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Introduction to the scattering theory

INTRODUCTION :
The study of interaction of electrons and photons with atoms 

and ions has attracted considerable interest in the recent years. 
This is due to several reasons. Firstly due to increasing demand 
for the electron and photon collision cross sections in the 
astrophysics, laser physics, plasma physics, atmospheric and 
intersteller science, isotope separation, MHD (Magneto Hydro 
Dynamics ) generators, electrical discharge, radiation chemistry 
and radiophysics. Scattering phenomena i.e. elastic/inelastic 
scattering of electrons by atoms and molecules is an important 
area of theoretical work in the field of physics. Whereby newer 
methods and results are being reported continously which has 
important practical application in numerous scientific and 
technical fields described below.

Elastic and inelastic cross sections for electron and photon
scattering by atoms and molecules are required for the study of 
the energy spectrum of the secondary electrons ejected during the
bombardment of the upper atmosphere by electrons, ions, cosmic 
particles and electromagnetic radiation in the UV (Ultra -violet) 
and X -ray region. This information in turn gives an idea of
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chemical composition, temperature and density of the constituents 
of the upper atmosphere. Thus the energy spectrum of electrons is 
a very important parameter for all atmospheric calculation. The 
analysis of scattering phenomena plays an important role in 
theoretical and experimental investigation on the structure of 
matter on microscopic scale, and also of fundamental importance in 
Atomic and Molecular physics. It also plays an important role in 
numerous scientific and technical fields like aeronomy, gas 
lasers, controlled thermo nuclear fusion, biophysics, aurora, 
airglow, chemical composition etc.. The ionic layers in the 
ionosphere of the earth are mainly formed due to the ionization of 
the neutral constituent of the atmosphere by solar radiation 
leading to production of energetic electrons further excite the 
neutral particles and then the particles in the excited state, on 
decay to lower states, give rise to fluorescence. This is an 
important component of the day glow. On the earth’s magnetic 
poles, the charged particles are absorbed by constituent 
particles, these ionised and excited species produce the 
atmospheric emmision known as aurora. Hence for the proper 
understanding of different phenomena occuring in upper atmosphere, 
we need a wide knowledge of atomic and molecular processes. Aurora 
and airglow emmisions are the visual menifestations of the 
scattering processes in the atmosphere. Various parameters 
dependent on collision cross sections like stopping power and the 
mean energy expended per ion pair etc., are required to estimate
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necessary- dose and the duration of exposure in the radiation 
therapy in present day of energy crisis. The magneto hydro dynamic 
(MHD) generators have their own significance, where some alkali 
atoms like caesium are used in it. Thus study of collision process 
is an important parameter designed in such uses. Collisional cross 
sections are required to monitor the impurity control introduced 
in fusion plasma due to striking the container walls on cooling 
off. Fast electron scattering can be used as a probe to map the 
charge distribution within the target atoms and molecules. The 
electrical conductivity of an ionised gas depends on number of 
free electrons and their frequencies of collision with molecules. 
The frequency in turn, depends on momentum transfer cross section.

A number of important technological advancement have occured 
on experimental side. This includes the availability of electron 
beams (with mill! volt energy resolution), the synchrotron 
radiation sources, intense tunable lasers and new instruments for 
absolute measurement of cross sections. Many of the experiments in 
this field provide very straight tests of theory and have 
stimulated the development of new theoretical models and methods. 
Finally the availability of powerful computers recently have made 
possible the exact and accurate study of complex collision 
processes theoretically which otherwise were not possible to study 
before.

Apart from this, the subject is playing a leading part in the 
establishment of the quantum theory and includes many aspects of
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fundamental importance in the theory of atomic structure. Thus the 
phenomena of electron scattering by atoms and molecules seems to 
have important bearing on many branches of science and 
engineering. This manifold applications make atomic and molecular 
collision physics a very important subject of experimental and 
theoretical investigations.

