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CHAPTER - I1I

REFINEMENT 1IN THE HHOB APPROXIMATION

INTRODUCTION
In recent years numerous calculations, corresponding to
nearly as many theoretical description, have been made of

amplitude of high -energy collisions of charged particles with
atomic targets. Collision process between electron and atom were
studied particularly at intermediate and high energy region. The
theoretical methods employed in the calculation of the
differential cross sectlon are reviewed by Burke and Wiliams
(1977),Moiseiwitsch (19877), Bransden and Mc Dowell (1977-1878),
Callaway (198@) and so many. These methods were broadly classified
as:
(a) expansion methods, (b) methods based on the construction of
Optical potential, (c) the Born approximation and its extensions,
(d) the distorted wave methods, (e) semiclassical methods, and
(f) many body theory.

Theoretically +the scattering problem was  Dbasicallly

attempted with mainly two ideas:
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(¢) nature of the interaction (direct, statioc, exchange,
polarization ),
(ce) validity (angular‘and.energy regions) of the methods for
cross section calculations. .

Despite lot of work reported for +the calculation of the
differential cross section using various methods and numerical
techniques for the computational work, it is observed that there
still exists a wide gap between the theory and experiment results.
Recent developments in +the experimentation have made . the
avallability of the diffrentianl data of electron and positron
scattering by a varlety of target atoms like hydrogen, helium,
lithium, neon and argon and so on.

Thg advent of the latest electronic computers and their
subsequent use in the calculation required in the theoretical
techniques have made the testing more easier and faster. The
combination of these powerful techniques with that of possible
new experimentals checks have caused the continual activity in
this area.. .

Having an experimental and theoretical impetus in the data,
it is an appropriate time to extend the calculation by wodifying
or by refining the approximation in the method used.

There are several approximate methods described, but because
of enormous complexity in describing and predicting the results
of associated experiments, most of the cited works have had as

thelr objective the determinations of accurate and computationally
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feasible theoretical procedures. Included among the wmore
successful methods are variations of traditional impact parameter
studies (D.P.Dewangan (1975)), the simplified Born approximation
(A.R. Holt, B.L. Hoisewitsch (1968); A.R. Holt (1972); A.R. BHolt,
B. Bantoso (1973); M.J. Woolings (1972)), Glauber (E. Gerjuoy,
B.K. Thomas (1874); T.T. Glen (1976); J.E.- Golden, J.H. McGuire
(1976)) and modified Glauber (L. Bambo, J.C;Y. Chen, T. Ishihara
(1973); J.C.Y. Chemn, C.J. Joachain, K.M. Watson (1872); W.
Williamson, Jr. and G. Foster (1975); M.R. Flannery, K.J. McCann
'(1974); C.J. Joachain, R.- Vanderpoortan (1973)) approaches,
calculations (S. Geltman, M.B. Hidalgo (1871); A.D. Stauffer, L.A.
Morgan (1975)); and the eikonal-Born aerieé approach (F.W. Byron,
Jr. and C.J. Joachain (1973); F.W. Byron, Jr. and K.J. Latour
(1976); F.W. Byron, Jr. and GC.J. Joachain (1877)); C.J. Joachain,
K.H. Winters, L. Cartiaux, R.M. Mentezmorenoc (1977); F.W. Byron,
Jr. and C. J. Joachain (1973)).

These reviews are concerned with the current state of the
theory of scattering of electrons by atoms. It emphasizes the
intermediate and high energy region, begining at the first
excitaﬁion threshold and extending upward. The upper boundary of
the intermediate energy region 1is not clearly defined; it |is
generally taken few times the ionization threshold. The energy
range Jjust above the first excitation threshold has been
considerable recent interest to both theorists and experimenters.

It is well known that the differential cross section (DCS), for
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elastic scattering of electrons by most of the atoms possess deep
minima at one oor more then one electron impact energy and
scattering angle (Kollath and Lucas).

The elastic differential cross section for hydrogen and
helium exhibits a pronounced peak through out the intermediate
energy region. Several approaches ylelds such a peak, but in order
to describe it properly, it 1s essential to account for the
polaraizability of the target atom.

The present study is aimed at suggesting yet another
description of high —energy collisions. Promptéd by the work —and
success -of ﬂ&ron and Joachain in their eikonal -Born series
approach to medium -to high energy electron -atom collisions, and
constitutes an extension of the earlier work of Yates
(A.C. Yates (1874)). The primary purpose of the current analysis
is to develop an alternative high -energy expansion of
differential cross section in terms of the reciprocal powers of

ki ( where hk, is' the momentum of the 1incident rparticle ),

i
through O (kiz) , which is computationally tractable, yet derived
from analogously treated second and third Born terms. Also the
suggestion of anamalous behavior of the small -angle high -energy
differential oross section 1im electron atom collisions
" (C.B.0. Mohr (1969)) can aleo be described. In the present work
we have given complete description of the high energy
approximation given by Yates (1974,1977,1979).

Electron hydrogen atom collision is one of the most
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fundamental problem of the atomic physics . and has been studied
. numerous tima ﬁoth theoretically and experimentally. One of the
most ilportant4 aspects invol?ad is that agreements Dbetween
experiments and even the most sophisticated theories are not found
fully satisfactory. Motivated by the above and considering the
simplicity of the approach and from the observation presented in
this chapter, one can conclude that the present approach would be
more useful in studying many aspects of the scattering involving
different atoms. We first made an attempt to study the refinement
applied to the HHOB approximations to study the elastic scattering
of electrong by hydrogen atom as a test case. Having obtain
success for the hydrogen atom as a test case, we further extend it
for the atomic target like helium and lithium atom also.

