distributions for the sub-groups and total sample were prepared. This has been done for all the variables.

4.11 Descriptive Analysis for Intelligence and Pre-achievement

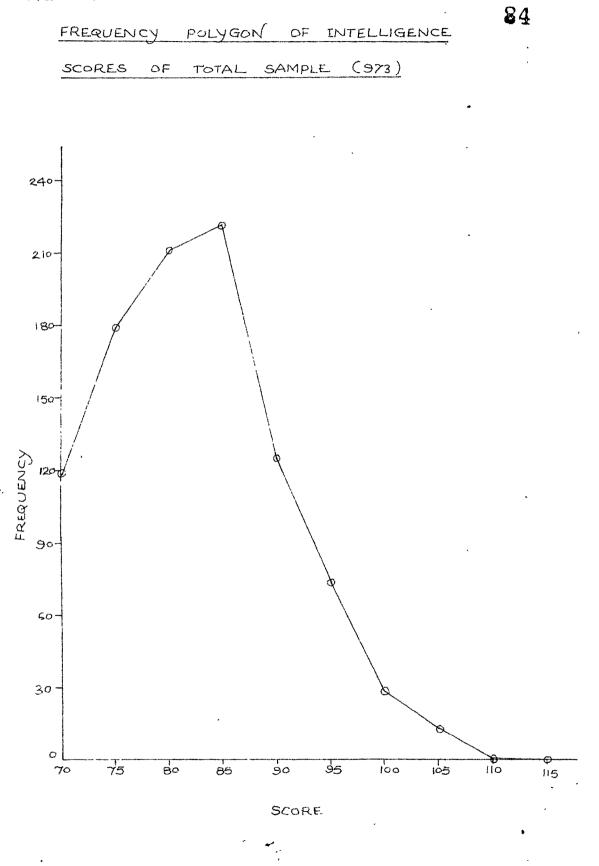
Along with the frequency distributions, the measures of central tendency (mean and median), measures of dispersion (SD) and standard errors of mean (SE_M) and standard error of SD (SE_{SD}) are reported in the following tables. Table 4.2 gives the above mentioned information about the variable of intelligence.

A study of the Table 4.2 reveals that the intelligence scores within the four subgroups, under treatments P_1 , P_2 , P_3 and P_4 and also the total sample are continuous and are having some trends of normality. Although rigorous statistical techniques have not been employed to test normality of the distribution yet the clustering of frequencies in the centre of the distribution helps to infer in favour of it. The graphical presentation of distribution of scores as given in Fig. 4.1 further supports this. The mean scores of intelligence for different subgroups vary from 82.711 under P_3 to 85.664 under P_2 conditions. In order to see whether or not the I scores for subgroups under P_1 , P_2 ,

Scores	······································	P2	P3	P ₄	Total sample
an	ir nan dah ang ⁶⁹⁶ ann 686 dah ang 146 4	8 116 46 116 49 49 an an an an	199 anh ann 148 ann 149 ann		i 129 — nis ann 466 — 469 Ain ann
110-114	0	1	0	0	1
105-109	2	5	1	3	11
100-104	5	10	3	9	27
95- 99	8	26	14	25	73
90- 94	30	29	31	41	131
85- 89	58	57	46	58	219
80- 84	56	51	57	49	213
75- 79	46	36	58	40	180
70- 74	34	20	36	28	118
N	239	235	246	253	973
M	83.121	85.664	82 .71 1	85.253	84.232
Mdn	83,266	85,638	81,970	85.133	83.725
SD	7.652	8,550	7.543	8.201	8.107
SEM	0.495	0.558	0.481	0.516	0.260
SESD	0.350	0.394	0.340	0,365	0.184
		********	****	و بي جد 44 يو بي جو شد عد و	******
P_3 and P_4	differ sig	gnificant	ly, 't'	ratios we:	re calculat

TABLE 4.2

,


4

.

FREQUENCY DISTRIBUTIONS, MEANS, MEDIANS, SD, SEM AND SESD FOR THE SCORES OF INTELLIGENCE FOR THE SUBGROUPS AND TOTAL SAMPLE

 P_3 and P_4 differ significantly, 't' ratios were calculated and are being reported in Table 4.3.

TABLE	4.3
-------	-----

SIGNIFICANCE OF DIFFERENCE BETWEEN MEANS AND SD'S FOR THE SCORES OF INTELLIGENCE FOR THE SUBGROUPS UNDER P1, P2, P3 & P4

Sub- groups	,	SD	N P ₁	P2	P3	P ₄		
P1	83.121	7.652	239	1.985*	2.648@	3.769@		
P2	85,664	8,550	235 1.1	.63	3,674@	1.377		
P 3	82.711	7.543	246 1.0	11 1.707		5.011@		
P4	85.253	8.201	253 1.4	74 0,225	1.939			
Note: Values in cells above the diagonal represent 't' ratios for mean differences and below the diagonal								

for SD differences.

* Significant at .05 level @ Significant at .01 level

It can be inferred from the above table that the inter subgroup mean intelligence levels differ significantly in all the combinations except between P_2 and P_4 (see 't' values above the diagonal in Table 4.2. The subgroups do not differ significantly in variance for the variable of intelligence as is being indicated in Table 4.3 (velues below the diagonal). This situation demands that either the groups should be controlled by experimental manipulations or by statistical manipulations. For this study, the latter approach of statistical control employing analysis of covariance is preferred and followed.

The second variable refers to the pre-achievement

scores of pupils in history. The frequency distributions along with means, medians, SD's, SE_M and SE_{SD} for preachievement are being presented in the following Table 4.4.

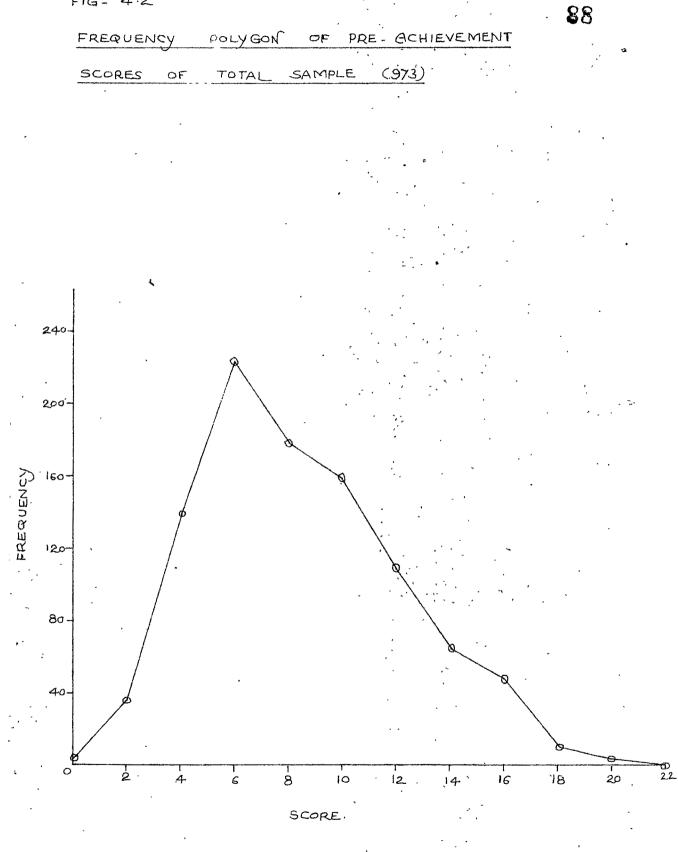
TABLE 4.4

.

FREQUENCY DISTRIBUTIONS, MEANS, MEDIANS, SD's, SEM AND SESD FOR THE VARIABLE OF PRE-ACHIEVEMENT FOR THE SULGROUPS AND TOTAL SAMPLE

Scores	P1	P2	P ₃	P ₄	Total sample
	900 900 900 900 900 900 900 900 900 -		an 100 -100 100 100 an an a	والمريد الله مريد الله المريد المريد المريد المريد	
20-21	0	0	1	2	3
18-19	0	l	2	7	10
16-17	5	4	15	24	48
14-15	6	21	8	30	65
12-13	31	21	19	38	109
10,11	48	41	34	35	158
8- 9	52	45	44	37	178
6-7	49	[~] 52	70	53	224
4- 5	27	38	40	24	139
2- 3	11	10	12	З	36
0-1	0	2	1	0	3
N	239	235	246	253	973
М	8.431	8.472	8.329	10.308	8.903
Man	8,437	8.096	7.500	9.952	8.362
SD	3.112	3.474	3.760	3.986	3.701
SEM	.201	.227	.240	.251	.119
SESD	.142	.160	.169	.177	.084

Like the variable of intelligence, the variable of pre-achievement for different subgroups under P_1 , P_2 , P_3 and P_4 as well as for the total sample is continuous. The frequency distributions are clustering around the central ordinate and tapering towards the ends. The small differences between the two measures of central tendency, mean and median, for the subgroups and total sample is another evidence of near normality of the variable. Similar evidence is again available from graphical representation of frequency distribution vide Fig.4.2. The mean scores under different subgroups range from 8.329 under P_3 to 10.308 under P_4 (see Table 4.4). To see whether or not the pre-achievement levels of subgroups under P_1 , P_2 , P_3 and P_4 differ significantly, 't' test results are given in Table 4.5.


TABLE 4.5

SIGNIFICANCE OF DIFFERENCE BETWEEN MEANS AND SD'S FOR PRE-ACHIEVEMENT FOR THE SUBGROUPS

Sub- groups	M	SD	<u>.</u>	P1	P2	P3	P4
Pl	8,431	3.112	239		2.012*	1.682	2.131:*
P2	8.472	3.474	235	3,572@		0.132	0.319
₽3	8,329	3.760	246	1.272	1.681		0.424
^P 4	10.303	3.986	2 53	0.317	2.937@	1.243	
* Sig	nifican	t at .(05 leve	1			

@ Significant at .01 level

FIG- 4.2

· · · ·

The 't' values as entered in the above table indicate that the mean pre-achievement scores for different subgroups differ significantly as differences between P_1 and P_2 ; and between P_1 and P_4 are significant. These significant differences between the pre-achievement levels for different subgroups require the adjustment of posttreatment scores based upon the initial pre-achievement. Analysis of covariance has been used for this adjustment.

4.12 Descriptive Analysis for Criterion Variables of Total Attainment and Attainment for Knowledge,Comprehension and Application Objectives

The descriptive results for the criterion measures of total attainment and attainment for knowledge, comprehension and application in terms of frequency distributions end mean, median, SD, SE_M and SE_{SD} for different subgroups under P_1 , P_2 , P_3 and P_4 and the total sample are given in Tables 4.6 to 4.9. The figures 4.3 to 4.6 present the data for the distribution of scores for the dependent variables graphically.

TABLE 4	6	
TABLE 4	6	

.

.

.

FREQUENCY DISTRIBUTIONS, MEANS, MEDIANS, SD's, SEM AND SESD for the TOTAL ATTAINMENT SCORE FOR SUBGROUPS AND THE TOTAL SAMPLE

Scores	P ₁	P ₂	P3	P ₄	Total sample
28-30	0	5	5	6	16
25-27	10	18	37	26	91
22-24	3 3%	43	4 4	71	191
19-21	56	52	60	43	211
16-18	57	52	52	48	209
13-15	51	34	35	37	157
10-12	28	21	8	12	69
7- 9	<u>4</u>	4	4	8	20
4- 6	0	2	1	0	3
1-3	0	4	0	2	6
N	239	235	248	253	973
M	17.343	18.238	19.524	19.198	18,593
Mdn	17.175	18,550	19.384	19.952	18,821
SD	4.099	5.202	4,563	4 .953	4.799
SEM	.265	.339	-291	.311	.154
SESD	.187	.240	.206	.220	.109

、

1

.

.