A collision is said to have taken place between two particles 
when they collide withteach other, if and only if any physical 
change occurs, which can be detected. All the scattering processes 
can be classified mainly in three catagories viz., the elastic, 
inelastic and super elastic. The scattering process in which the 
internal states and structure of the colliding particles do not 
change are characterized as elastic. If the internal states and/or 
the structure of the colliding particles change, the collision is 
called inelastic. The super elastic collision is one in which the 
incident particle gains some energy from the arget atom. The 
probability of observing certain final states out of the infinite 
set of possible states belonging to the above three catagories is 
usually expressed in terms of the collision cross -sections which 
can be determined by means of the quantum theory. Hence we can 
define the cross section as " The cross section of a certain type 
of event in a given collision process is the ratio of the number 
of events of these type per unit time and per unit scatterer, to 
the relative flux of the incident particles with respect to the 
target ".
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There are mainly three experimental method commonly used for 

the total scattering cross section measurements. They are • the 
transmission method, the recoil method and the transmission with
the time of flight discrimination.

In a typical scattering experiment, a well defined collimated 
homogeneous beam of mono -energatic pro„ ctile is directed towards 
a target from a large distance. After the impact, the particles of 
the incident beam are scattered in all directions and their 
angular distribution is observed at large distances from the 
scatterer. The number of particles scattered into detector per 
unit solid angle per unit time per unit incident flux is called 
the differential cross sections over all solid angles yields the 
total collisional cross -sections.

In the transmission method, the attenuation of an electron 
beam passing through a gas is measured and is related to the total 
scattering cross section. This technique has been applied to a 
large number of atoms and molecules.

The recoil technique is basically also a transmission 
technique wherein the attenuation of the molecular beam, rather 
than the electron beam, is measured. This method has been applied 
extensively to atomic species but applies equally well (in 
principle) to molecules.

In time -of -flight method, the time distribution of the 
electron beam signal is converted into an energy distribution with 
an empty gas cellr. When gas is present in the cell, the
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attenuation of the electron bean as a ' ifictxon of energy (time 
distribution) can , be : determined and related to the total 
scattering■cross section. This method has been applied to many 
molecular species. It is limited to low impact energy (below few 
tenth of an eV) by flux and at high impact energies (above 50 eV) 
by time resolution capabilities.

An exact evaluation of Schrodinger equation corresponding to 
particular scattering process is a formidable task even if the 
interaction potential is a known quantity, this is because the 
exact wave function of the target atoms except hydrogen and 
hydrogenic ions are not known, the Schrodinger equation contains 
infinite set of coupled integro differential equation to solve. 
Hence with the 1 imitation of obtaining the exact analytical 
solution of a many body problem in the quantum mechanical frame 
work, the approximate methods acquires a great importance. But it 
rather strange that none of the theoretical approximation explains 
equally successfully all observed phenomena in the scattering 
problems or which can give uniformly satisfactory results at all 
impact energies.

It has been a usual practice to devide the incident energies 
into three regions i.e. -low, intermediate and high. The energy 
region lying below the first excitation threshold of the target is 
taken as the Jow energy region. The energies at which the first 
Born approximation gives satisfactory results belong to the high 
energy region. The energy regio/i lying between the two is referred
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to as the intermediate energy region. There are different 
approximation devised to explain the scattering process in these 
energy regions i.e at low, intermediate and high.

A detail account of the numerous approximate methods used to 
explain the scattering theory can be available from the review 
articles, selected papers and from the number of books (Bates, 
1962 ; Mott and Massey, 1965 ; Massey et al,1969 ; Moiseiwitsch 
and Smith, 1968; Rudge,1968; Gerjuoy and Thomas, 1974; Joachain, 
1977; Burke and Williams, 1974; Walters, 1976a; Byron and 
Joachain, 1977a; Bransden and Me Dowell, 1977,11978; Ishihara, 
1978; Jhanwer et al, 1978a; Burke, 1979; bane, 1980; Joachain, 
1980; Kessler., 1982; Schwenke et al,1983; Staszewska et al, 1984) 
and so on.

In the present work we have restricted ourself to study the 
elastic scattering of electrons by atoms in the intermediate and 
high energy region. The choice for this energy region are, that 
the effect on the elastic scattering are greatly magnified at low 
energies and there are plenty of absolute experimental cross 
sections for these energy region are available, as well as there 
are various theoretical methods and different models described in 
these energy region.,

’ *, ' - • > i l * • i .