Thus, the thrust of this chapter is aimed as to outline
briefly this method, but more importantly to describe a new way
to obtain accurate scattering information at intermediate and
high energies. We first describe the HHOB approximation in detall
than we study the refinement of the approximation. Having obtain
the analytical integral equation, we apply 1t to study the
different case described above. At the end of the chapter we
discuss the results obtain through the refinement in +the HHOB
approximations. We have made adequate comparison in the form of
graphs and tables. We compare the results with the various

experimental and theoretical results available.



HIGH ENERGY HIGHER ORDER BORN APPROXIMATION (HHOB THEORY>

The HHOB (High Ene?gy Bigher Order Born) approximation has
been shown to be a successful theoretical approach for analysing
electron, poaitrqn scattering at intermediate and ﬁighenergies.
There exists a vast literature wh;ch'testifies the success of the
HHOB theory. A review of the approximation, method used and the
method of successful solution is given by A. C. Yates (1874, 1877,
1978).

In arriving the 'final exﬁression of the free particle
scattering amplituae in the HHOB app?oximation, a well known
generalized Born series description is 1n£roduced and then
transformed into a more convenient form in the analysis of the
HHOB theory.

To begin with, let us confined to the specific case of an
electron 5cattering’wi§h a neutral N- ato;.Atonic unita are used
throught, except otherwise will be stated.Let i;, i; and g = E; -
i} will denote respectively , the initial and final momenta of the
scattered electron, and the momentum transfer to the target as a
result of the. collision. We consider the non -relativistic
collision. Since we are interested in the intermediate and high
energy regions, we shall first neglect the effects of the Paulil
principle between the incident and target electrons, we may ignore

the spin of the projectile. The indices 1 and f therefore label
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the momentum of the projectile together with the internal quantum
numbers of the target. Corrections due to exchange 1is treated
seperately.

¥e begin with the Born series, which is c¢btained 1f one
solves the .Lipﬁnann -Schwinger equation by the perturbation
technique. Henée Born series is a perturbative series in powers
of the 1interaction potential. Consider the generalized Born
series for the scattering amplitude which describes the collision
of an electron with N -electron atom with +the initial and
final atomic states and energies given by (wi, Ei) and (vf. Er)
respectively is written. One can write the bscattering amplitude

from the Born serles as,

oo
- (n)
f457 = E f£4° (1),
% AN TR
where, .
() _ _ _1 iq.
fi—-—>f - 2 n I dr, e o Vi ( Xg ) (2),

where }; is the coordinate of the projectile electron and ry
(i= 1, ... , =) is the position coordinate of the atomic electron.
The interaction potential between the incident electron and

the target atom for N ~electron iS given by,

a
v = E 4 - - (3),
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The most convenient form for the second Borm term 1.e.
r{f_’)f can be obtained as follows.

Consider the three terms of the Bornm A serlies from equation
(1.27) and‘ the interaction potential V or Vd from (3) and the
Green’s function from equation (1.18) fro the evaluation of the
second Born term of the Born series. A more convenlent form can be
obtained by transforming the interaction variables ( }:a .})g') to
the set (Ty.Y), with Y = T T, in the matrix elements of
second and third Born terms, and replacing ¥ by ‘i"g', then the

terms reducein the following form

{(2) - 1 ig.
£3.5¢ = 7 E J axg e %8 v, (ry) 1) (4),
where,

- > ik L - » -
In = f d]:g & i'%g an_(,x:g Iy’ ) Gn ( Ty {(5),

where Gn(?a') is the Green’s opqrator. The Dbasic assumption
involved are introduced by the transformation of variable 8 =

X 'k; in In where,

I i(k,- k ). _ ’ dg e = "0 ____
1, = ¢oyd Jagg 71 T’ V(g xy0) f(sz
(6).
Since the difference of X and i::l is wvery small, one can

assume that ?ni is a slowly varying function over the distance of
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a wavelength of the scattering amplitude 1i.e. kna >>1 . Where
“ a "is the range of the potential vni . Further one can expand
2y 2 sk-1ie )'1

equation can be obtained as

(s in powers of 52, the dg integral of above

-> _is. p -
9%....9...-?9..._ _—_J' S - S N (NP - ') - ] el% Tg
8™+ ag.knrie 23 knrie 2&-]&(ie

),

where D is the differential operator with respect to }g , and
a;: dsx dsydsz. In the above q; integral, dsxdsy integrals can be
evaluated by the use of definitions of delta functions and the
dsz integral can be evaluated using the contour integral
techniques for the first and second poles (Boas,1966). Then +the

closed form of the ds integral can be written as

i, LB KD B N z _%g
In‘an drg e i U Va1 (*g ra"{l"inxazkn]
>
5(by) Hizg)
S I TR S (T
an nl ne ’

where, H(zdd is the heavyside function. D 1s thedifferential
>

operator with respect to ig. ds integration is performed in a

cylinderical polar coordinate system by choosing kn as a polar
-5, Ty e
axis and writing,rg = bg +zakn.

further simplified by using the property of the the delta

The above equation can be

function,
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+C0

_ ~1(k,- K ) k_ = ) . \
I, = of o En) By %5 meay) v, (xy- ry) dz gy - @

now considering the second part i.e. Inz

R i(k;- k) x,’ o ? 2 , »
Tng = z_ [ drg ™71 "o’ 70V (xp -xp") Dp S(bg") Blzp)

integrating by parts yields into,

= g A drg D 18(bg) zgl (2g) 18K B TEV, - )

- [ azg’ D [5(By) 5 Hizg)] e'By En)Xg v (ryx, )1

again integrating by parts 1in the second term of the above

expression. We have ,
T , e gy 1ol(Ey~ K ) I, C ey -
=L U 4GPyl o1, )%y Blzp) ot By Tge v, (xy- xg)
[ J drgs(hy) z4B(z,) br o' By Bo) X v . (r-r) - [ dxy