TABLE 4.7

•

ć

,

FREQUENCY DISTRIBUTIONS, MEANS, MEDIANS, SD's, SEM AND SESD FOR KNOWLEDGE ATTAINMENT FOR THE SUBGROUPS AND TOTAL SAMPLE

Scores	P ₁		P3	P4	Total Sample
16-17	8	18	35 .	20	81
14-15	37	48	40	67	192
12-13	63	48	72	63	246
10-11	55	52	53	46	206
8- 9	48	37	35	32	152
6-7	17	18	8	15	58
4- 5	9	8	1	8	26
2-3	2	3	2	2	9
0- l	0	3	0	0	З
N	239	235	246	253	973
М	10.874	11.204	12,122	11.759	1 1.49 9 /
Mdn	11,189	11.397	12.131	12,283	11.764
SD	2.824	3.373	2,831	3.106	3,078
SEM	.183	.220	.180	.195	.099
SESD	.129	.156	.128	.138	.070
البية فقد الله حنة من البية الله مود					

,

FREQUENCY DISTRIBUTIONS	MEANS MEDIANS SOS HENSION ATTAINMENT
FOR THE SUBGROUPS	AND TOTAL SAMPLE

TABLE 4.8

,

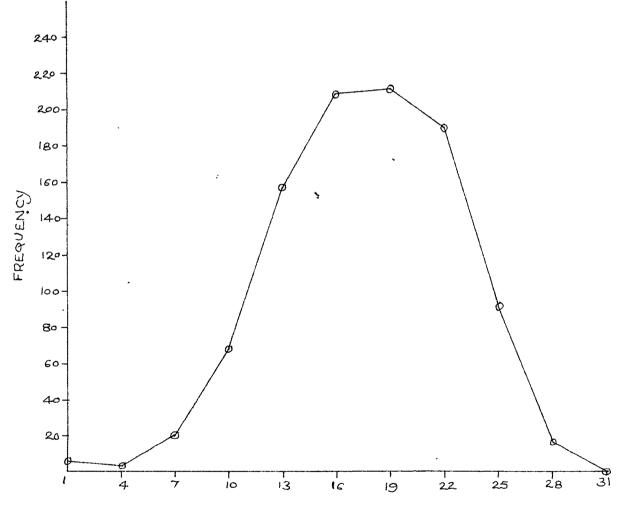
.

`

Scores	P1	P2	P ₃	P4	Total sample
10	0	2	0	1.	3
9	6	6	19	9	40
8	8	17	27	28	80
7	2 2	42	46	38	148
6	37	55	44	61	197
5	57	37	47	28	169
4	52	31	29	41	153
3	32	19	20	23	94
2	15	10	11	16	52
1	8	10	0	4	2 2
0	2	6	3	4	1.5
N	239	235	246	253	973
M	4.690	5.234	5.715	5,360	5,255
Mdn	4,684	5,581	5.795	5.672	5.390
SD	1.787	2.079	1.946	2,030	1,998
SEM	,116	.136	.124	.128	.064
SESD	.081	.096	.088	.090	.045

3

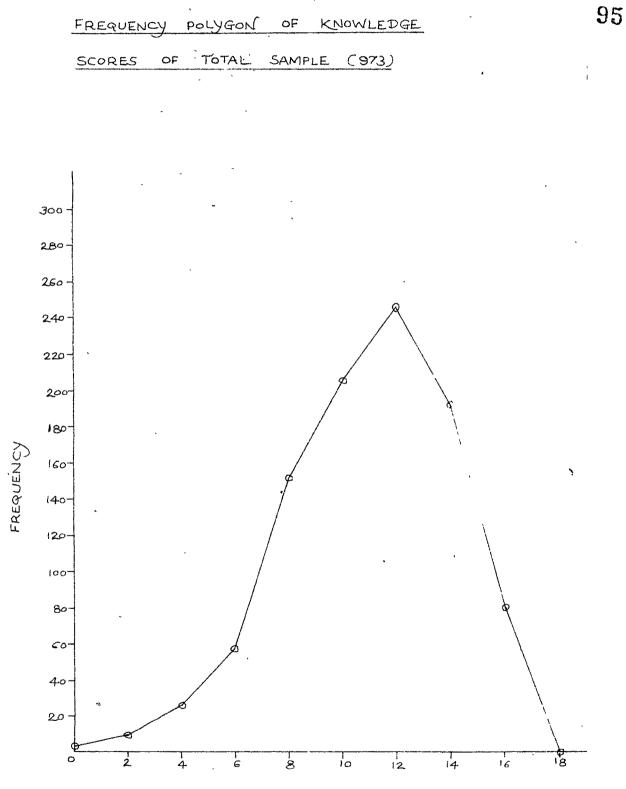
92


TABLE 4.9

FREQUENCY DISTRIBUTIONS FOR MEANS, MEDIANS, SD's, SE_M AND SE_{SD} FOR APPLICATION ATTAINMENT FOR SUBGROUPS AND TOTAL SAMPLE

Scores	P <u>1</u>	P2	P3	P4	Total sample
5	6	1	1	2	10
4	18	15	19	17	69
3	45	55	42	73	215
2	66	57	56	85	264
1	58	68	83	57	266
0	46	39	45	19	149
N	239	235	246	253	973
M	1.787	1.753 -	1.650	2.071	1,818
Mdn	1.734	1.684	1.433	2.094	1,759
SD	1.297	1,192	1.236	1.072	1.211
SEM	.084	.078	.079	.067	.039
SESD	.059	.055	•056	.048	.027
*****				400 via vije 400 140 400 400 400 400 40	9 wa uliji wa Gh 189 ya win wa aliji M

The criterion variable) of total attainment demonstrates continuity in terms of frequency distribution under all the four subgroups and total sample. The frequencies are clustering near the centre and decreasing towards the tails. The differences between mean and median values within subgroups and total sample appear to be small. It is, therefore, another rough estimate of


FIG - 4-3.					94
FREQUENCY	POLYGON	OF	TOTAL	GTTAINMENT	
				•	
SCORES OF	TOTAL	SAMPL	E (973	<u>3)</u>	•
	- *				•

SCORE

**

SCORE

.

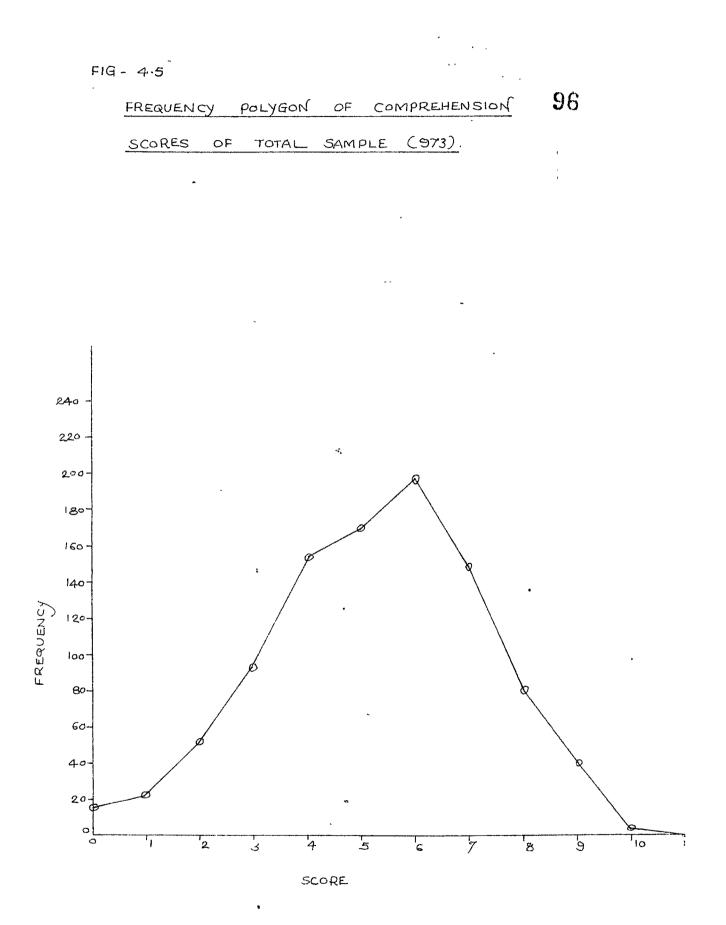
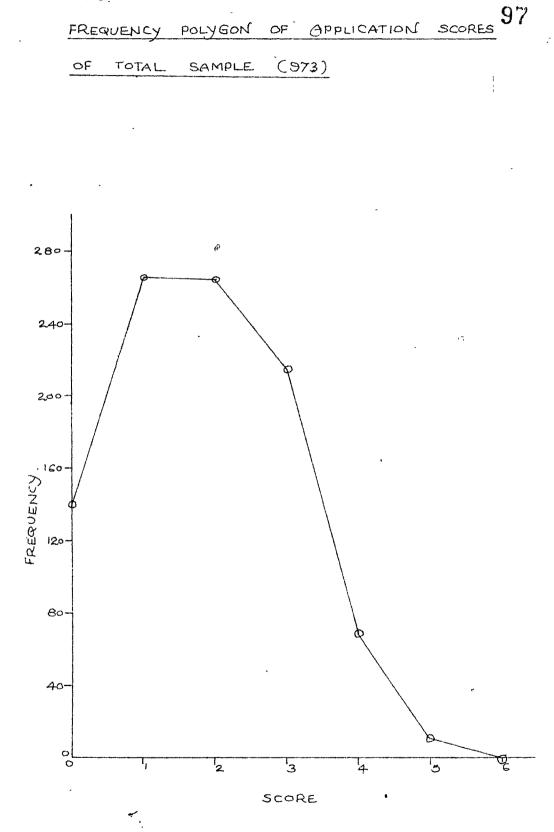



FIG - 46.

-

normality of the criterion measure of total attainment. Fig. 4.3 also helps to support for near normal tendency of this variable. It is being mentioned here that the normality of variable is being referred_not as a necessary assumption for analysis of variance and covariance. McNemar (1962) comments in this respect as follows:

> Although these assumptions are incorporated in the mathematical derivations/of the Fdistribution, there is ample evidence that marked skewness, departure from normal kurtosis, and extreme difference in variance do not greatly disrupt the F-test as a basis for judging significance in the analysis of variance. (McNemar, 1962, p. 252)

Lindquist (1953) has also reported a study by Norton which showed that inequality of variance within the experimental sets did not seriously effect the applicability of F-test of analysis of variance.

The treatment with the other criterion variables of knowledge, comprehension and application constitutes the analytical aspect of the study. The nature of these variables in terms of frequency distributions, mean, median, SD, SE_M and SE_{SD} for subgroups and total sample have been presented in Tables 4.7 to 4.9. The figures 4.4 to 4.6 are the graphical representation of these data. The frequency distributions for all the three variables (K, C and A) for all the subgroups and total sample are continuous. The smaller differences between mean and median values also help to infer the near normal tendencies of these variables.

4.20 ANALYTICAL APPROACH (Classwise Results)

For the purpose of having an estimation of the performance on all the six variables for the subgroups under P_1 , P_2 , P_3 and P_4 , classwise analysis was done in terms of Mean and SD. The results related to mean and SD for all the six variables for each class under the four subgroups are presented in Tables 4.10 to 4.15.

Although, as mentioned in caption 3.60, the classes es were randomly selected and assigned to different treatments yet some differences in the class mean scores of intelligence and pre-achievement are observed from the Tables 4.10 and 4.11. In case of classes under treatment P_1 , the mean values within the twelve classes range from 78.631 to 88.695 for intelligence and 5.529 to 12.560 for pre-achievement. In case of P_2 , the range for intelligence is from 79.67 to 91.160 and 7.200 to 12.833 for preachievement. For the subgroup under P_3 , the range for intelligence scores and pre-achievement scores is from 74.500 to 87.609 and from 6.143 to 13.467 respectively. The results for P_4 show a range between 78.818 **and** 89.857 for intelligence and between 6.555 and 15.238 for pre-achievement. No attempt has been made to check

.