Atomic units will be used except where otherwise stated.
First we start here with the basic equations which describes 

the scattering phenomena.
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BASIC EQUATIONS :
Let us consider the elastic scattering of an electron by a 

neutral atom of atomic number Z. We assume that the collision is 
nonrelativistic. Since we are interested in the intermediate and 
high -energy region. We shall first neglect the effects of the 
Pauli principle between the incident and target electrons, 
correction due to exchange will be considered separately. The 
initial and final wave vectors of the electron will be denoted by 
k^ and respectively, with J k'^ J = | k^ j = k^ . The nucleus 
of the atom being the origin of our coordinate system, we shall 
denote the coordinate of the projectile electron by r0 , while the 
positions of the atomic electrons will be labeled by ^ 

(i=l,..,Z).
The free motion of the two colliding particles is described 

by the Hamiltonian
H0 = K + h (1),
where K is the kinetic -energy operator
K = ~ 2V£Q (2)’ 

and h is the internal Hamiltonian of the target.
Morever, we have
h | n > = «n J n > (3),
where | n > denoted an eigenstates of the target Hamiltonian and 
“n is the corresponding internal energy. We shall denote by [ 0 >
the initial state (and final) eigenket of the target.

The full Hamiltonian of the system is such that
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H = H0
where V, the interaction potential between the projectile and
target, is simply

23 4
V = £ ~i=l ri0 L0

(4),
the

(b),

with ri0 = \ r± ‘ *0 I•
The scattering amplitude for elastic scattering is then given 

by the expressions
f = - (2T1)2 < +t I v |rj> (6a),

or
f = - (2n)2 < Vf 1 v i > (6b),
where and are eigenstates of H0 (i.e., free +waves), while
and denote the full scattering wave functions satisfying the
Lippmann -Schwinger equation
+v'i G+ V ^0 v +*i (7a),

and
= *t * G~ V U0 (7b).
In this equations, the Green's operator «±G0 are given by

<4 = ( E - H0 :+ i ,s ) _ V (8).
Since we are considering only norrelativistic collisions and 

we neglect the Pauli principle between the incident and target 
electrons, we may ignore the spin of the projectile, the indices i 
and f therefore label the momentum of the projectile together with 
the internal quantum numbers of the target. In what follows we 
shall write the asymptotic states J <P^ > and | > more
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explicitly as | 0, k^ > and | 0, k^ >, respectively. More 
generally, an eigenstate I 4> > of will be written as I n, q>. 
The normalizaion condition which we adopt is such that 
< n ' . q- * I n , ? > = «5 ( q - q ’ ) (9),
Hence, in the coordinate representation

<t>G ( r0 , £ ) = C2n)"3/2 eia £0 vD ($) (10),

where $ denotes the collection of all target coordinates.
Consider the nonrelativistic Schrodinger equation for the 

system
( H - E ) v (x , x± ) = 0 (11),
where E is the total energy of the system and v' (x, x.^) is the
wave function of the system.

The initial state of the system is given as
0ki< r, £t) = (2n)“3/2 e1 "f1 ^ { r± ) U2),
solution of the equation (11) is denoted by ^ (£ , r^)

Vir . r±) — > (2n)"3/2 [ e^i* * + E feiJ*ir ^(j^) 1
n (13),

where f(©,<£) is the scattering amplitude.
The differential cross section (DCS) can be written as

djr _
dO ~ k.x

| f(» , 4>) |2

for the elastic scattering we have | 
The DCS can be written as

!Hf = i *(» . *> T2

I if I = i
(14) ,
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The total cross section {TGS) are obtained using the optical 
theorem as
<rtot = ^-2 Im f (© = 0 ) (15).

For the study of any collision problems these two quantities 
i. e. DCS and TCS becomes the key quantities and can be determined 
by solving equation (11),.

There are mainly two approaches in which this equation is 
solved for any type of collision problem. One As a differential 
equation appraoeh, non iterative in nature and the other is an 
integral equation approach, which is iterative.

There has been various approximations devised to get the wave 
function of the target atom to be considered and to solve or to 
obtain the scattering amplitude for the specific type of collision 
problem.