. . .l i(k,- )- .
&by ) 2 H(zﬁ)D:cb ol (Ey- K )Xy Vi (Cg Eg) 1}

= -=X__ dys . ‘H g 2 Ji(k,- ) .
Tz J 9Ky Sy ) Eglzg) Dy, en s ) %o vy (xg xg)

after the Dg, operation , the corresponding term of the Inz and
o

In1 yields in In'
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400
- i o Ji(k-k )k _ .z . 1 "8_
I, = -5p-of 9% © 1By )y - 25 H(zg) [ C 1 + 3 -3~ 0 )

The basic approximations which we shall make 1is to replace

ki-kn by an average excitation energy difference A. We have

-~

(ky - k) k, = Kkjcose, - kK,
_ _ 2
= k- k, + 0 (ko)

= Bk,

hence,
I = .-% "qe e Pin®s  m(a.) [1+ 1 -22 DPryl
n - Tk ol A3 @ n By 2K 2

Vni(;:g- );g') lh é= 2 (8),

= k.- - 4E_

where ﬁin = jﬁ_ ;b = k7 on using the energy conservation
condition, the ahove expression embodies the central
approximation.

The evaluation of the scattering amplitude can be performed
in the cylinderical coordinate system by choosing in such a way
that the z - axis is always perpendicular to g . Thus g 1is two
dimensional , and the position coordinate of the = + 1 electron
can be written as }1 = B; + i; vy,1=0,1....,2. Where y is a
unit vector in the z -direction. Let X denotes the target

coordinates. In order to simplify the 2nd order Born term it is
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necessary to take the fourier transform of interaction potential
(3).

, | .
V(zg.,zy) = J do o'® R0 [ ap &

ip . =z ot -5 -~ -> ~->
270 V(ptpy, ry..ry
(8),
where,
: N >z
- had +
V(p)"’ pay y Ilv---lxu) e !: ——————— z ( ip.bj iP zj - 1 )
‘ a ( P* P ) Ju
(19).

The general form of the Vni(}a) in the above expression has
been defined as,

Vom(Eg) = < ¥ (x) | V(x) | vp(x) > (11).

Substituting ( 9,8) in the 2nd Born term (4), the

coresponding second Born term can be written as

+op _ .
ef2) = b % [ dr, ' Fo Ven(rg) [ dzp Blzy) e’1n%0
- iz
[ Yoy (kg™ 57) + =357 O Vuy (27 250 lp . (12).

The infinite summation over atomic states can be treated,
with varying degree of accuracy, by any one of +the several
approximate methods (Woolings and McDowell 1872; Byron and
Joachain,1877; A. C. Yates,1978).

Ven(Tp) Vi (g~ Xg) = Velxy) ¥y(rg rg) (13),
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Yates (1978) repleced Bin? é%—. where AE 1is the kaverage energy
transferred to intermediate atomic states during the course of
collision. The summation in the above equation runs over all the
target states, except the ground state. AE 1s tsaken as the
zverage excitation energy because the energy iegion to be deal 1is

only the intermediate and high energy region. Hence,according to

Yates(1974° -79) 2nd Born term can be defined as,

iq .
@) L oar el Xp oy, | Vx,. ..oz, )
J azy H(zy) e 13y Ty [ y¢ g zé; 'x; r, ) +

—2_ - . =
5k - Dfp V(¥g™ Xg - Epr «-- 2 X ) [Dg =0 1| vy >

(14).
On using equation (8) and carrying out Dié operation, the

preceding result can be rewritten as,

-H:g + b — ~
fééi = 2%; f dp _aj dpz j dp _dj dp% < Ve | Vip + 2 4 ;rl--xk)
Vg +py s x..-..x)|wv> Jdp o8 R~ Eg
2 2
+ 0 e Y P Yp_ + o0
cof dpy ST FH 1 eppee®y % f an Reep)

- 4 1 4 2, 2 (2) > - v
= x [ deC 1+ 55 55 ( 27+ 8] D Ugi'(a-p Ay ; B¥yy)
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1 *e P2+ pe? o, __1 __
- ® Jde J dR, O+ Tt 550 BT,
Ug)(g-p-pz;;p+pzy)l (15),

where P is the principal integral value. The general form of
U(2)

£1 (eveneenn S e eavenos ) can be written as
Ug) (e +py ; n’+pz’y) =

< wfl V(p+ Py Iy-.xy) V(p *+ P,'Y 5 Iy -Xy) | vy

In‘arriving at the final form of equation (15), it has been
necessary to use the usual integral representations -of the one
-and two -dimensional & functions, and the additional result of
B. Friedman (1969)

- 00 -
of xe™XHEx) = N5 (@) -1 @ i,

High energy approximation to the differential cross section

is wvalid +through O(k;z), is sought. Since the first Born
-1

approximation term i8 real and of szeroth order in Ki .

imaginary part of the scattering amplitude 1is required only
2y,

the

through O(kil) , whereas the real part is needed through 0(k1
Further, it should be apparant from equation (8) and definition
of ﬁi that the leading ki dependence of the various terms of
equation (15) will be of or@er. no lower +than that explicitly

glven. Also, except for a possible complex phase factor common to
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all terms of the Born serles, Ugf) is effectively real.
Consistents with these comments, the real and imaginary parts of

fé%i can be written as,

Re 1 fi) "“"Pde mfdp (B, - £, U2 a -p -py ;P + B,¥)
(16),
2
: (2) _ _ 21 1,2 2
RQZfBEA"’k?éﬁP J ae onp(p-ﬂi) #® + p%)
U(z) (a-p- p;z;: p+ pz:: ) 17,
I"fr(é}\:&;.fdn ui2) @-p-nyie+my) (18).

i

Equations (16,17,18) constitute the HHOB approximation to the
second Born term. If ﬁi is set equal to zero in equations (18)
vanishes, ard the leading term of real part of fégi is then
‘propertional to O(kzz). Similarly, the imaginary part of £(2)

HEA
identically becomes Glauber’'s estimate of the second Born term
Yates (1973,1974). Where P 1is the principal value.