CLASSWISE RESULTS FOR THE SCORES OF INTELLIGENCE IN TERMS OF N, M AND SD

•

Teach	Class	•	с. С.	-		N 4			က ၾ			4 7	
1 1 1 2 1	5 8 6 1 9 8 1 1	2	M	SD	R		SD	A	W	ß	N	W.	ß
	с ^т	15	80,928	5.982	19	79.67	1.828	30	80.667	6.472	10	82.20	5.300
Ē	G G	14	78.631	6.531	80 80	85.00	7.94	32	86.406	6.852	03 10	83.501 [°]	8.310
	c ₃	19	80.353	6.173	6	83,00	7.458	18	82.611	5,293	23	82.609	8.015
	c_4	17	86,205	8.379	10	86.300	4,935	33	87.609	8.096	35	89,857	8,229
	c ₅	18	80.760	7.830	16	82.312	7.920	12	80 . 833	5.014	- 81	81.667	6.708
Ē	ဗိ	18	80.526	6.762	23	85,869	10.512	2 5	79.960	5.219	50 50	85,538	8,932
	C 2	6T	85,933	4,008	23	84.826	7.971	34	84.882	8.083	25	87.480	7.106
	80	14	80.569	5.830	77	89,916	9,327	15	80,867	8.500	13	82,231	8.666
	C D	82	79.954	6,392	23	81.687	5.587	10	82.900	9. 3ô4	13	80, 769	רי ער ער
с Н	CIO	21	81.905	7.217	12	91.160	7.281	74	74.500	3.500	11		G.293
3	CII	23	88.695	5.996	16	86.956	8.062	14	83.714	4.549	03 13	86.454	7.596
1	c ₁₂	39	86,160	7.215	25	88.917	6.103	19	81.474		18	89.777	6.442

,

Teacher	[] 256	1	сц Сц	-		<mark>്റ</mark>			ക			P4	t 8 8 8
		N	W	ß	R		SD	2	W	ß		W	ŝD
	c1	15	9.643	1.986	6T	8.210	2.607	30	7.600	4.005	19	12.895	2.860
E	с СS	1 4	7.053	1. 932	83 83	8,956	2.805	32 32	8.594	3.408	() ()	11.136	5.128
r-1 1	с С	19	5.529	1.144	21	9,286	3.354	18	7.111	2.787	83	11.565	3,386
	c4	17	7.590	2.915	10	7.200	2.713	23	10.174	3,252	35	11.828	3.629
	c ₅	25	8.480	2,802	16	10.625	2,736	12	7.750	2.291	18	11.667	3.480
с С	90 0	25	7.158	1.980	2 3	8.739	3.578	25	6.240	2.566	50	8.846	3.613
N 1	c ₇	14	9.933	1.611	ಣ ಬ	7.522	2.447	34	9.058	3.918	25	8,800	2.842
	с ⁸	13	8.480	2.802	24	6.250	2,681	15	13.467	4.334	13	7.615	1,689
	ດ ບ	32	8.545	3.525	23	6.187	2.007	10	7.000	1. 265	21	15.238	1.743
0 E-	C10	21	6.476	2,538	12	12.040	2.271	14	6.428	2.871	11	8,182	2.729
ю •	CII	23	9.609	2.080	16	4.956	1.601	14	6.143	1.641	22	8.345	2.648
	C12	39	12.560	2.723	25	12.833	2.478	19	9.421	3.529	18	6.555	919. L

.

TABLE 4.11

01

,

•

Teacher	01 96 C		Ъ			_07 ₽4			Э			54 4	
		2	N	SD	N	W	ŝD	N	W	6		W	SD
	5 ^T	15	18.643 4.046	4.046	19	18.316	3,510	30	19.200	3.059	19	22.421	2.871
Ē	50 C	14	18.526	2,098	23	18.69ô	6. 572	32	19.625	4,255	53 53	19.227	6.529
-1 1	ဗီ	19	14.882	2,968	21	19.762	5,750	18	20.778	4,049	03 10	21.217	3,878
	C.4	17	17.282	3.909	10	20.100	5.787	23	20,826	3,952	35	21,257	4.115
	c S	25	15.840 4.046	4.046	16	19.750	7.284	15	18,083	4.030	18	17,167	5.795
E	ce c	25	16.684 3.341	3.341	23	20.522	3.048	25	17.840	4,921	26	18,500	3,785
QJ ,	c7	19	18,933 3,678	3.678	23	17.391	5.122	34	21.059	4.849	25	13 ;880	3.421
	cs	13	15. 840 4.046	4.046	24	16.417	6.720	15	18.600	5.942	13	22,154	3.759
,	0 C	8	19.681 4.373	4.373	23	16.625	5.862	10	17.800	4.308	21	20.857	4.486
Ē	C10	21	14.762	4.628	13	19.480	3.061	14	21.00	3.854	11	18,182	5,390
20 †	C11	23	18.956	2.612	16	16.435	3.062	14	15.357	4.134	22	18,349	4.655
	c ₁₂	00 C	17.160 4.249	4.249	25	14.917	4,962	19	21.105	3.528	18	17.778	6.442

,

.

ł

TABLE 4.12

02

Teacher	Clace Clace		P_1		-	() [4	-		PS			P4	 -
	•	A	W	ß		8 8 5 8 7 1 7 7	ß	Z		SD SD	2	N I	SD
	c1	15	11.500	2,692	61	10.737	2.551	30	11.367	2.228	19	13.842	1.814
` E	င်္ဒ	14	10,895	2,314	8 8 8	10.826	3.595	30	11.594	2.089	22	11.273	3.756
	င္မ	19	10.470	3.310	21	11.524	3.347	18	12,555	2.630	23	12.304	2.69 6
	c4	77 77	11.231	2.768	10	11.800	3 . 9 <u>4</u> 5	23	13.217	2.620	35	13.543	2.272
	c ₅	25	9.560	2.624	16	12.562	4.046	13	12.750	3.700	18	9,889	3.740
Ē	c ₆	26	10,789	2.105	23	12.652	1,991	25	11.000	2,668	26	11.385	2.482
N] 1	c,7	19	11.867	3.344	23	10.435	3,561	34	13.059	2.743	2 5	9.080	2.544
	с ⁸	13	9.560	2.624	24	10.167	3,933	15	11.267	3,586	13	13,308	1.937
	່ ⁶ ິງ	55	12.364	3.141	23	11.000	3.98∉	10	11.500	3.354	21	12.619	2.420
6 E-	c10	21	9.381	2.360	12	12.360	2.415	14	13.071	2.186	11	11.595	2.965
ю •	C11	23	11.174	1.810	16	10.435	2.550	14	9.786	1. 858	22	10.695	2.985
	c ₁₂	39	10.680	2.976	25	9,917	2.871	19	13.895	2.245	18	10,889	3.430

TABLE 4.13

CLASSWISE RESULTS FOR THE SCORES OF KNOWLEDGE IN TERMS OF N, M and SD ŕ

4

,

103

•

14
4
4
м.
r-1
Ξ
ABLE
4
E-I

.

•

CLASSWISE RESULTS FOR THE SCORES OF COMPREHENSION IN TERMS OF N. M and SD

, reactier	Class	1	P1			() (1)	:		പ്പ			С. 4	
7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	¥ \$ \$ \$ \$ \$ \$ \$	N	W	SD	N	X	ßD	Z	X	SD		X	ß
	c1	15	4.786	1. 372	1 0	5.631	1.783	30	6.167	1.185	19	6.263	1.250
E-	c ⁵	ЪĻ	4.842	1.586	23	5,739	1.594	32	6,531	2,031	87 87	5.318	2.457
	с ³	19	3.941	1.211	21	5.571	2,28	18	6.655	1.802	23	6.043	1.574
	c_4	17	4°282	1.880	10	6.200	1.249	23	5.913	1.282	35	5.686	1.769
	c ₅	25	4.520	1.962	16	5.625	2.8 48	12	4.083	1.552	18	5.495	2.191
Ē	ce	25	4.421	1.388	23	5.348	1.784	25	4.920	2.261	50 50	5.038	1.829
N 1	C7	19	4.733	1.526	23	4.913	1.976	34	5,853	2.060	25	3.560	1.699
	с ⁸	13	4.520	1.962	24	4.625	2,595	15	5.467	2,125	13	6.923	1.859
	в С	ŝ	5.273	1.629	8 8	4.187	2.530	10	4.700	1.187	21	6.333	2.031
(E-	сто	21	4.809	2.217	12	6.000	0.980	14	5.786	1.820	11	4.459	2,310
n I	Cll	3	5.522	1.281	16	5.043	1.429	14	4.500	2.096	20	5.460	2.034
	c ₁₂	39	4.640	2.261	25	3.500	2.141	19	6.000	1.589	18	4.944	1.508

Teacher	21966	1	н Ра			С7 С4			64		-	Р 4	
		N	X	S		W	SD		W	6	R	W	SD
	ч С	15	2.071	1.033	6 T	1.947	1.538	30	1.667	1.011	19	2.316	1.126
, E	ပို	1 4	2.789	1.151	53	1. 696	1.158	32	1.500	1.090	52	2.636	1.263
-1	ဗိဒ	6 T	0.470	0.915	21	2.267	1.089	18	1.611	1.008	23	2.913	0.829
	04 4	17	1.770	0.919	TO	2,100	1.300	23	1.696	1.653	35	2.028	1.082
	c5	26	1.760	1.41	16	1.562	1.273	12	1.250	0.722	18	1.833	1.014
(E-	c ₆	25	1.579	1.426	23	2.522	01714	25	1.680	1.191	50	2.077	0.874
Ņ	G7	19	2.233	0.596	ទ ស	2.043	0.954	34	2,000	1.328	25	1,290	0.763
	80 0	13	1.760	1.141	24	1.625	0.922	15	1 . 867	1.204	13	1,923	170.L
	တီပ	53 53	2.045	1.492	ମ ଅ '	1.437	0,933	10	1.600	1.82.1	21	1. 762	1.151
Po L	C10	51	0.619	0.575	12	1.120	0.952	14	2.143	1.245	11	2.182	0.936
Ŋ	CLL	23	2,391	1.276	16	0.956	1.042	14	1.071	1.100	55	2.016	1.054
	C ₁₂	39	1.840	1.433	52	1.417	0.862	19	1.368	1.265	18	1.944	0.780

TABLE 4.15

*

05

.

the significance of these differences but in case the differences are significant, a vigorous design of analysis of covariance has been followed to account for such differences in initial abilities.

In the case of criterion variables of total attainment and attainment for knowledge, comprehension and application, the range of mean values under different subgroups, classwise is as follows: (i) For total attainment, the x range for P_1 is between 14.882 and 19.681, for P_2 it is 14.917 and 20.522, for P_3 the range is from 15.357 to 21.105 and from 13,880 to 22.421 for P4; (ii) in case of knowledge, the range is from 9.560 to 12.364 for P1, from 9.917 to 12.652 for P2, from 9.786 to 13.895 for P_3 and from 9.080 to 13.842 for P_4 ; (111) for comprehension, the mean values range from 3.941 to 5.522 for P1, from 3.500 to 6.200 for P2, from 4.083 to 6.655 for P_3 and from 3.560 to 6.923 for P_4 ; (iv) as far as the mean values for application/concerned, the range is between .470 and 2.789 for P1; .956 and 2.552 for P2; 1.071 and 2.143 for P_3 and 1.240 and 2.913 for P_4 . The significance of the differences between means across the patterns shall be discussed later on when the 't' values for these a scores shall be presented and hypotheses for the study will be tested.

4.30 PRODUCT-MOMENT CORRELATION AMONGST INTELLIGENCE, PRE-ACHIEVEMENT AND CRITERION VARIABLES

In order# to see the relationship between variables of intelligence and pre-achievement and criterion variables of total attainment and attainment for knowledge, comprehension and application, product-moment correlations were worked out for the four subgroups under P_1 , P_2 , P_3 and P_4 and total sample. The results of intercorrelations along with N, M and SD for each pattern are being presented in Tables 4.16 to 4.20.

TABLE 4.16

CORRELATION MATRIX (6 x 6) FOR PATTERN I (N = 239)

Variables	I	PA			C	A
I		.326**	.308**	.231**	•258**	.127
PA			. 334**	.201**	.258**	.261**
T				. 834**	. 66 7 **	•40 7* *
K					.286**	.071
C.		`	,			.094
A			,		,	

** Significant at .01 level.

	1	0	8
--	---	---	---

.

TABLE 4.17

CORRELATION MATRIX (6 x 6) FOR PATTERN II (N = 235)

Variables	I	PA PA			C	A
I		• 2 88**	.347**	.363**	•288**	014
PA			.375**	.373**	.267**	.106
T				.902**	,797**	•383*
, K					•578**	.148*
C C						.125
A				,	,	

* Significant at .05 level. ** Significant at .01 level

. .

TABLE 4.18

CCRRELATION MATRIX (6 x 6) FOR PATTERN III (N = 246)

Variables	 PÁ	 T	K	C	A
I	.382**	326 **	.313**	·257**	101
PA		376**		-281**	.129
T	ı		.874**	.736**	•494**
K				.437**	.276**
C					.131
A					

** Significant at .01 level.

.

,

.