POTENTIAL SCATTERING :
Let us consider the nonrelativistic scattering of spinless 

particle by a potential V(jc),. which allows us to introduce in a 
simple way some of the .basic ideas which are required in the 
analysis of the electron scattering by atoms, where the total 
energy of the system is equal to the sum of the kinetic energy and 
potential energy of the incident particle. Introducing the 

reduced potential ” by U (r) = 2 V{£) and the strength of this 
is | U0 | = 2 I V0 I , where | V0 | is a typical strength of the
potential V(r)- For a potential vanishing faster than --- at largei i... i• rdistance the stationary scattering wave function v'^Ck^)
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representing the plane wave incident in the a -deirection which we 
choose along k^, and the outgoing (+) spherical wave has the 
asymptotic form given by equation

iJsc JCyki {£)r—*00A (K) [ eiii‘£ + *<*»*»*> ~~r~ 1 (16)’

where f(k,o,^) is the scattering amplitude corresponding to 
scattering in the direction il. = (e, <p), and the coefficient A is 
independent of x •

THE INTEGRAL EQUATION OF POTENTIAL SCATTERING i 
For the potential which vanishes faster than at large r

the stationary scattering wave function has been defined above 
as a solution of the Schwinger equation (7) satisfying the 
boundary condition (36). Further it is found in the literature 
( Bransden, 1970 ; Burke , 1^77 ; Joachain, 1979 ; ) that is

also a solution of ah equivalent integral equation i.e. Lippmann 
-Schwinger equation -which directly takes into account the 
boundary condition (16). Hence

W^}(x)
where
*ki(£)

0ki(x) + / G^+)(x , X’) U(x’) V> (+)ki dx’ (17),

< x | k, > (2n ) 3/2 e1 ki* x
is a plane wave corresponding to the incident momentum and the
free Green’k function' G

G^+)(x , X’ ); = (2n)

(+!■)
0 

3/2
( X V X’) is given by

’ dk’(x -X’)f _§-------------k ’2 - k2 - 1 « dk’
e —> 0i

(18),
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or
G0+){r , r’ ) 1 eik<*

= 4 n [_F-
- £’)
*T (19).

The asymptotic behaviour of (17) gives the integral 
representation of the scattering amplitude f.
f = - 2n2< 1 U 1 v'*t >

= - (2T1)2 < <Phf | V i vki >
f = - (2T1)2 Tfi (20),
where
<*>ki (£) = < x j > = (2TI)~3/2 e1^ £

is a plane wave corresponding to the total momentum kf , and
is the transition matrix element. The expression for Tfi is given
by

f i = < 4>kf vki > (21).

The plane wave is " normalized " here in such a manner that

C ^kf | <^ki> = < ht | k± > ' <5 ( - kf ) (22).
■ (

Now taking the brief account of some of the approximate 
methods which are relevant for the present study, where the energy 
of the projectile electron is taken higher than the first 
ionization energy of the target atom. Several of these methods are 
given and described in the literature, review articles of Joachain 
and Quigg1 (1974), Byron and Joachain (1977), Bransen and He Dowell 
(1977 -78). ' ‘‘v”



THE BORN APPROXIMATION s
The Born series, which is essentially a perturbative type 

expansion of the wave function or the scattering amplitude in 
powers of the interaction potential. At high energies (impact 
energies at least an oredr of magnitude greater than the kinetic 
energies of the relavant bounds electrons) electron scattering by 
atoms or molecules can be described by the first Born 
approximation.

This assumes the unpolarized bound states for the target and 
undistorted plane wave states for the scattering electron, which 
is assumed distinguishable from the bound electrons.