Similarly evaluation of the third Born term can also be
performed. the differential cross section (DCS) for the direct

scattering can be written from the expression of the scattering

amplitude. The scattering amplitude in the HBOB theory is given

as,

d . (1) L (2) (2) (3) _ . (2)

Torop = fi.-,¢ ¥ Rell foga t Rel2 fog, + Rel3 faga Y 1 Im fgp
(29),

where the meanings of the_symbols ugsed in the above expression
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are gliven above and in Yates (19789). Which represents a wholly
conslistent approximation, treating all terms equivalently. GSince
the direct evaluation of the third Born term 1is extremely
difficult, and in the light of the the above discussion concerning
the properties of the Born term at all angles by the corresponding
$élauber third term.
Hence we write the expression of the scattering amplitude as,
3 08 =£{1) . +Rel £{2) + Rez £{2) + i mm £{3) + £{3)
(21).
The differential cross section (DCS) for the elastic

scattering through O(KIZ ) for fixed q follows

d - :gﬁ_ 2
@ =K | Femos | : (22).

The total collisional cross sections are obtained using the
Optical theorem (Taylor , 1972). The TCS’s expressed as,

%t = 2 Imte =0 (23).

The assumption in high energy approximation (HEA) were made
along with the small angle approximation of Glauber (1959). HEA
concerned with the elucidation of character of second and third
Born terms for short wavelength ( k a >> 1) and for small momentum
transfers (small angles). The partial expansion of equation (6)
was necessitated by a deslire to include a plausible and reasonably
accurate discription of virtuasl excitations (target polarization).

It was also shown for elastic scattering of electrons by hydrogen
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atom, that when g --> @ for large k, the real and imaginary parts
of the second Born term approaches to the corresponding terms of
the simplified Born approximation (byron and Joachain, 1877). The
difference between the HEA and simplified .Born approximation 1is
the term of order kiz when q = @ in HEA. It was also concluded
that the HEA provides an accurate diécription of .these terms for

small g.

REFINEMENT IN THE HIGH ENERGY HIGHER ORDER BORN APPROXIMATION :

Inspired by the success of the HHOB theory applied to study
the elastic scattering of electrons by a target atoms like
hydrogen, heiiun and lithi;m { Rao and Desai, 1982 ; GSuja and
Desai, 1988). In this section of we extend the same process but
after applying certain refinement to the second Born term. We
discuss the HHOB approximation by applying certain refinement in
the expression of the second Born term in the HHOB theory. As a
part of the refinemept of the above procedure we include certain
number of low lying energy states in the sum on n appearing in
equation {12), and then we perform the sum of the remaining states
according to Yates (18?9). The proposed refinement is tested for
the hydrogen, helium and lithium. We find that there has been =a
conslderable amount of improvement 1in the cross sections when
compared with the other +theoratical and experimental results.

Since we are considering the non ~relativistic collision, we can
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neglect the Pauli principle as well as, we can neglect the spin of
the projectile electron. The effect of the exchange 1is treated
séparately using the Oéhkur‘approximation (1963). First we derive
the terms of the HHOB thedry using the refinement. Then we study
the effect of such refinement on the cross section. We first
discuss the results obtain for the case of hydrogen atom and then
we take up the helium problem in the similar way. At the end we
discﬁss the results of the cross sections obtain for the case of
lithium atom, where we treat the lithium atom as a three electron
system. We have made an adequate comparis;n in the form of graphs
and tables. As a part of the refinement by means of including
certain low lying energy states in the calculation we rewrite the

equation {(12) as,

+oo
(2) - ...l_., i.g' » » m b - :‘
Taea = k] g o P v:w“o’ o dzp Hlzg) 07170 Vg, (x5 257)

i ig i -
+ E n—ﬂf d‘a ‘ﬁ vfn(;g) _mf dzy B(zg) e1®1n%g V,1(Zg zﬂy)
(25),
- o
i f dr, &%’ ‘Iﬂ Vog(Xy) _wr dzy B(zp) €10%0 V,, (ry- zy7)
+-1 dr,. el9'Xg y (;)_dez H(z)eminev (Eg= 25¥)
k, n"Of ? fn'Xp 0 g e”

4o
— _i_ i.Q'I s » 1('3 z,’ - ’ -
E, J dr, e P Voulrg) f dzy H(zy) €7 1008 V,, (ry- 25'y)

It can be written further as,
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+c0 -
- ._;.. 13'.: ] y iﬁ B' - ’
=z, | %o 0 ViplEg) o dzp Hzp) €700 Vg (zp” mpy

+ “i I drﬂ ota- Ig Vo(zg) _OJ &Y in%e’ B(zy') dzy Vg, (Xg- z;,;

)

)

+p ’ ~
- .-.L... ig’: » » m z — ?
21k, I dr, e 0 Via(ry) f dzgy H(zy) e 1070 ¥V, (r,; -z57)
o
-y v_l,_, 19.‘: ’ s
- mk f d\xg e g < Wf ‘ v(xgr---:rz) l ’P‘f > dzg B(zg)
- ,0. i
vy | Vixg 259 ryse-oox,) | vy >+ —-- j' dr, e et g < ve |

+oo - ’ -
V(rg:...x,) J dzg e'iﬁinzﬂ< vy | V(rg= 249 Xy»..:X,) | vy 2

1 1_9020 \ + s
" gk, J g TR Cvplrge - x) | V| vplng k) > Bz
dzy e 1n%0 < v, | V| vy >
further,
(2) = ig Ig M 4 ,‘ 1
Toea = aﬁzf dtg e Voo(Lgr - X)) —of 925 Vpg(Xy~ 259) + 5

1a- \ Hewe ..
J azy &9 Te < v, lv(xg,.»xu)_oj dzgy H(zz) o 1% V(r, -z

)

k

‘ ’ - _;__ - ia. b »
yr--axg) | vg > Zﬂkif drg, e 2'F9 Veu(rg,....xy) _J dzg

-

3 —iﬁ' z o - ,i" )
H(ag) e i"@ Vgg(x;0 ZoY xl""’IN)

i
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+oy -~
= =1 ia-x , -z’ 1
= o1k, J g @70 Voplrpr - oy) of 9% Yoy (Fp” 27 * g,