١

TABLE 4.19

.

.

CORRELATION MATRIX (6 x 6) FOR PATTERN IV (N = 253)

Variables	I	PA	 T 	K	C	A
I				.298**	.092	.135
PA			.421**	.358**	.379**	.188**
T				.895**	.843**	.430**
К					.580**	.138*
C						.322**
A						

TABLE 4.20

CORRELATION MATRIX (6 x 6) for TOTAL SAMPLE (N = 973)

Variables	I `.	PA	T	K	С	A
Ĺ	,	.263**	.298**	.293**	.213**	•0,95**
PA		-	.380**	.329**	.294**	.190**
T				.882**	.776**	.416**
K					.498**	.153**
C					t	.158**
A				r		

** Significant at .01 level

.

110

The intercorrelations amongst the variables were worked out to see from a correlational approach whether the variables I & PA share some common variance with the criterion variables. In case of significant relationship between these two sets of variables coupled with varying levels of the variables I & PA (measured in terms of mean scores) between subgroups under P1, P2, P3 and P4, it becomes necessary to adjust the final criterion scores for the influence of initial differences in intelligence and pre-achievement scores. The presence of the significant mean differences amongst subgroups have already been demonstrated vide Table 4.3 for intelligence and vide Table 4.5 for pre-achievement. It, therefore, becomes necessary to see the intercorrelations amongst all the six variables. It was sufficient to calculate intercorrelations for the total sample but to have wider and comprehensive analysis and treatment, the results were worked out for the subgroups as well as for the total sample.

The Table 4.16 represents the intercorrelations amongst different variables for the subgroup P_1 . It shows that except for the relationship between intelligence and application, knowledge and application and comprehension and application all other correlations are significant at .01 level. The two variables of intelligence and preachievement have a positive correlation of .326 sharing about 10.63 per cent of the common variance. This indicates that the two variables of intelligence and preachievement are of different nature. The relationships between the two sets of variables range from .127 (between I and A) to .334 (between PA and T). This again suggests that the common variance shared between I and PA on the one hand and criterion variables on the other, is rather low. The relationships within the criterion variables range from .071 (between K and A) to .834 (between T and K). This suggests that the constituents of the application scores are different from those of knowledge and comprehension. This may be a hopeful sign of the purity of the measures of knowledge, comprehension and application.

The table 4.17 similar to table 4.16 includes the intercorrelations amongst the same sets of variables. for Pattern II. The picture is almost same except that the relationship between pre-achievement and application is not significant. In case of Table 4.18, the variable of application is not significantly related to the variables of intelligence and pre-achievement and also to the dependent variable of comprehension. All other intercorrelations are significant.

The Table 4.19 presents a little bit different picture in the sense that the behaviour of the variable

of intelligence resulted into not significant relationship between intelligence and pre-achievement and intelligence and comprehension. It is interesting to note that the variable of application significantly related to all other variables. If the samples under P_1 , P_2 , P_3 and P_4 can be assumed to be similar then the differences in patterns of correlation matrices in Tables 4.16 to 4.19 can be attributed to the treatment variables of patterns of teacher behaviour.

Table 4.20 unlike Tables 4.16 to 4.19 presents the intercorrelations amongst the various variables under consideration for the total sample. All the fifteen correlation coefficients are significant either at .01 level or at .05 level. In general, three statements can be made based upon all the five matrices (Tables 4.16 to 4.20). Firstly, the relationship between the two variables of I and PA is low. Secondly, the relationship between the variables I and PA and criterion variables are either not significant or low. Thirdly, the relationship within the set of criterion variables is positive and significant in general except for the variable of application.

4.40 THREE _ WAY ANALYSIS OF VARIANCE

It has been mentioned in chapter III, caption 3.94 and in the introduction of the present chapter, caption 4.00 that three-way analysis of variance will be

· .,

followed. The relationship between the intervening variables I and PA and criterion variables has been studied with the help of correlational approach vide Tables 4.16 to 4.20 and 't' ratio approach vide Tables 4.3 tod 4.5. To be doubly cautious, efforts have been made again to see if the variables I and PA influence the dependent variables with the help of three-way analysis of variance. This approach is going to provide extra information: of two types than that provided by the earlier analysis. Firstly, the interactional effects and secondly the effect of two variables of I and PA and the treatment patterns in terms of P1, P2, P3 and P4. Keeping this in view three-way analysis of variance having varied two variables of I and PA at three levels (high, average and low) and treatment variables varied in four ways in terms of Pattern I, Pattern II, Pattern III and Pattern IV was employed. Since the study involves four criterion variables, the results were calculated four times.

The four assumptions of the analysis of variance vide Guilford (1956) are: (i) the contributions to variance in the total sample must be additive; (ii) the observations between steps must be mutually independent; (iii) the variances within experimentally homogeneous sets must be approximately equal; and (iv) the variations within experimentally homogeneous sets should be from normally distributed populations. Some of these

114

assumptions have been taken care of by empirical verifications in the present study. The observations within the sets of the tables of analysis of variance are mutually exclusive. The distributions of the scores for criterion variables of total attainment and attainment for knowledge, comprehension and application are having near normal conditions (see Tables 4.6 to 4.9 and Figures 4.3 to 4.6). The equal homogeneity of variances within the experimental sets have been tested with the help of the Bartlett's test of Homogeneity. The data and the results for the three-way analysis of variance are given below in Tables 4.21 to 4.28.

TABLE 4.21

BARTLETT'S TEST OF HOMOGENEITY FOR THREE-WAY ANALYSIS OF VARIANCE FOR I, PA AND PATTERNS (3x3x4) HAVING THE CRITERION SCORES OF TOTAL ATTAINMENT

Level of Intelli- gence	Level of Pre-achie- vement	P ₁	P2	P3	P4.	
	H	22 24 19 21 26	17 2 3 22 24 28	14 12 15 7 13	22 22 14 21 28	
	М	17 18 15 20 22	20 19 28 25 20	14 10 15 17 17	25 23 22 20 16	

Level of Intelli- gence	Level of Pre-Achie- vement	P ₁	P ₂	P.3	¢4	
H					a	e
	L	16 10 21 14 13	15 14 13 20 16	9 12 16 13 12	16 12 21 17 12	
м	H	10 19 11 19 21	18 21 15 24 13	13 17 16 16 17	24 24 22 16 25	
Μ	M	20 21 18 23 13	11 23 25 17 28	9 11 14 13 14	20 20 13 22 20	1
	L	13 12 14 11 16	19 2 18 15 16	10 13 10 11 12	14 16 16 20 9	
L	М	13 11 17 12 19	20 11 4 10 18	16 26 21 24 19	16 9 24 14 23	
	L	18 14 14 16 12	17 15 18 17 17	19 22 12 18 13	26 12 17 11 3	
***	9 an, ais an 186 88 an an 188 an an 18	No ang ang ang alik kan ako ang ang	anto any 1167, 1888 any 109 pao 10			

.

,

.

,

.

. 115

*

.

,

-1	+	0
1	1	(7)
	-	-

SUMMARY OF ANALYSIS OF VARIANCE (3x3x4) WITH THE CRITERION SCORES OF TOTAL ATTAINMENT

				• ميد هو کند هو ¹⁰ مه توه ا	
Sources of variation	S.S.	df.	M.V.	F	, 2,
I.	297.900	2	148,950	6.813*	*
PA ·	575.033	2	287.517	13.150**	k
Patterns	249.022	3	83.007	3.797*	*
IxPA	96.967	4	24,242	1,109	
IxP	5 7.7 44	6	\$9.624	•440	
PA x P	77.011	6	12.835	.587	
IxPAxP	375.103	12	31,258	1.430	
SSU	3148.400	144	21,864		
SST	48 77. 200	179		•	

** Significant at .01 level.

TABLE 4.23

BARTLETT'S TEST OF HOMOGENEITY FOR THREE-WAY ANALYSIS OF VARIANCE FOR INTELLIGENCE, PRE-ACHIEVEMENT AND PATTERNS (3x3x4) HAVING THE CRITERION SCORES OF KNOWLEDGE

Level of Intelli- gence	Level of Pre-Achie- vement	P ₁	P2	^р з	P4
	Н	12 14 13 12 16	11 15 15 13 17	14 12 15 7 13	14 14 11 12 17

117

`

Level of Intelli- gence	Level of Pre-Achie- vement	P ₁	P2	[₽] 3	P
	M	11 10 11 13 12	13 13 17 15 14	14 10 15 17 17	1' 1: 1: 1: 1:
	r L	11. 4 15 8 9	8 9 9 13 10	9 12 16 13 12	1
М	н	5 14 5 12 15	9 12 9 16 9	13 17 16 10 17	1 1 1
-	M	13 15 13 14 8	9 13 16 11 16	9 11 14 13 14	1 1 1 1
	L	10 9 12 6 12	10 0 13 10 10	10 13 10 11 12	1 1
L	H	11 17 8 9 15	2 8 11 11 10	9 11 8 16 15	1 1 1 1
•	M	11 8 5 11	10 6 3 7 10	11 16 12 16 12	1 1 1 1

.

Level of Intelli- gence	Level of Pre-Achie- vement	P ₁	P2	P ₃	P ₄
	Ŀ	12 9 8 12 9	9 8 11 11 10	11 11 9 13 9	16 · 10 9 6 3

SUMMARY OF ANALYSIS OF VARIANCE (3x3x4) WITH THE CRITERION SCORES OF ATTAINMENT FOR KNOWLEDGE

Source of variation	S.S.	df.	M.V.	F
I	103.878	2	51.939	6.143**
PA	222.178	2	111.089	13.139**
Patterns	86,422	З	288.073	34.071**
I x PA	63.889	4	15.972	1,889
IxP	35.011	6	5.835	.690
PA x P	39.411	6	6,568	.778
IxPAxP	332.256	12	27.688	3.275
SSW	1217.600	144	8.455	
SST	1900.645	179		

-

- .

** Significant at .01 level.

.

.

.

,

.

BARTLETT'S TEST OF HOMOGENEITY FOR THREE-WAY ANALYSIS OF VARIANCE FOR INTELLIGENCE, PRE-ACHIEVEMENT AND PATTERNS (3x3x4) HAVING THE CRITERION SCORES OF COMPREHENSION

Level of Intelli-	Level of Pre-Achie-	Patterns			
gence	vement	P1	P2	P3	P4
Н	H .	68 48 88	6 8 4 8 8	6 7 6 8 8	5 6 8 4 7
	M	5 6 6 6	5 6 4 6 6	7 9 6 5	9 3 9 9 5
· · ·	L	4 5 4 3	4 5 4 3	6 3 6 4	3 5 7 3 7
M	H	3 1 3 4 4	3 1 3 4 4	8 3 6 7 2	9 7 5 8
	M	4 3 4 6 5	4 3 4 6 5	1 7 4 10	5 9 4 9 5
	L	3 3 2 4 4	3 3 2 4 4	6 6 3 5 4	3 7 6 7 7

119

. .

12 0	
-------------	--

· ,

				12 0	
Level of	Level of		Patte	erns	189 ang ang ang ang ang
Intelli- gence	Pre-Achie vement	P1	P2	P3	P4
	н	6 6 5 4 6	7 6 3 3 5	4 4 3 8 6	0 5 6 6
L JE	ζ Μ	2 1 5 5 5	7 5 0 3 7	3 7 8 6 6	43739
	L	54543	5 5 4 5 6	2 7 2 4	10 2 5 4 0

• • •

.

TABLE 4.26

Sources of variation	S.S.	df.	M.V.	F
I. ' .	35.100	2	17.55	4.525*
PA	57.733	2	28,866	7.443**
Patterns	41.133	З	13.711	3.535**
IxPA	9,267	4	2.317	.597
IxP	37,033	6	6.172	1.591
PA x P	5,333	6	• 889	.229
IxPAxP	40.201	12	3.350	.864
SSW	558,400	144	3.878	
SST	784.200	179	r 17	

Significant at .05 level Significant at .01 level **

.

t Y

.

.