Let us begin with the Born series, which is obtained by 
solving the Lippmann -Schwinger equation by the perturbation„ , . * r : . ' f 1 * /- i ' t i -

theory. Starting with the “unperturbed “ incident plane wave 
we then generate for the Born series

... oo¥'klJ(x) -' " E '•* "(*)"■ (23),
n=l

with
00 (r) = 0k. (x)

0n(x) = J kn( r, x’) 00(X*) dx’ n > 1
and •= •“ •• J ' •' ‘
k^x , X’) '= G^} (r , x’) 0{r’) ,

kn(x , x') = J kjCx , . x’) ^nrl(£ ",x’) dx'’ n (24)

From equation (23), one can see that Born series is a
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perturbative series in powers of the interaction potential, By the 
substitution of equation (23) in (20) we can obtain the Born 
series for the scattering amplitude 

oo _f = Vb*n=0
where
f = IB1

and 
f

(2Tir
i_ f*

i n J

< i D i

i

>

0 U(j:) d£ (26),

(27) ,Bn = " 2 n" < *kf I 0 S 0...G0 U I *ki > “ 2
one can see that in the last expression potential appears n times
and the Green’s function (n-1) times. The Jth order 
approximation to the scattering amplitude can be written as

SO

so that

J
£n=l Bn

Born

(28),

"Bl fBl ’ fB2 f tf XB1 B2 and so on.
From the equation (25) one can see that Born series as a 

multiple scattering series in which the particle interacts 
repeatedly with the potential and propogates freely between two 
successive interactions. Born series will converge if the incident 
particle has a sufficiently high energy and (or) if the potential 
is weak enough.

The first Bora (approximation) amplitude for a lrge number of
charged particle -atom, elastic and inelastic scattering



processes had been calculated by Bell and Kingston (1974). 
Equation (27) is widely used or applied to scattering problems. 
Because of its simplicity it fails to compensate for all it may 
lack in accuracy. Above all the error is usually substaintial 
which seeks the further terms of the series, of higher order than 
the first or second are quite difficult to evaluate.

But a better way is to include the polarization, absorption 
and distortion of the incident particle in comparison of first 
Bora approximation (FBA) i.e., second Bora approximation.

In this approximation the distortion of the incident particle 
as well as that of the target atom due to the presence of each 
other are completely ignored. Thus it is a weak interaction and 
its validity increases with the increase in energy. But in any 
case the energy at whif’h it becomes accurate, varies from target 
to target and from process to process. At intermediate energies 
the incident particle stays in vicinity of target for sufficiently 
longer time to make the interaction quite appreciable. Thus at 
intermediate energies polarization, absorption and distortion of 
incident particle effects (due to the. presence of each other i.e. 
target as well as incident particle) becomes important.

THE EIKONAL APPROXIMATION :
Originally introduced in quantum theory by Moliere (1947), 

this eikonal approximation has been considerably developed by 
Glauber (1959) who proposed a very fruitful many body
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generalisation of the method. In this recent time, most atomic 
collision processes have been studied by means of the eikonal 
approximation. To construct this approximation it was assumed that 
the incident particle satisfied the " short wave length 
condition ( ka >> 1) to gether with the ’’high energy” requirement 
given as

I U0«
~2 < < 1 (29),

l_V0I

E k‘
with these conditions the eikonal wave function in eikonal 
approximation can be obtained from (17) by a linearization of the 
Green’s function (19). Hence, corresponding eikonal wave functions 
can be given as

25
<X) = (2T1 )-3/2 exp [ - jj-j- _J U(b , z') dz' ] (30).

Substitution of this expression into the integral form (20) 
of the scattering amplitude yields into

f 4~n f eia*£0 U(x) exp [ - ^r
z U(b ,z')dz' dx (31).

Further, Joachain (1970) showed that the eikonal scattering 
amplitude can be given as
fE = 2TU J e± d*h [ e± * {*’h) ~ 1 3 (32),

where the quantity
- -ftsO

* (k,b) = - 2 n -cof U(b , z ) dz
is the eikonal phase shift function. Further, to have the eikonal 

multiple scattering series can be obtained from (32) by the
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expansion of exp (i*) in powers of X- The eikonal multiple 

scattering expression can written as

oO _
= fEn 

n=l
where

k . n i q. h j2.AEn ” 2TH n~T / ^ ^ f * (ls* 1

from the set of equations (32 to 34), we get

*K1 = - 44ff J d2fc a'b 0(b- a> dz

n

(33),

(34),

(35),

it is worth noting that the assimed potential to be real, the 

quantities f^ given in equation (34) are alternatively purely 

real and imaginary. When ka > > 1 ( where "a" is the range of the 

potential ) and comparing the relation between the terms of Born 

series (25) and of the eikonal series (33). It is clear from the 

equation (26) and (35) that
f», = 5L, (36), 
B1 El
for all interaction potentials, all energies and all momentum 