-~

) +oQ
i . » » - ’ 3 » -
J drg o' FO < vy | Virg ...y dzy Blzy) e 170 Virg 2y
) | wg> - sz [ dr, ' Fe v, ( y_ [ dz3 B(zg)
Lyr---EN @ zik, 4 o 2 A MRS | -

—m 2, s
e i°g dzg

now the first term of the above equation reduces to a form,

+op
- ___i___ 19‘ »
—mkifdxge o colv|e> _f dzgy <8 | V]|@>
further it can be written as
+og . +o0
= -liij o dby dzy o' 1'Pe*19i%g (gl [ ap 2Py _f ap,
e 1Py25 Y(p + v; e ’
P P,Yi Eyhe-exy) @ _J dzy <8l [ de
“1P'hy 1 Ve o 1PL(En By’ ) T -
. e 8  dpy e "z @ f0 ' V(P +pyr.,..5) | @8>
. i(a-p-p’)d : e,
=zigJ e [ de’ [ dby e 0 V(e * Py) _J dz

*co +Ob ' , __M » : b
of dp, o dp; e MPa T R)Zg o1y Ey p(ay

using the properties of the Dirac delta functions properties, we
have

- i : 2 : : " e
-mkifdpfdg ()% Vgg(e +py) & (a - p - p) _ [ dz

~ +og
Vag(R'+ 2,7) _f dzp (Z1)% 8(zy) 5 (35 - 2g)



45

=-i§fdg (@) V(o + p,y) [ dp’ 6(a -2 - @’ )ﬁ[ dzg Jdp
+oo
» Tiw? - ’ i(p_~- pl) =] ,
of dp, V(' + p,y) (21) 6(p,) dzy e Tz Pz’ "B H(zy)
&
This will only survive when p’= @ or p’ = p, i.e. property of the
Dirac delta function. Hence,

g tog - s _ R
=§%;1(z1)3f_m[_“r Vggla - By py) e (PxP)% Bz ap

further,
—_ ...l._ j‘ dn J'dn’ \' ( + h) .‘:?B ‘6 ( ’ 4 vﬁ) eip zg
B k.. o' B Py —cor 2 'oo'P Py

' ’ +00 +c0 400
-i(p + p.’) &, s , .
e ‘Fz 2 2 f dzg H(zpy) f dp “ f dp;, I db,,
ei(g -P fp')'hg
+c0

_ (zm% - ~ _ . oo
T ¥k [ de [ dp’ Vou(p + p,y) _f dzy Vo,(p' +py) _f dz;

+CO< +c0 i i( + nh) »
B(zé) —mf dpz _OJ dp; S(qa - p -p’) e Pz e \Pg'P, V) Zg

ED2 [ ap T+ ) [ dns [ ds Blzi) [ ap. ~iPy?
Z‘Iki oo\ P pzymor zﬂﬂ»r g (zg)_m[dpze 29

R ,_.i ? — » P , -
j dpz e (pz (Zﬁ Zg) Vﬂg(g— P+ p, y)

gml i -ip 2 -ipl (O
>k J ae Vw(p *p y) _QJ dz, e (7] z_mf dzg H(z,)

1

» i v
S e n e S,
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3 . 40 oo .
sE - J AR Vgg(e + p,y) S(p,+ p)) _f dzg H(zg) _ [ dp,

m b4 > pe— -~
of dp,’ @'P2*3 T (a -+ B,y)

- +co +cg
e L - , , » GlP T,
- de Vga(p p,y) _J dzy H(zy) _J dp, e "z'9

V(a- 2, p.¥)

further,
(z1)%an1 - _ . v
"k, Jap Voot 2 - ply) [ dp, V(@ - p, p,y) [ dzgy

Hence using the property of the heaviside function and Dirac delta

function. We can write the above as,

= 45022 [ ap vm(ief py) f dpy V(a - m.py) (7 8(py) - 1P

1
=521
pz

We can simplify it fuirther and we can write the above further as,

it

(2% [ [ de dp,, V(& - 2 +p,.¥) V(2 -p,.7) [ 0 6(p, - 8,) - 1P

1
('pi 1]

1l

(21)® f [ dpdp,, V(& -2 +p,.¥) V(B - p,,7) 6(p, - B,) -

@)? [ [ apdp,, V& -2ty Ve -py) L @ -l
i
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=5“‘ffdnd1>»V(A-n+p.§)*’i(n~p.§)6(p,—ﬁi)-an31cp
Jap,.(p," - 3y) fdnv(A—n’rp.y)V(p-p.y)

This will only survive for ﬁi= @. Bence,

2 ' D —
i@lg;g! [ dp Vgytp) Vi@ - @) + {& § 1 e [ f a a,
“v—w(p ' Y) 6&( a -2, PZ’;)
———————————— :ﬁ;*—"__”-_—*__-—"“_

The contribution of the second term must be zero. Since
cosine varies from -1 to +1. Hence the second term reduces to

zero. Finally,

c0 -
5o 5% f drg 3193:” Voo ZTgr - - In) of Azp Vgelry - zyy)  +

1 o0 3.8
% f dr, e 9‘0 < “‘a | V(:g oEg) f dzy H(zg)  ei%e
V (rg- zg’y. 1:1.....:.“) | vg> - "* f dr,, ol%%g v oa(Xg: -

™ _ip 2
_qj e i%@ B(zg) vﬂﬂ‘xﬁ - zgy, Iys....xy) dzg

Finally the above equation can be simplified further in the

following form.