TABLE 4.27

BARTLETT'S TEST OF HOMOGENELITY FOR THREE-WAY ANALYSIS OF VARIANCE FOR INTELLIGENCE, PRE-ACHIEVEMENT AND PATTERNS (3x3x4) HAVING THE CRITERION SCORES OF APPLICATION

Level of	Level of	Patterns				
Intelli- Pre- gence V	vement	P1	P.2	P3	P4	
	H	42212	0 1 1 3 3	1 2 2 0 1	2 1 3 3	

Level of Intelli-	Level of Pre-Achie-	******	Patt		******
gence	vement	P1	P2	P3	P4
H	, M	1 2 0 1 4	0 2 4 1	2 0 2 3 4	2 4 3 3 2 2 2
, ,	Ĺ	1 1 2 3 0	1 2 1 1 0	2 2 4 5 3	4 3 2 2 3
	H	2 2 5 3 2	5 1 3 1 2	1 3 1 3	3 2 3 4 3
М	M	. 3 3 1 3 0	1 3 2 2 2	0 2 0 1 0	2 2 1 1 2
3 3 1	L	0 0 1 0	3 2 2 0 2	0 4 0 1 1	2 3 2 3 1
	Ħ	1 3 2 3 3	3 0 0 2	2 0 1 3 2	0 4 3 0 2
L	M	୦ ୬ ଏ ଏ ୧	3 0 1 0 1	2 3 1 2 1	2 2 2 1 3
	L	1 1 0 0	3 2 3 1 1	6 4 2 3 0	0 0 3 1 0

I

ì

SUMMARY OF ANALYSIS OF VARIANCE (3x3x4) WITH THE CRITERION SCORES OF ATTAINMENT FOR APPLICATION

Sources of variation	8,8,	đf	M.V.	F
Î.	1.478	2	0.739	0.512
PA	4.011	2	2.005	1.388
Patterns	5.750	3	1.917	1.327
IXFA	13.022	. 4	3,255	2.54
IxP	20,300	8	3,383	2.342*
PA x P	30.433	. 6	5.072	3.511**
IxPAxP	16.667	12	1,389	0.961
SSW	208,00Ò	144	1.444	、
SSI	299.601	179		
			2 s	

* Significant at .05 level ** Significant at .01 level

The results vide Tables 4.21 and 4.22 are given for the criterion variables of T. Table 4.21 includes data for 36 experimental conditions resulted due to 3 levels of I x 3 levels of PA x 4 treatment patterns. Each of these 36 cells include five mutually exclusive cases selected by using rendom tables, thus, covering 130 cases. The Bartlett's test applied according to the procedural steps of Edward (1960) resulted into corrected Chi-square value of 34.137 for df 35 which is not significant. This indicates that the variances within the experimental sets are equal, thus the third assumption of analysis of variance as given by Guilford (1956) is satisfied. Table 4.22 presents summary of analysis (3x3x4) with the criterion score of total attainment. The major effects of the variables of I and PA and treatment patterns P1, P2, P3 and P4 on the dependent variable of T are significant at .01 level (F ratio of 6.313 for df 2/144 for I; F ratio of 13.150 for df 2/144 for PA and F ratio of 3.791 for df 3/144 for patterns). The results indicate that all the three variables have significant influence upon the criterion variable. The two variables of intelligence and pre-achievement are non-manipulative whereas the variable of treatment patterns has been manipulated. Since the aim is to see the uncontaminated effect of treatment variables on attainment, it is necessary that the criterion scores should be adjusted for the initial differences in . intelligence and pre-achievement. This would necessitate 16 use another treatment of analysis of covariance.

The analytical results for the criterion variables of attainment for knowledge, comprehension and application by following three-way analysis of variance are given in Tables 4.23 to 4.28. The values of Chi-square found with the help of Bartlett's test are 34.004, 45.857 and 32.570 with df 35 for the criterion variables of knowledge, comprehension and application respectively. The summary of analysis of variance for the criterion variable of

knowledge given in Table 4.24 indicates that intelligence and pre-achievement and treatment patterns have significant effect upon attainment for knowledge (F ratio of 6.143 for df 2/144 for intelligence and F ratio of 13.139 for df 2/144 for pre-achievement and F ratio of 34.071 for df 3/144 for patterns). This also suggests the necessity of analysis of covariance design where the effects of treatment patterns can be seen when final criterion scores are adjustinitial ed for/differences in intelligence; and achievement.

Table 4.26 shows that the variables of intelligence, pre-achievement and pattern have significant effect upon attainment for comprehension (F ratio of 4.525 for df 2/144 for I, F ratio of 7.443 for df 2/144 for PA, and F ratio of 3.535 for df 3/144 for patterns). In this case, the F ratio for I is significant at .05 level while it has been previously significant at .01 level for total attainment and attainment for knowledge both. Again the treatment of enalysis of covariance becomes a must to adjust for the effects of intelligence and pre-achievement on the criterion variable of attainment for comprehension.

In case of the criterion variable of application the effects of variables of intelligence, pre-achievement and patterns are not significant vide Table 4.28, whereas the simple interaction of I by pattern is significant at .05 level (F ratio of 2.342 for df 6/144) and pre-achievement

a stay and a start

and patterns is significant at .Ol level (F ratio of 3.511 for df 6/144). This implies that in a particular pattern the varying levels of intelligence as well as pre-achievement produce variations within the criterion variable of application.

4.50 ANALYSIS OF COVARIANCE

The results given in the above captions have indicated that the variables of intelligence and preachievement have significant influence upon the dependent variables of total attainment and attainment for knowledge, comprehension and application (see results of correlation and three-way analysis of variance under captions 4.30 and 4.40). The 't' ratio results for the variables of intelligence and pre-achievement vide Table 4.3 and Table 4.5 demonstrated that initial levels (mean scores) of intelligence and pre-achievement differed within the experimental subgroups under treatments P1, P2, P3 and P4. Both these conditions necessitated the application of one way analysis of covariance in order to have uncontaminated results for the effect of treatments P1, P2, P3 and P_A on the criterion variables of total attainment and attainment for knowledge, comprehension and application. The analysis of covariance with two variables taken at the same time would have been better but the non-availability of the computer programme for two way analysis of

covariance within the reach of the investigator restricted the approach to one way analysis of a covariance. The two variables with each of the criterion variables resulted into eight studies of analysis of covariance. From the subgroups under each treatment of P_1 , P_2 , P_3 and P_4 twenty cases from each subgroup were selected randomly using the random tables for analysis purpose. The results in the form of analysis of variance and covariance, adjusted means, differences amongst adjusted means for each of the eight covariance studies are given in Tables 4.29 to 4.36.

The Tables 4.29 to 4.32 comprise the results for the criteria measures of total attainment and attainment for knowledge, comprehension and application under treatments P_1 , P_2 , P_3 and P_4 . The scores of the criterion measures have been adjusted for the initial differences of intelligence among pupils under different subgroups. The significance of differences amongst the adjusted mean scores for the different treatments has been finally tested with the help of 't' test.

According to Table 4.29, the treatment P_3 resulted into the highest adjusted mean score (21.405) for total attainment which is significantly higher at .01 level from the mean values for P_1 (17.454), P_2 (17.887) and P_4 (17.752). The Table 4.30 too shows treatment P_3 with the highest adjusted mean scores (13.438) for knowledge which is

Adjusting the Mean Criterion Score for Total Attainment (T) for Initial Differences in Intelligence (I) (X = Scores for I, Y = Scores for T)

.

Analysis of Variance of X and Y Scores, taken separately

Bources of variations	df	SSx	SSy	MSx(Vx)	мбу (Vу)	
Among Means	3	341.65 0 \	213.550	113.883	71.083	
within Groups	76	4469.900	1823.500			
Total	79	4811,550	2037.050			
Fx = 1.936 Fy = 2.962				From Tak df 3/ F.at .C5 F.at .C1		
	**********	*****				
Tot	al SS	W1	thin FS	An	aong M'S SS	m te ete
1934	.547	172	26.461	***	2089096	
Analysis of C	ovariance					
Sources of w variations	df S	Sx SSy	8xy	SSy.x	MSy.x(Vy.x)	SDy.x
Among Keans	3 341	.650 313.250	42.650	208.086	69,362	
within Groups	75 4469	.900 1823.500	658,600	1726.461	23.019	4.797
Total		.550 2036.750			,	
	nd Requests			From Tai df 3, F at .04 F at .03		
Correlation a	r among means	y within		df 3, F at .04 F at .05 al an	/75 6 level = 2.74 1 level = 4.07 	
Correlation a	r among means	*** *** ***		df 3, F at .04 F at .05 al an	/75 6 level = 2.74 1 level = 4.07 mong wi eans	
Correlation a r total .224	r among means .158	2 within .230	****	df 3, F at .04 F at .05 al an	/75 6 level = 2.74 1 level = 4.07 mong wi eans	thin
Correlation a r total .224 Calculation o	r among means .158 f Adjusted Y	2 within .230	.14	df 3, F at .04 F at .05 al au 5	/75 5 level = 2.74 1 level = 4.07 mong wi eans 124	thin
Correlation a r total .224 Calculation o Groups	r among means .158 f Adjusted Y	∵ within .230 Means	.14	df 3, F at .00 F at .01 al an 5 My.	/75 6 level = 2.74 1 level = 4.07 mong w1 eans 124	thin
Correlation a r total .224 Calculation o Groups 1 (P1)	r among means .158 f Adjusted Y N	r within .230 Means Mx	.14 My	df 3, F at .04 F at .05 al an 5 My .	<pre>/75 6 level = 2.74 1 level = 4.07 mong wi eans 124 x (adjusced)</pre>	thin
Correlation a r total .224 Calculation o Groups 1 (P ₁) 2 (P ₂ ;	r among means .158 f Adjusted Y N 20	within .230 Means Mx 82.350	.14 My 17.20	df 3, F at .04 F at .05 al an 5 My . 0	<pre>/75 6 level = 2.74 1 level = 4.07 mong w1 eans 124 x (adjus.ed) 17.454</pre>	thin
Correlation a r total .224 Calculation o Groups 1 (P ₁) 2 (P ₂) 3 (P ₃)	r among means .158 f Adjusted X N 20 20	<pre>vithin .230 Means Mx 82.350 87.550</pre>	.14 My 17.20 18.40	df 3, F at .00 F at .00 al an mo 5 My . 0 0	<pre>/75 6 level = 2.74 1 level = 4.07 mong wi eans 124 x (adjus.ed) 17.454 17.887</pre>	thin
Correlation a r total .224 Calculation o Groups 1 (P ₁) 2 (P ₂ ; 3 (P ₃) 4 (P ₄)	r among means .158 f Adjusted X N 20 20 20 20 20	• within • 230 2 Means Mx 82.350 87.550 83.700 82.700 82.700	.14 My 17.20 18.40 21.35 17.55	df 3, F at .00 F at .00 al an mo 5 My . 0 0 0 0	<pre>/75 6 level = 2.74 1 level = 4.07 mong wi eans 124 x (adjusted) 17.454 17.887 21.405 17.752</pre>	thin 147
Correlation a r total .224 Calculation o Groups 1 (P ₁) 2 (P ₂ ; 3 (P ₃) 4 (P ₄) Significance	r among means .158 f Adjusted X N 20 20 20 20 20	• within • 230 2 Means Mx 82.350 87.550 83.700 82.700 82.700	.14 My 17.20 18.40 21.35 17.55	df 3, F at .00 F at .00 al an mo 5 My . 0 0 0 0	<pre>/75 6 level = 2.74 1 level = 4.07 mong wi eans 124 x (adjusted) 17.454 17.887 21.405 17.752</pre>	thin 147
Correlation a r total .224 Calculation o Groups 1 (P ₁) 2 (P ₂ ; 3 (P ₃) 4 (P ₄) Significance	r among means .158 f Adjusted Y N 20 20 20 20 20 0 f difference SE _{My}	<pre>. within .230 . Means Mx 82.350 87.550 83.700 82.700 82.700</pre>	.14 My 17.20 18.40 21.35 17.55 sted Y Mcan SEp be	df 3, F at .04 F at .05 al an mu 5 My . 00 00 00 00 00 00 00 00 00 00 00 00 00	<pre>/75 6 level = 2.74 l level = 4.07 mong w1 eans l24 x (adjus.ed) 17.454 17.887 21.405 17.752 wo adjusted me</pre>	thin 147
Correlation a r total .224 Calculation o Groups 1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance SDy.x 4.797 Fro t	r among means .158 f Adjusted Y N 20 20 20 20 20 0 f difference SE _{My}	• within • 230 2 Means Mx 82.350 87.550 83.700 82.700 82.700	.14 My 17.20 18.40 21.35 17.55 sted Y Mcan SEp be	df 3, F at .04 F at .05 al an mu 5 My . 00 00 00 00 00 00 00 00 00 00 00 00 00	<pre>/75 6 level = 2.74 l level = 4.07 mong w1 eans l24 x (adjus.ed) 17.454 17.887 21.405 17.752 wo adjusted me</pre>	thin 147
r total .224 Galculation o Groups 1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance SDy.x 4.797 Fro t	r among means .158 f Adjusted Y N 20 20 20 20 0f differenc SE _{My} 1.0 m Table D df 75 .05 = 2.00 .01 = 2.65 ifferences s	<pre>. within .230 . Means Mx 82.350 87.550 83.700 82.700 82.700</pre>	.14 My 17.20 18.40 21.35 17.55 sted Y Mean SEp be	df 3, F at .00 F at .00 F at .00 al an mo 5 My . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>/75 6 level = 2.74 1 level = 4.07 mong wi eans 124 x (adjusted) 17.454 17.887 21.405 17.752 wo adjusted me 7 4</pre>	thin 147
Correlation a r total .224 Calculation o Groups 1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance SDy.x 4.797 Fro t t Significant d Significant d	r among means .158 f Adjusted Y N 20 20 20 20 20 0 f difference SE _{My} 1.0 m Table D df 75 .05 = 2.00 .01 = 2.65 ifferences a	<pre>. within .230 . Means Mx 82.350 87.550 83.700 82.700</pre>	.14 My 17.20 18.40 21.35 17.55 sted Y Mean SED be = 2 x 1.5 = 2.65 x	df 3, F at .00 F at .00 F at .00 al an mo 5 My . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>/75 6 level = 2.74 1 level = 4.07 mong wi eans 124 x (adjusted) 17.454 17.887 21.405 17.752 wo adjusted me 7 4</pre>	thin 147
Correlation a r total .224 Galculation o Groups 1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance SDy.x 4.797 Fro t t Significant d Significant d Significant d	r among means .158 f Adjusted Y N 20 20 20 20 20 of difference SE _{My} 1.0 m Table D df 75 .05 = 2.00 .01 = 2.65 ifferences s ifferences s tween Adjust F1 - P2 P1 - P3	<pre>. within .230 . Means Mx 82.350 87.550 83.700 82.700</pre>	.14 My 17.20 18.40 21.35 17.55 sted Y Mean SEp be = 2 x 1.5 = 2.65 x P ₁ ,P ₂ , F ₃	df 3, F at .00 F at .00 F at .00 al an mo 5 My. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>/75 6 level = 2.74 1 level = 4.07 mong wi eans 124 x (adjusted) 17.454 17.887 21.405 17.752 wo adjusted me 7 4 fro their signific 23 = 3.518 P4 = 0.135</pre>	thin 147