transfer. Now if the a -integration in (32) is performed along the 

direction k^, using the coordinate system, we would only have 

approximately q*b = q.r for small q’s and the relation (35) only 

hold at small angles. Since the Born series converges at 

sufficiently high energies for nonrelativistic potential 

scattering, it is desirable to secure the relation (35) at all 

angles. Remarkable relationships between the higher terms of the 

eikonal and Born series have also been discovered by Moore, 1970;
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Byron and Joachain, 1973; Byron et al, 1973.
One of the ways to proceed beyond first order, perturbation 

theory i.e. first Bom approximation (26) is to employ higher 
order Bora approximation. However calculation of the Bora series 
of higher orders requires a. considerable amount of work. Another 
promising yet still simple way to improve over the first order 
theory is to apply Glauber approximation (1959). The Glauber 
approximation is ‘ the generalization of the eikonal multiple 
scattering expansions to many body scattering problem. The 
formulation of the Glauber scattering amplitude is given 
following.

GLAUBER APPROXIMATION :
This is a many . body generalization of the eikonal 

approximation described earlier. For the direct collision from an 
initial state | 0 > tp, a final, state | n >>, the Glauber scattering 
amplitude is given by (Glauber, 1.959)

fG = 2nl / e1 d2b < m'| { e^G^ ’ 2 1 - 1 } | 0 > (37),

where, Glauber phase shift function in terms of is given as
1 +c0'Cq (b i X ) - ” ——— b, ss, x) dz (38) ,

It ‘ k ' < 1 , 3

the integration is performed along the z -axis but perpendicular 
to a . A few points concerning the Glauber approach are : firstly,
it may be viewed as an eikonal approximation to a " frozen target"
model proposed by Chase (1956) in which closure is used with an
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average excitation energy DE = 0, secondly, considerable insight 
into the properties of the Qlauber method may be gained by 
expanding (37) in powers of , viz. 

oo _: r (39),G *Gn v '*n=l
where
fQn = 2TU iT7 J *±a'~ < m I f * (fc.X) ]" | 0> (40),

comparing the terms of with the Born series fgn . We can say 
that fB1 = fQ1 , also the terms fQn are alternatively real or 
purely imaginary, while the corresponding Born terms fBn are
complex for n t 2, This features of the Glauber amplitude leads to
several defects such as (a) the absence of the important real term
for elastic scattering1', and (b) identical cross sections for 

electron -and -positron -atom scattering. Other deficiencies of 
the Glauber amplitude (4'0) include a logarithmic divergence for 
elastic scattering in the forward direction, and a poor
description of inelastic collisions involving non -spherically 
symmetric states. Its major role in atomic collision theory has 
been to stimulate interest in eikonal methods (Byron and Joachain, 
1977). Such as the “ eikonal Born series " (EBS) theory (Byron and 
Joachain, 1973,1974,1975,1977).

EIKONAL BORN SERIES METHOD CEBS> s
This method combines the Born and Glauber series to obtain a

•. ' ‘ 1 * • \

consistent expansion of the scattering amplitude in power of
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0(k1 ). The Glauber tern lQn gives le each order perturbation 
theory to the leading piece of the corresponding Born term ( for 
large k) for all q* s except in second order where the long range
of the coulomb potential is responsible for anamalous behaviour of 
fQ2 for all small q. In the EBS approximation a consistent 
calculation of the direct scattering amplitude through OC^2) was 

obtained by the replacement of real part of fg^ by fgg in the Born 
scattering amplitude. In this way the EBS direct scattering 
amplitude is written as
*EBS = *B1 + *B2 + fG3
in addition, exchange effects are taken into account by using the 
Ochkur amplitude gQch ( Ochkur, 1963, 1964).