3
fgz:m ifﬂ(z)(g—ﬂ.n')dn‘*-'——-i-i J de
0(2)( — __B A- + - _.._gi

g (9 - 1Y iR+ B; 7)) k] J ae

- , - 2
0(2)(g~p~ﬁiy;n+(31y) -§%—(P f dap
i
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________ pt2) - - . 47
-woJ pz_ﬁi%(g P py.xz’rpzy) *ki
4+ dp -~ ~
i_ n(2) - - .
P Ja f 5= A Ust (@-2-Dp,7; R +Dy)
2 dp
g, _9_ B 2 2
k? 3 3 ® I AdE ﬂ».f B, - e (p~ + Pz)

: 2
(2) 0 - p - p g : 7 a, 2
Ugg (9 ~2 - Py i ptp, v)+ 52 aﬁi@fdp

J %= 02) (a-p-p, 70+, v).

We use this equation and the form of the potential to get

terms 1in the scattering amplitude through O(k for

1 )
calculation of the differential cross sections (DCS). We use

form of 0(2)( ..... } -«.-.) glven below,

Ugi) (x, X;vyv9,Y) = ( Wf | v {x, X) ;( v, ) | vy >

We now use the forn of 1nteraction potential (3) and
corresponding wave function for the target atom to evaluate
.above terms of the HHOB theory l.e., set of equations (2, 186,
18,). The above equation is then written in the form of
integral terms such as I ( ..... ), ’( S T 12( ..) and so
The evaluation of this integral is explained 1in detail in

appendix.

the
the

the

the
the
17,
the
on.

the
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i 2 2 2 4 a3
=-z¢ L rgry L@SATL D o+ 5520 5%
ani i 3=1 i) 1 i J kin a
[~ lZ (21,(70 xz) —'——93— 1,(3,,9)) 1 + I S -
A 2 if : . qz{kz 2YV°L 2 ki a ﬁi

1 21 2y, _ 2
CZgz Ta Co® * 52 I B 2 = 00200

. . 2
41 2 Lo, s ov 52 22y _ ___8° 2

Tk, 3 X 2021, By . A7) L2 Py 9
vate L ryr, L0 @622 %) - (Lo

g, E, 717y h 102 M k,
g ror, [ L2, 22, 2%y +.2% c1.(p,. 2%
IR B DL A T 2k ¢ 13l Fy

.2 2 .2 .2 ..

Ai 14 ( 61 . Xi . kd ¥ ] (26)Y.,

where D’ is the differential operator with respect to A’s. The x’s
and r’s are the constants and they are defined for various target
atoms in each section the values are also given. We now apply this
refinement first to the hydrogen atom as a test case. Contribution
of the imaginary term will be due to the term corresponding to
# = @, static part plus the term corresponds to finite 3 and also
corresponds to direct interaction potential Vd or YV after the
refinement is given to the HHOB approximation. Similarly the real
part will also have the contribution due to finite 3 value, 3 = @

and due to the interaction potential V or ¥V Here the term

a-
corresponds to # = @ will havg the contribution corresponds to the
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static part. We use ?hg'qox f?pnhamm parameters for the static
part. We calculate the terms individually and then we perform the
final sum. We empio} certain numerical techniques for the
evaluation of the integrals and to do the computational work. The

value of f? is taken accurate measured experimentally.

Elastic scattering of electrons by the ground (15} state of

hydrogen atom H

Electron scattering féém the atomic hydrogen (H; =z = 1) 1is
one of the ' most ‘baaic probiems in atomic physics. 7The wave
function of the hyaréééﬁkisﬂknowh exactly, so there can be no
unqertainty in ihe ayplitude arising from the use of bound state
wave functions. :Inwffhé présent study we study the elastic
scattering of electrons b} hydrogen atom, at the incident
energies ranging f:oy,lﬂﬁ to 728 eV. We use the refined HHOB
approximation. The exchange effects are included in the DCS
calculation. We use the Ochkur approximation to calculate the
exchange scattering amplitude. We use eqution (268) +to calculate
the differential cross section (DCS) and total cross section (TCS)
in energy range mentioned above. First we consider the ground
state wave functiop o{ the hydrogen atom as
vigl I3 ) = {@yl/2 Exp (- xy)

= A ‘Exg $j~‘;1 }. ‘ (27),
the product of the_ipitial ghd‘final waveifunction is written as,



A Exp ( -2 )

(X)) vg(xy)

: (~-y &
: 1
- Az Dn(y) ..§ ______
n
- a2 9 - 1_
- A d'yn rl

Dn(y) represent the derivative with respect to y and n stands
for the order of the corresponding derivatives. The interaction
potential f;r the electron and target hydrogen atom can be written
as,

v, = - ¢ i ___ (28),

where g and r, are the . position vectors for +the incident
electron and the target hydrogen atom. The first Borm term for the

hydrogen atom can be written as,

(1) 1  ia:

s g 511 o'd g Va w; (ry vy (xg)

i

i
1

= Az a S—9§~t—372-) substituting value of y
(a ty )
2 . . ,
= 2 {91 8) (29).
(a%+ 4 )

This expression 'is the first Born approximation for hydrogen
atom. Now the imaginary part and the real part of the second Born

term is written in the ‘form of "
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(2) . a0 (2) " 0 p - .y - o
Im foey = g~ JdeUpy  Ca-p -8y ;2 +8y)
3 . = - - -
= Tp- J dr < velxj) IV(@'= B - A3y, ) V(R + 87 L) ] vy
using the fourier +transform of the V(.uon... ) &8iven by
equation (1€¢) in the atiove  matrix element, the above equation

reduces to

= (k)™ [ dp [ dx, [exp (i(a - B)-Ry- 14,2,) - 1] Cexp (ip'by +

s 2 2 2 -1
8,50 - 1) wi(xy) vplep [ Ua - 213 8% % 5 )

= - A2k (v [ ae (e - % 6% i) 17 S ar

o 7E1) [ exp(ila - p)-by -18,3,) - 1] [exp(ip-b;+ i fA,2,) -1]
(39).