ADJUSTING THE MEAN CRITERION SCORE FOR MTAINMENT OF KNOWLEDGE OBJECTIVE (K) FOR INITIAL DIFFERENCES 1A INTELLIGENCE (I) (X = Scores \underline{A} , Y = Scores for K)

*L*for Analysis of Wariance of X and Y Scores, taken separately Sources of SEx variations đf SSy MSx(Vx) MSy(Vy) 113.883 87.250 Among Means 3 341.050 29.083 Within groups 76 4469.900 728,700 58.814 9,588 Total 79 4811.650 815.950 ------. - **- -** - - - ------_____ Fx = 1.936From Table f df 3/76 F at .05 level = 2.72 F at .01 level = 4.04 Fy = 3.033Computation of Adjusted SS for Y: 1.e., SSy.x . Total SS Within SS Among M'S SS <u>۶۱.05</u>9 ----682.170 763.230 -----------Analysis of Govariance Sources of df SSx SSV SSy.x MSy.x(Vy.x) variation Sxv Among Means 3 341.650 87.250 _____ 47.600 81.059 27.419 Within Groups 75 4469.900 728.700 456.050 682.170 9.095 Total 78 4811.550 815.950 503.650 763.230 Fy.x = 2.970From lable F df 3/75F at .05 Jevel = 2.76 F at .01 $1 \sim 31 = 4.07$ Correl tion and Regression r total r among r within Lotal among

wit un means nears ******* ----.275 .139 .254 .254 .104 .102 Calculation of Adjusted Y Means My N Hx My.x (adjusted) Groups -------------------10.925 4.650 $1 (P_1)$ 82.350 20 2 (P₂) 20 87.550 4.850 11.448 6.100 3 (P₃) 20 83,700 13.438 20 4.750 $4(P_4)$ 82.700 11.093 -----------_____ Significance of difference among Adjusted Y Means _____ SEMp.x SDy.x SED between my two adjusted means ----.674 .953 3.015 _____ From Table D df 75 t .05 = 2.00 t .01 = 2.65 Significant differences at .05 level = 2 x .353 = 1.906 Significant differences at .01 Level = 2.65 x .953 = 2.399

Difference between Adjusted Means for P1, P2,P3 and P4 and their significance

P1 - P2 = .520 $P_1 - P_3 = 2.513 **$ $P_1 - P_4 = .167$ = 1.993 * = .343 P2 - P3 $P_2 - P_4$ P3 - P4 = 2.34 *

 Significant at .05 level ** Significant at .Ol level

N

SDy.I

3.015

.

4,

ADJUSTING THE MEAN CRITERION SCORE FOR ATTAINMENT FOR COMPREHENSION OBJECTIVE (C) FOR INIT AL DIFFERENCES IN INTELLIGENCE (A) (X = Scores for I, Y = Scores for C) as of Variance of X and Y Scores, taken separately

Sources of Variations	đf	SGx	SSy	MSx(Vx) MSy((Vy)
Among Means	3	341.650	27.737	113,8	B3 9.2 4	45
Nithin Groups	76	4469.900	300.650	58.8	14 3.95	55
Total		4811.550	328.387	a a a a a a a a a a a a a a a a a a a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, an an _i r, an an an an an
Fx = 1.936 Fy = 2.337	~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~ *** *	From 20b df 3,77 F at .05 F at .(1	le F 5 level = 2.72 level = 4.04	
Computation of					، من عد هذه مع مع مع مع مع مع مع مع من مع عد الله مع مع مع مع مع مع مع مع مع	• •••• •• •• ••
Total S	S			Anc 4	g M'S 88	****
323,867	*****	295.	802	?: 	8.064	
analysis of Co			***		. ~ ~	
Sources of variations	df Sa	ax SSy	Sxy	SEy.x	MSJ.x(Vy.x)	SDy.x
Among Means						ar antar anta anta inte anta anta 400 km -
Within Groups					3.944	1,985
Total	78 4811.	.550 328.387	14'.4.'5	323.867	***************************************	
Fy.x = 2.371 Correlation an	d Regression	1		From Tabl df 3/7 F at .05 F at .01		
*****	r among means	r within		otal	neans	within
.117	.002	.126	•	.030	.000	.032
Calculation of				************	******	
Groups	N	Mx	Му	M	y.x (adjusted	

		82.350	******	, , ,	4.706	
1 (P ₁) 2 (P ₂)			******	, ,	4.706 4.735	
1 (P ₁) 2 (P ₂) 3 (P ₃)	20 20 20	82.350 87.550 83.700	4.650 4.860 6.100			
1 (P ₁) 2 (P ₂)	20 20	82.350 87.550	4.650 4.850		4.735	
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄)	20 20 20 20	82.350 87.550 83.700 82.700	4.650 4.850 6.⁻.30 4.750	`	4.735 6.112	
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄)	20 20 20 20	82.350 87.550 83.700 82.700 e among Adjust	4.650 4.850 6.7.30 4.750 ted Y Means		4.735 6.112 4.795	sted means
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance of	20 20 20 20	82.350 87.550 83.700 82.700	4.650 4.850 6.7.30 4.750 ted Y Means		4.735 6.112 4.795	stød mæans
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance of SDy.x 1.985 From Tat df = t .05 = t .01 = Significant di	20 20 20 20 of Differenc ble D 75 = 2.00 = 2.65	82.350 87.550 83.700 82.700 e among Adjust SEMy.x .444	4.650 4.850 6.7.30 4.750 ted Y Means	SE _D between	4.735 6.112 4.795 any two adju .628	sted means
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance of SDy.x 1.985 From Tat df = t .05 = t .01 = Significant di	20 20 20 20 20 20 20 20 20 20 20 20 20 2	82.350 87.550 83.700 82.700 e among Adjust SEMy.x .444 t .05 level t .01 level	4.650 4.850 6. ¹ JO 4.750 ted Y Means	.628 = 1.	4.735 6.112 4.795 any two adju .628	
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance of SDy.x 1.985 From Tat df = t .05 = t .01 = Significant di	20 20 20 20 of Differenc ble D 75 = 2.00 = 2.65 Lifferences a Lifferences a	82.350 87.550 83.700 82.700 e among Adjust SEMy.x .444 t .05 level t .01 level	4.650 4.850 6. ¹ JO 4.750 ted Y Means	.628 = 1.	4.735 6.112 4.795 any two adju .628	
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance of SDy.x 1.985 From Tat df = t .05 = t .01 = Significant di	20 20 20 20 of Differenc ble D 75 = 2.00 = 2.65 Liferences a Liferences a	82.350 87.550 83.700 82.700 e among Adjust SEMy.x .444 t .05 level t .01 level ed Means for H = .025	4.650 4.850 6. ¹ JO 4.750 ted Y Means	.628 = 1.	4.735 6.112 4.795 any two adju .628	
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance of SDy.x 1.985 From Tat df = t .05 = t .01 = Significant di	20 20 20 20 of Differenc ble D 75 = 2.00 = 2.65 Liferences a Liferences a Liferences a	82.350 87.550 83.700 82.700 e among Adjust SEMy.x .444 t .05 level t .01 level ed Means for 1 = .022 = 1.406 *	4.650 4.850 6. ¹ JO 4.750 ted Y Means	.628 = 1.	4.735 6.112 4.795 any two adju .628	
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance of SDy.x 1.985 From Tat df = t .05 = t .01 = Significant di Significant di	20 20 20 20 20 20 20 20 20 20	82.350 87.550 83.700 82.700 e among Adjust SEMy.x .444 t .05 level t .01 level ed Means for H = .025 = 1.406 * = .089 = 1.377 *	4.650 4.850 6. ¹ JO 4.750 ted Y Means	.628 = 1.	4.735 6.112 4.795 any two adju .628	
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance of SDy.x 1.985 From Tat df = t .01 = Significant di Significant di	20 20 20 20 of Differenc 75 = 2.00 = 2.65 Ifferences a Ifferences a tween Adjust P1 - P2 P1 - P3 P1 - P4	82.350 87.550 83.700 82.700 e among Adjust SEMy.x .444 t .05 level t .01 level ed Means for H = .025 = 1.406 * = .089 = 1.377 *	4.650 4.850 6. ¹ JO 4.750 ted Y Means	.628 = 1.	4.735 6.112 4.795 any two adju .628	

ADJUSTING THE MEAN CRITERION ECORE FOR ATTAINMENT FOR APPLICATION OBJECTIVE (A) FOR INITIAL DIFFERENCES IN INTELLIGENCE (I) (X = Scores for I, Y = Scores for A)

Sources of variations	đf	£	Sx	887	MSx(Vx) MS;	y(Vy)
Among Means	3	341	L.05C	0.137		******	
Aithin Groups							
Total	79	481	L.550	118.187			
Fx = 1.936 Fy = 0.029					From Teo df 3/ F at .CJ	le F	2.72 4.04
	djusted						****
			W160	in SS	Ale on	g M'S SS	
			117	7.364		0.300	
Analysis of Cova	riance	. 400 400 400 400 40 40 40 40	هه وی ۱۹۹ خه هه چه چه منه وي ا ^{رد.}		******		
Sources of Variations		SSx	SS7	Sxy	SSy.x	MSy.I(Vy	x) SDy.x
Among Means		41.650	.137	- 5.235	300	.100	
Within Groups	75 44	69.900	118.050	55 . 3 v)	117.364	2565	25 0
Total	78 48	311.550	118.187	50.125	117.665	********	*******
Fy.x = 0 Correlation and	.64		• = = = = = = = = = = = = = = = = = = =	9 499 499 an an 991 493 an 49 A	From Tab df 3/ F at .05 F at .01	le F 75	2.74
	r among		within		total	8110119	within
	means			****	• ***	means	
.066	762		.076		.010	015	.012
Calculation of A							•
Groups	N	M	C	My	My ,	(adjuste	d)
· · · · · · · · · · · · · · · · · · ·			350			1.821	,
2 (P ₂)							
3 (P3) 4 (P4)	20 20		700 700			1.854	
4 (F4) Significance of						1.867	
eesee eese eesee				:UGU_3		*****	
SDy.x			SEMy.x		SED between P	my two ad	justed means
1.250			.279		***	.395	
From df t .05	Table D = 75 5 = 2.6 Cerences Cerences Seen Adju: P1 - P1 - P1 - P1 -	00 55 at .05 at .01 sted Mean - ^P 2 - ^P 3	level = level = ns for P ₁	2 x 2.6. x	•395 = •	.79 0 047	

132

significantly higher at .01 level from P₁ (10.925) and at .05 level from P₂ (11.445) and P₄ (11.092). The Table 4.31 gives results for comprehension. In this case too, ∞ for total attainment and application, the treatment P₃ attained the highest adjusted mean scores of 6.112 which is significantly higher at .05 level from those for P₁ (4.706), P₂ (4.735) and P₄ (4.795). However, the Table 4.32 presents a different picture than that of the Tables 4.29 to 4.31. The adjusted mean scores for application for the four treatments are 1.821 for P₁, 1.706 for P₂, 1.854 for P₃ and 1.867 for P₄. The differences amongst them are not significant.