The EBS method has been applied to various electron -atom 
collision processes (Byron and J.oachain, 1977) at intermediate and 
high energies. And it is an improvement over the 2nd Born or 
Glauber approximations,., It was also analyzed that the convergence 
of the Born series, for the, direct scattering amplitude is slower 
at large q, than in the.,, .small . ja region. Thus an "all order” 
treatment would be desirable at large a, and it was done by the 
optical model (Joachain,. 1979 ; Mittleman and Watson, 1959,1960 ; 
Byron and Joachain, 1974,1977 ; Joachain and Vanderpoorten et al, 
1977 ; Vanderpoorten, 1975 ; Furness and Me Carthy, 1973 ; Riley 
and Truhlar, 1976) methods and target expansion (Burkey and Webb, 
1973 ; Callaway and Wopten, 1973,1974,1975 ; Callaway and Me
Dowell Morgan, 1976) methods. ,.
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After the formulation of the Glauber eikonal approximation 

(Glauber, 1959) very less amount of work was done for the 
calculation of DCS and integral cross sections. This was due to 
the computational complexity involved in evaluating the Glauber 
amplitude (38) for systems more complicated than helium. It was 
also found difficult to get the closed form of the Glauber 
scattering amplitude.

The approximations methods described above have some common 
problems which are in general described below.

(1) Very few theoretical methods were able to reproduce the 
various scattering cross section which can be compared

satisfactorily with the experimental results.
(li) Some approximation required complicated numerical 

techniques for the evaluation of the scattering cross sections.
(lii) Few approximate methods has the divergent integral 

problems.
(iv) Very few methods have used the higher order exchange 

correction.
(v) There has been a considerable amount of discrepancy in 

the results of cross sections measured even for the system like 
hydrogen.

(vi) There are few approximate methods described are found to 
be difficult to extend for the higher number of electron system.

(vii) Even though there exists an ample amount of data in 
this field of atomic and molecular scattering both theoretically
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as well as experimentally, but still there are discrepancies 
observed amongs the methods both theoretically as well as 
experimentally.

(viii) The evaluation of the exact wave function and the 
negligance of the cross product terms for a heavy atom also lead 
to the inaccuracies in the results.

Keeping all these problems in mind and with a aim to reduce 
the dicrepancies in the scattering cross sections measured for 
different system, we applied certain refinement to the approximate 
methods. He get the more accurate wave function of the target atom 
considered. He also made an attempt to extend the calculation in a 
different method so that the particular approximate method applies 
equally well for a variety of energies and for wide angular range.

He now present a brief account or work reported in this 
thesis. To study the elastic scattering of electrons by hydrogen, 
helium, lithium and neon a large number of approximations based on 
perturbative expansion of scattering amplitude have been devised. 
In view of the HHOB approximation in the investigations on 
hydrogen, helium ( Rao and Desai, 1981,1982,1983 ; Chandraprabha 
and Desai, 1983a, 1983b) and for lithium (Suja and Desai, 
1986,1987,1988), we thought of applying certain refinement to the 
approximation to study the elastic scattering of electrons by a 
target like hydrogen, helium and lithium atom. He present the 
details of the theory and the calculation of the differential 
cross section and total cross sections for the same in the
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chapter II. Wo have made an adequate comparison of our results 
with the other theory and experiments results in the graphs and 
in the tabular form.

In the chapter III, we extend the calculation of differential 
cross sections and total cross section for the elastic scattering 
of electrons by a neutral neon atom. Where we employ the method of 
Roothan -Hartree -Fock wave method and we made use of the 
Clementii -Roetii tables for the orbital calculations for the neon 
atom to get the more accurate wave function. Here we have made an 
adequate comparison both in graphs and in the tables.

In the chapter IV we have made an attempt of increasing the 
cross sections for the elastic scattering of electrons by a neon 
atom using the two -potential method in the HBOB theory. We also 
aimed that this method gives accurate cross sections for the wide 
angular range and for a variety of energies. We apply theexact 
treatment is given for the calculation of the phase shift for the 
neon atom. We compare our results with experiments and theoretical 
results available.

In the last chapter V we try to summarised our conclusions 
about the present method of evaluation of the various cross 
sections for the different target atoms.