The typical solution of the dr, integral is given as,

f dxl e(."Y.Il) ’ eig'le v“/.fz.:'zu 411

—— 2 ot S

o L ey

PR §

usiﬁg this the above ”a;l integral c¢an be evaluated easily.
Further, using the " partisdl - fraction techniques and after the
canlcellation of the integrand having opposite sign and evaluation
of the dp integral given in aﬁpendix, the closed form for the

imaginary term can be written as,

2 i
(2) _ _ 4.A 1,. 2 2, _ 2,2 _2-1.,
Im fHEA = B D(y)“yz [212( rsi. ¥) Q- {q"+ ¥™) I1 ((31.9)]

( 31).
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This inte§£éi :t;;;ékﬁégﬁgdred in= the equation (31) are
diécussed in‘ éeﬁgii:ﬁiﬁthﬁé~ Qppendix. Equation (31) +through
refinement will have two more term one with the finite value of 3
and with f# = @ term. Whers wé usé the Cox -Bonham parameters for
the evaluation of the term. Hence we will have the correction due
to this two. terms i.e. finite 8 value and for # = @ value as
mentioned in equation (25). Contribution of real part of order
O(kzl) is samé as the results obtained for imaginary term. Hence
after evaluating the integralé dp and dpz ( given in appendix ),

the clogéd form of “this scatﬁering amplitude is written as,

Rel 1 £{2) = 4 A% (M Div) 224 2 1,688 L ¥P) - o® (P ¥HTH
1 By ey | (32)
2 Ui L e ’

Now to evaluate the 2nd.texrm of the real part of the order

O(ki ) can,be‘writtgng}p;g"gimilar way to the Rel 1 part of order
O(kil). Here, while evaluating the term (p2+ pi) det cancelled
with the same type of the denominator term. Following the same
techniques after eyaluating the dp and dp8 integral ( given in
appendix ) and using the partial fraction techniques we can write
the the 2nd term of the scaﬁteri?g amplitude through O(kiz) can be

written as:,

(2) 2 R -t x‘,\t" Y 2 B -l

:\J;./ N

-1 ({311 y )] e (33),
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'where D’ 1is tha;d}ftegégﬁ;g;,ope;ator with respect to f3;. where
the integrals"b 8 are >defined in the appendix. The terms
corresponding to # = @ ( static part) is treated using the Cox
-Bonham parameter and the solution corresponds to 7 = @ are given
in equation (26) in the form of integral term I {....). ¥We treat
the calculation of the third term of GES i.e. f(s) and the

GES
calculation ot\the ethange separately.

PSRN

Calculation of the third term of GES (f£532

GES ) for hydrogen atom :

The third tern of the GES is written using the expression of
Yates(1974) It is wr;tpenrgs'follows :

[ LSECE IR A s'iLg*x ALY

2 2

) . T N . ‘4.1 "‘
(3) _ 1 ,-2 -3, 2 i ATy ,2 070
fGEs‘a-kiT(aT). w2 [4 | In (-5-3-%9) |% +-3- - A(T) ]
2 o 2.,n
where, A(T). = 2 (log T )* + & p (L3} T< 1 and
- ) ‘ i n=l =n
o e2n
= - ¢, (—_-1:,['-12-';", T>1; T = q/2. (34),
n= n

which is a dimensionless vector. This expression is obtained after

the cancellation of the diverging integrals given by Yates(1974)

This is then reformulated in a convenient form for the present

study. This terﬁ is a differential operator acting on a
3.

dimgnsionless vectpr‘T ( ;”q/y)z‘We introduce D(y) operator using

the partial differeﬁtiation techniques, instesd of T

S ay e -:;«/-:-__!5 R R mey,
. >
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differentiation. The modified form of the above equation is

written as,’

2 2 2 2
. _¥mn.a? -2 2y 421 87t y5y,2 . T
- 2 Aty ¥2) |y
4,2 -2
= - L3t (k%) D(y) Fla.y) (35),

further,

2 _2,2m
A@,7%) =2 (log(-3-n% + 5 p (8-Lly gy

Hence, finally we get the consistent picture of DCS through

f

-2
O(ki ).
Calculation of exchange amplitude for hydrogen atom :
We include the Ist term of the exchange amplitude equation

(1. 38) using Ochkur approximation (Joachain, 1975). The exchange

amplitude is written as,

-~ -2 ig-x o
Boop ° £ 2)dr e 1 oy rp) vy (1)
2
k q +vy

finally we get,

g - - §§ o (36).
x
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It is obevious from the above equations that a consistent
calculation of small -angle electron -atom elastic differential
cross section through O(k;Z) requires the inclusion of the term

-4 Hence for the elastic scttering of electrons by atomic

och’
hydrogen we write differential cross section (DCS) as,

d 3
aa = + +

1 2 ad 2
i | fmgop * Socnl i | %mgoB = Socn | (372,
where the direct amplitude ngOB is obtained from equatiomn (21)
and goch is given by (36). For electron -~helium atom elastic

scttering we have,

d&

.d L2
= | fgpop - 8och ! . (38).
mmmmsmssmny

We choose the data both theoretically and experimentally for
the comparison with our results in such a manner that the data’s
are useful for the wide energy range and for sufficienlty large
angular region. First we dlscuss our results with the experimental
results than with the other theoretical methods. Thus +the method
throws the light on the improvements 1in the results obtained
through the refinemeﬁt in the HHOB theory. This method of our
comparison makes cxplanation more simpler. Although there are some
conp&rison where the data are not given in complete range. This is
due to either inabllity of the particular method used or the data

are not available for the comparison.
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We have used equations (26 ,28 ,31 to 37) of the scattering
amplitude to calculate the DCS for the hydroger atom at
incident energies 100 to 7@@ eV in the angular range © < 148" . We
use equation (21) i.e. expression of scattering amplitude 1in the
HHOB theory. We used the new value of the imaginary term, Iet ﬁern
of the real part through O(K;I) , 2nd part of the real part
through O(K;z) after the refinement is applied to the HHOB theory.