The above Tables 4.29 to 4.32 help to draw the conclusion that treatment P_3 is the most effective treatment as far as the total attainment and the attainment for knowledge and comprehension objectives are concerned but as far as the objective of application is concerned, all the four treatments do not produce differential effects.

The Tables 4.33 to 4.36 present results for analysis of covariance for the criterion measures of total attainment and attainment for knowledge, comprehension and application adjusted for the initial differences in pre-achievement.

The procedural steps are the same as followed for the adjustment of criterion scores for the effects of

ADJUSTING THE MEANS CRITERION SCORE FOR TOTAL ATTAINMENT (T) FOR INITIAL DIFFERENCES IN PRE-ACHIEVEMENT (PA) (X \Rightarrow Scores for PA, Y = Scores for T)

ł

Analysis of Vari		*****			*****	40 40 cm 1/8 cm cm cm
Sources of variations	df	SSX	SSy	MSx(Vx		
mong Means	3	68.537	213.250	32.816	77.08	33
ithin droups	76	871.350	1823.500	11.465	23.99	93
Total	79	939,887	2036,750		바니는 시작으로 바위로 드위식 식	
	****	97 ar 1 488 and and 200 ar 1 400 and 100 and		1996 - 1987 - 1999 - 1999 - 1999 - 1999 - 1999 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	******	. 488. 989. 996 ong 285 ong
Fx = 1.992 Fy = 2,62	2				76 level = 2.72	
omputation of A					level = 4.04	
Total SS			hin SS	Am	ong M'S SS	
1944.080			8.853		295,226	*****
				मान स्थित स्थल करू. पति त्या मध्य प्रकृत त्या करू स्थल स्थल		
inalysis of Co	ABLISHCS					,
ources of Variation	df	SSX SSy	Sxy	8Sy.x	MSy.x(Vy.x)	SDy.x
Mong Means	3 68	.537 213.25	io - 94.975	295.226	98.408	
ithin Groups	75 871	.350 1823.50	0 393.100	1648.853	21.984	4.688
iota]	78 939	.887 2036.78	0 295.125	1944.080	********	
Fy.x = 4.476	·		~~ <u>~</u>	• *= *= * * * * * * * * * * * * * * * *	Table F	1 12 ann ann ann ann ann ann 16 1986 ann a
-104 - IIIK	•			đ	f 3,775	0.024
orrelation and	Regressi	on		r at F et	.05 level = .01 level =	2.74 4.07
r total	r among means	r .	lithin	total	anong Loans	within
			.309		*** *****	****
.213		*****		.314	-1.385	.447
Calculation of A	Adjusted	Y Means				سے پیر کہ جہ ہے کہ جن بارد خان ہے ک
Groups	N	Mx		My	My.x (adjust	ted)
1 (P ₁)	20	9.350)	17.200	17.283	
2 (P2)	20	10.300		18.400	18.058	
3 (P ₃)	20	8.100		21.350	21.993	
4 (P ₄)	20	10.400) •=== >=========	17.550	· 17.163	
Significance of	differen	ce among Adju		LS	******	.
SDy.x		SE _{My}	X	SE _D betwe	en any two ad,	justed mean
4,688		1 049	3		1.482	
From Table df = 75 t .05 = 3 t .01 = 3	2.00					
		at .05 level	= 2 K = 265 -	1.182 = 2.9 1.482 = 2.9)64)27	
Significant dif:	ferences	at . Ol love	- 0,00 &	പടാപങ്ങളും പോട്ടും പോട		
Significant dif: Significant dif:	ferences	at .01 level				ance
Significant dif Significant dif	ferences een Adjus	at .01 level ted Means for	^P P ₁ , P ₂ , P ₃			ance
Significant dif Significant dif	ferences een Adjus P ₁	at .01 level	r P ₁ , P ₂ , P ₃ .775			ance
Significant dif Significant dif	ferences een Adjus Pl Pl	at .01 level ted Means for $-P_2 =$ $-P_3 = 3$	r P ₁ , P ₂ , P ₃ .775			ance
Significant dif: Significant dif: Différence betw	ferences een Adjus P ₁ P ₁ P ₁ P ₂	at ,01 levei ted Means fo: - P ₂ = - P ₃ = 3 - P ₄ = 6 - P ₃ = 5	r P ₁ , P ₂ , P ₃ .775 .710 *+ 0.120 3.935 **			ance
Significant dif Significant dif	ferences een Adjus Pl Pl Pl P2 P2	at ,01 level ted Means fo: $-P_2 =$ $-P_3 = 3$ $-P_4 = 6$ $-P_3 = 5$ $-P_4 = 6$	r P ₁ , P ₂ , P ₃ .775 .710 *+ 0.120 3.935 ** 0.895			ance
Significant dif Significant dif	ferences een Adjus Pl Pl Pl P2 P2	at ,01 level ted Means fo: $-P_2 =$ $-P_3 = 3$ $-P_4 = 6$ $-P_3 = 5$ $-P_4 = 6$	r P ₁ , P ₂ , P ₃ .775 .710 *+ 0.120 3.935 **			ance

ADJUSTING THE MEAN CRITERION SCORE FOR ATTAINMENT FOR KNUWLEDGE OBJUCTIVE (K) FOR INITIAL DIFFERENCES IN PRE-ACHIEVEMENT (PA) (X = Scotes for PA, Y = Scores for K)

variation	đſ	SSx		8Sy	MSx(Vx)	MSy (1	Jy)
Amonig, Means	3	68.537	93	.438	22,845	31.14	46
Nithin Groups	76	871.350	711	750	11.465	9,30	35
Total	79	939,887	805	.188	****		- 48 ab an - 48 ab an an 48 a
Fx = 1. Fy = 3. Computation of	325	SS for Y.	1 o .SSv	Y.	From labl df = 3 F at .05	la F	72
Total SS			Within &			M'S SS	
-							an aipe Alle aine aine aine aine aine aine aine
780.464		***	661.81]		1 	18.653	
Analysis of Vou	ariance	_					
Sources of variation	df	SSx	SSy	Sxy	SSy.x	MSy.x(Vy.x)	SDy.x
Among Means	3	68,537	93.438	- 56.162	118.653	39,551	
Within Groups	75 8				661.811	8,824	2.970
Total	78 9	39.887 8	05.188	152.437	780.464		*****
Fy.x = 4. Correlation and		.on					
	r among	*******		total			within
r cocar	means			ـــــــــــــــــــــــــــــــــــــ	m	nong I ans	
.175	701		64	.162		610	.239
Calculation of	Adjusted	Y Means		ی بری مید به ۱۹۹۰ مید ۲۰ من مید است. به مید به مید به	y &, , # # # # # # # # #		188 189 199 299 299 299 ²⁹⁹ 299 18-199
				Му		My.x (adjuste	 .a
Groups	N					W / Sulfapre	
Groups 1 (P1)	N 20	9.35		10.600		10.644	
-		****	i0	10.600 11.800	, 8 - 4 - 4 - 4 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6		
1 (P ₁) 2 (P ₂) 3 (P ₃)	20	9.35	i0)0		,	10.644	
1 (P ₁) 2 (P ₂)	20 20	9.35 10.30	io 00 00	11.800		10.644 11.617	
1 (P ₁) 2 (P ₂) 3 (P ₃)	20 20 20 20 20	9.35 10.30 8.10 10.40	60 00 00 00 00 00	11.800 13.400 10.930 Y Means	* = **** = *******	10.644 11.617 13.744 10.743	
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄)	20 20 20 20 20	9.35 10.30 8.10 10.40	60 00 00 00 00 00	11.800 13.400 10.930 Y Means	* = **** = *******	10.644 11.617 13.744 10.743	
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance of	20 20 20 20 20	9.35 10.30 8.10 10.40 Ace among A SEMY.x	60)0)0)0)0	11.800 13.400 10.930 Y Means SE _D be	* = **** = *******	10.644 11.617 13.744 10.743 two adjustod	
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance of SDy.x	20 20 20 f Difierer f Difierer f Difierer f Difierer f Difierer	9.35 10.30 8.10 10.40 Ace among A SEMY.x	60)0)0)0)0	11.800 13.400 10.930 Y Means	tween any	10.644 11.617 13.744 10.743 two adjustod	
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance of SDy.x 2.970 From Ta df = t .05 =	20 20 20 f Difleren able D 75 = 2.00 = 2.65 fferences	9.35 10.30 8.10 10.40 nce among A <u>SEMY.x</u> 0.664	60 00 00 00 00 00 00 00 00	11.800 13.400 10.950 Y Means SED bet	tween any 0.93 = 1.878	10.644 11.617 13.744 10.743 two adjustad	
1 (P ₁) 2 (P ₂) 3 (P ₃) 4 (P ₄) Significance of SDy.x 2.970 From Ta df = t .05 = t .02 = Significant dif	20 20 20 f Difierer able D 75 = 2.00 = 2.65 fferences fferences	9.35 10.30 8.10 10.40 nce among A <u>SEMY.x</u> 0.664 at .05 lev at .01 lev sted Means	for P1, 1	11.800 13.400 10.930 Y Means SED bet SED bet .00 x .939 .65 x .939	= 1.878 = 2.488	10.644 11.617 13.744 10.743 two adjustod	means .
<pre>1 (P1) 2 (P2) 3 (P3) 4 (P4) Significance of SDy.x 2.970 From Ta df = t .05 t .01 Significant dif Significant dif</pre>	20 20 20 f Difierer able D 75 = 2.00 = 2.65 fferences fferences fferences	9.35 10.30 8.10 10.40 nce among a SEMY.x 0.664 at .05 lev at .01 lev at .01 lev	50 50 50 50 50 50 50 50 50 50	11.800 13.400 10.930 Y Means SEp bet SEp bet .00 r .939 .65 x .939 P2, P3 and P.	= 1.878 = 2.488	10.644 11.617 13.744 10.743 two adjustod	means .
<pre>1 (P1) 2 (P2) 3 (P3) 4 (P4) Significance of SDy.x 2.970 From Ta df = t .05 t .01 Significant dif Significant dif</pre>	20 20 20 20 f Difierer f Difierer 20 f Difieren 20 f Difieren 20 f F F F F F F F F F F F F F F F F F F F	9.35 10.30 8.10 10.40 ace among A SEMY.x 0.664 at .05 lev at .01 lev at .01 lev at .01 lev	<pre>i0 i0 i0 i0 i0 i0 idjusted i rel = 2 rel = 2 for P₁, i = .97 = 3.10 </pre>	11.800 13.400 10.930 Y Means SED bet SED bet .00 r .939 .65 x .939 P2, P3 and P. 3 0 **	= 1.878 = 2.488	10.644 11.617 13.744 10.743 two adjustod	means .
<pre>1 (P1) 2 (P2) 3 (P3) 4 (P4) Significance of SDy.x 2.970 From Ta df = t .05 t .01 Significant dif Significant dif</pre>	20 20 20 20 f Difierer f Difierer 20 f Difieren 20 f Difieren 20 f F F F F F F F F F F F F F F F F F F F	9.35 10.30 8.10 10.40 nce among a SEMY.x 0.664 at .05 lev at .01 lev at .01 lev	<pre>i0 i0 i0 i0 i0 i0 idjusted i rel = 2 rel = 2 for P₁, i = .97 = 3.10 </pre>	11.800 13.400 10.930 Y Means SED bet SED bet .00 r .939 .65 x .939 P2, P3 and P. 3 0 **	= 1.878 = 2.488	10.644 11.617 13.744 10.743 two adjustod	means .
<pre>1 (P1) 2 (P2) 3 (P3) 4 (P4) Significance of SDy.x 2.970 From Ta df = t .05 t .01 Significant dif Significant dif</pre>	20 20 20 20 f Difierer f Difierer 20 f Difieren 20 f Difieren 20 f Difieren 20 f Difieren 20 f Difieren 20 f Difieren 20 f Difieren 20 f Difieren f Pi f Pi f Pi f Pi f Pi f Pi f Pi f Pi	9.35 10.30 8.10 10.40 nce among & SE _{My.x} 0.664 0.664 at .01 lev ted Means - P ₂ = - P ₂ = - P ₄ = - P ₃ =	<pre>50 10 10 10 10 10 10 10 10 10 10 10 10 10</pre>	11.800 13.400 10.930 Y Means SED bet SED bet 	= 1.878 = 2.488	10.644 11.617 13.744 10.743 two adjustod	means .
<pre>1 (P1) 2 (P2) 3 (P3) 4 (P4) Significance of SDy.x 2.970 From Ta df = t .05 t .01 Significant dif Significant dif</pre>	20 20 20 20 f Difierer f Difierer 20 f F f F f F f F f F f F f F f F f F f F	9.35 10.30 8.10 10.40 nce among A SEMY.x 0.664 at .05 lev at .01 lev ted Means - P2 = - P2 =	Fel = 2 rel = 2 for P ₁ , 1 = .97 = .97 = .09 = 2.02 = .87	11.800 13.400 10.930 Y Means SED bet SED bet 9 65 x .939 P2, P3 a.ud P. 3 0 ** 9 7 * 4	= 1.878 = 2.488	10.644 11.617 13.744 10.743 two adjustod	means .

Analysis of Variance of X and Y scores, taken separately

ADJUSTING THE MEAN CRITERION SCORE FOR ATTAINMENT FOR COMPREHENSION OBJECTIVE (C) FOR INITIAL DIFFERENCES IN PRE-ACHIEVEMENT (PA) (X = Scores for PA, Y = Scores for C)

		•			
Analysis of Vari	Lance of X	and X scores,	taken sepa ra t	ely	
Sour:es (` variations	df	SSx	SSy	M£x(Vx)	MSy (Vy)
Among Means	3	68.537	28.900	22.843	8,966
Within Groups	76	871.350	302.300	11.465	3,977
Iotal	79	939,887	329,200		, a 4 4 4 6 6 6 6 6 6 6 6 7 6 7 7 7 7 7 7 7
Fx = 1.992 Fy = 2.254				From Talle df 3/76	5
				F at .05 le F at .01 le	evel = 2.72
Computation of A	Adjusted S	S for Y: i.e.,	ssy.x		
Total SS		****	within SL	Amor	Ig MIS SS
322,940	0 ani 16 an an 26 an 26 an 18	***	287.437		35,503
Analysis of Cov				त्रांत त्राप्त भाग भीते कांद्र क्रिंग प्रदेत प्रदेत प्रदेत प्रदेत प्रदेत प्रदेत क्रां क्रां भाग भाग भाग क्रा क -	n 400 dan 100 mpa nan ang nda 400 mb ant an ini ma an ini ma ang ang ang ang ang an

Sources of variation	df	SSX SSy	Sx;	SSy.x MSj	r.x(Vy.x) SDy.x
Among Means	З	68.537 26.90	0 - 37.1	35.503	11.834
within Groups	75	871.350 302.30	0 113.8	287.437	3.832 1.95?
fotal	78	939.887 329.20	76.7	522.940	
Fy.x = 3.08)		, ang	From Table df 3/7	ŏ ;
Correlation and	Regressic	m			evel = 2.74 evel = 4.07
r total	r amona meana		i i ot	al prion	
.137	864	.221	.08	54	.130
Calculation of		*****	, to a first of the state of th	*****	
Groups	N	Nx	Му	My.x	(adjusted)
1 (P ₁)	20	9.350	4,700	4.	.724
2 (P2)	20	10.300	4.850		.750
3 (P3)	20	8.100	6.100	C	.287
4 (P 6)	20	10.400	4.750	4	.637
Significance of					······································

SDy.x		SEMy.x		D BETWEEN ANY TW	O ADJUSTED MEANS
SDy.x 1.957		.437		D BETWEEN ANY TW	
SDy.x 1.957		.437		D BETWEEN ANY TW	
SDy.x	ole D 75 = 2.00	.437		D BETWEEN ANY TW	
SDy.x 1.957 From Tal df = t .05 = t .01 = Significant diff	ole D 75 = 2.00 = 2.65 Cerences a	.437 t .05 level =	2.00 x .619	D BETWEEN ANY TW .619	
SDy.x 1.957 From Tak df = t .05 = t .01 = Significant diff Significant diff	ole D 75 = 2.00 = 2.65 Perences a Terences a	.437 t .05 level = t .CJ level =	2.00 x .619 2.65 x .619	D BETWEEN ANY Tw .619 = 1.238 = 1.640	
SDy.x 1.957 From Tak df = t .05 = t .01 = Bignificant diff Significant diff	ole D 75 = 2.00 = 2.65 Perences a Terences a	.437 t .05 level = t .CJ level = eā Means for P ₁	2.00 x .619 2.65 x .619	D BETWEEN ANY Tw .619 = 1.238 = 1.640	
SDy.x 1.957 From Tak df = t .05 = t .01 = Significant diff Significant diff Difference betwee F	ble D 75 = 2.00 = 2.65 Perences a pen Adjust $21 - P_2$ $21 - P_3$.437 t .05 level = t .03 level = ed Means for P1 = .026 = 1.563 *	2.00 x .619 2.65 x .619	D BETWEEN ANY Tw .619 = 1.238 = 1.640	
SDy.x 1.957 From Tak df = t .05 = t .01 = Bignificant diff Significant diff Difference betwee F F F	ble D 75 = 2.00 = 2.65 Perences a pen Adjust $P_1 - P_2$ $P_1 - P_3$ $P_1 - P_4$.437 t .05 level = t .CJ level = eā Means for P1 = .026 = 1.563 * = .037	2.00 x .619 2.65 x .619	D BETWEEN ANY Tw .619 = 1.238 = 1.640	gnificance
SDy.x 1.957 From Tak df = t .05 = t .01 = Significant diff Significant diff Difference betwee F F F F	ple D 75 = 2.00 = 2.65 erences a erences a eren Adjust $P_1 - P_2$ $P_1 - P_3$ $P_1 - P_4$ $P_2 - P_3$.437 t .05 level = t .01 level = eā Means for P ₁ = .026 = 1.563 * = .037 = 1.537 *	2.00 x .619 2.65 x .619	D BETWEEN ANY Tw .619 = 1.238 = 1.640	mificance
SDy.x 1.957 From Tak df = t .05 = t .01 = Significant diff Significant diff Difference betwee F F F F F F F F F F F F F	$ \begin{array}{cccc} $.437 t .05 level = t .CJ level = ed Means for P1 = .026 = 1.563 * = .037 = 1.537 * = .113	2.00 x .519 2.65 x .619 , P ₂ , P ₃ and	D BETWEEN ANY Tw .619 = 1.238 = 1.640	mificance
SDy.x 1.957 From Tak df = t .05 = t .01 = Significant diff Significant diff Difference betwee F F F F F F F F F F F F F	Die D 75 = 2.00 = 2.65 Perences a Serences a Seen Adjust Di - P2 Di - P3 Di - P4 2 - P3 2 - P4 3 - P4	.437 t .05 level = t .C] level = eā Means for P1 = .026 = 1.563 * = .037 = 1.537 * = .113 = 1.456 **	2.00 x .619 2.65 x .619 , P ₂ , P ₃ and	D BETWEEN ANY TH .619 = 1.238 = 1.640 P ₄ and their sig	mificance

ADJUSTING THE MEAN CRITERION SCORE FOR ATTAINMENT FOR APPLICATION OBJECTIVE (A) FOR INITIAL DIFFERENCES IN PRE-ACHIEVEMENT (PA) (X = Segres for PA, Y = Scores for A)

Analysis of Vari	lance of X	and Y Scores,	taken sopara	tely	1
Sources of variations	đſ	S8x	SSy	MSx(Vx)	MSy (Vy)
Anong Means	3	68.537	.437	22.845	0.145
Within Groups	76	871.350	119.050	11.465	1.566
Total	79	9 39,837	119,487	****	
$F_{X} = 1.992$ $F_{y} = 0.93$ Computation of A	Adjusted SS	b for Y: i.e	557 . X	From Table F df 3/70 F at .05 leve F at .01 leve	1 = 2,72
Total SS	*********	Within			M'S ES
114.723	, waa a waa a wa	113.18			.540
**************************************				** * ** ** ** ** ** ** ** ** ** ** ** *	******
Analysas of Cov	ariance		, 	****	*****
Sources of variation	df	Sex Esy	Sxy	SSy.x	MSy.x(Vy.x) SDy.x
Among Means	3	58.5 37 .43	7 - 4.587	1.540	.513
Within Groups	75 8	71-350 119.05	0 71.500	113.182	1.509 1.228
Total	78 9	39.887 119.48	66.312	114.723	
EX Fy.x = -3				di F it	Table F f 3/75 .05 level = 2.74 .01 level = 4.07
Correlation and	negressio	9. 	******	, 	
f r total	r amon mgan		in t		nong withip eans
.199	837	.22	21 '	.071 -	.066 032
Calculation of	Adjusted X	Means		****	
Groups	N	Мя	***	My	My.x (adjusted)
1 (P ₁)	20	9.350) 1.	.900	1.915
2 (P ₂)	20	10.300) 1.	750	1.687
3 (P ₃)	20	8.100		950	2.067
4 (P ₄)	20	10.400) 1.	.850	1.779
Significance of	differenc	e among Adjust		****	
SDy.x		SE _M y.x		E _D between eny	tro adjusted means
1.228		.274		00	8
					· · · · · · · · · · · · · · · · · · ·
Significant dif Significant dif	ferences a lerences a	t .05 level = t .01 level =	2.00 x .38 2.65 z .33	8 = 0.776 5 = 1.028	1
Difference betw	wen Adjust	ed Means for I	P1, P2, P3 and	1.7_4 and their	significance
	₽1 -		228		
		$P_3 = 0.1$			1
		$P_4 = 0$			1
		$P_3 = 0.3$			1 1
		$P_4 = 0.0$ $P_4 = 0.0$	098 288		1

 Significant 	at .05 lev	el	** Signi ican	t at .01 level	-

and the second s

intelligence. As far as the total attainment of pupils is concerned, treatment P3 resulted in the highest adjusted mean score of 21.993. This value is significantly (.01 level) higher than that of the mean values for P_1 (17.283), P₂ (18.058) and P₄ (17.163). In the case of knowledge, again treatment P3 has the highest mean value of 13.744 which is higher than the values for P_1 (3.100) significant at .01 level, P2 (11.617) significant at .05 level and P4 (10.743) significant at .01 level. Similarly, the adjusted mean values for comprehension under treatment P3 is significantly higher at .05 level than the adjusted mean values for P_1 (4.724) and P_2 (4.250) and at .01 level than that for P_A (4.637). The application mean scores under different patterns when adjusted for pre-achievement too did not show any significant differences. The respective adjusted mean values for different treatments are 1.915 for P_1 , 1.687 for P_2 , 2.067 for P_3 and 1.779 for P_4 . The above mentioned results also qualify treatment P2 as the most effective treatment for pupils' total attainment and attainment for knowledge and comprehension objectives. The treatments could not be differentiated as far as the attainment for application is concerned.

The next chapter discusses the results as presented in this chapter for each hypothesis.