We have used the value of the excitation energy DE = ©.85556
a.u. as calculated by Joachain e£ al (1877 b) in the calculation
of the 2nd Born term after the refinement is applied.

We compared our results in the tabular form as well as in a
graphical form with the other theoretical and experimental results
avallable. We compare our results with , EBS (Eikpnal Born Series)
method (of Joachain et al (1977 b), simplified 2nd Born
approximation of Jéachain et a1l (1977 a), TPE - +two potential
Eikonal approximation results of Pundir et al. Our Results are
also compared with the static approximation results of Joachain et
al (1977.b)’ Optical'model calculat;on of Joachain et al (188@).
Results of Rao and Desai (1983) are also coipa;ed. Experimental
results of Lloyd et al (1874) and Williams (1975) are also
compared. |

We found in gengeral that there has been a considerable amount
of improvement in the results obtain through the refinement in the
HHOB theory. We find that for ¢ £ 5@8° - 78° results are good in

agreement when it is compared with theoretical and experimental
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results. Ouf results agree very well with the EBS results of Byron
and Joachain f1977) in the angular range © < 6&° . As the incident
energy is taken greater then 309 eV the 2nd term of the real part
of the 2nd Born term i.e. O(kiz) is very 1less in the angular
region o < 38°. Contribution of the real term increases as ©
increases and is decreases with increase in the incident energy.

We found that contribution of the imaginary term and the
first term of the real part of the 2nd Born term has improved as a
part of the refinement applied. We find +that +there has been a
considerable amount of improvement in the results.

We found that effect of the refinement in the HHOB theory at
incident energy greater than 100 eV and in the angular region e =
68° is qnitelgood.LThe effect of the exchange on the scattering-
amplitude is treated usling the Ochkur approximation. Contribution
of the first order exchange 1s almost negligible over the entire
angular range. This is due to the fact that at large momentum
transfer (l.e. fixed ki) there is a poor convergence of the real
term and good convergence at higher incident energies (i.e. fixed
e ).

Hence as expeceted there has been a considerable amount of
improvement in the values of DCS and at various incident
energies and in the angular range discussed above.

Hence by means of including certain low lying energy states
in the calculation i.e. inclusion of s state ,p state and so on

improves the results further.
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Table I1.I represent the values of various term of the
scattering amplitude in the refined HHOB theory for incident
energy 190 eV. DCS are compared with and without exchange. We
include the first order exchange in the calculation. Figure (I1.1)
shows the present DCS (so0lid curve) along with the other
theoretical and experimental results. The solid curve 1is plotted
using table II.I. This curve is compared with the experimental
data of @ - Van Winéerden et al (1977) and theoretical results of,
+ - EBS5 results of Byron and Joachain (1981), © - UEBS results of
Byron et al (1983), * - EOM (Elicit Optical‘uodel) of Mc Carthy et
al (1981). One can observe the importance of the term O(klz) wheﬁ
fhe curve 1is compared with the other results.
Figure II.II presents the DCS at incident energies 100 (set
A), 200 (set B) and 400 (set C) eV in the angular range o < 6&°.
Where the results are compared with the theoretical results of & ~
CCSOPM ( Coupled - Channel Second Order Potential Model) of
Bransden et al (1982), experimental results of Lloyd et al (1974),
Williams (1975). The agreement between the experimental results
are better then with the other theoretical results. Here we use
the results given in the table II.II, II.III.
Figure (II.III, II.IV) shows the importance of the exchange
and the term of the order O(k;2) to obtain agreement. One can
further include the second order or higher order exchange term to

improve the results further.
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Table 11.1V presents the comparison of the results of DCS in
the energy range 100 eV after the refinement is applied. We find
that there has been a considerable amount of improvement in the
results as well as our results are found close to the KBS
results.

Table I1.V presents the result of the DCS for +the energy
range from 100 eV to T@0 eV in the abgular range P to 6@ deg. It
can be observed that the present exchange corrections are small,
at @ z 58° (fixed energy) and at E = 600 eV (fixed angle).

We ha%e also plotted the results of DCS at different energy
for further comparision and to testify +the effect of the
refinement in the HHOB theory. We have also coampare our results at

different energies with the variocus experiment&l and theoretical

methods available. We conclude that by means of including certain
number of low lying energy state +the accuracy can be improved

further.
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TABLE II.IV

Comparison of differential cross section in (a% /sr) for
elastic electron atomic ~hydrogen scattering at 1904 eV, as
obtained from several approximation, namely, eikonal - Born
series(EBS), Wallace (W),and Uniterised EBS {(UEBS) and
third -order optical model (OM) of Byron and Joachain
(1981). :

[ comparison is made with the exchange calculation ]

. o - - S - - -~ - - - " - - - ;- —————— ———— - o

theta EBS oM UEBS OURS
deg
5.8 .81 4.73  4.46 4.8
1.8 2.863 2.57 2.40 2.59
20.9 9.41(-1) 9.92(~-1) 8.46(-1) 8.32(-1)
30.¢ 3.96(-1) 3.75(-1) 3.50(-1) 3.78(-1)
40.9 1.88(-1) 1.77(-1) 1.63(-1) 1.806(-1)
50.0 9.82(-2) 9.28(-2) 8.43(-2) 9.56(-2)
6.0 5.79(~-2) 5.37(-2) 4.808(-2) 5.57(-2)
79.9 3.68(-2) 3.36(-2) 2.96(-2) 3.43(-2)
80.0 2.52(-2) 2.25(-2) 1.96(-2) 2.39(-2)
89.9 1.83(-2) 1.60(-2) 1.38(-2) 1.71(-2)
100.9 1.40(-2) 1.18(-2) 1.82(-2) 1.23(-2)
120.9 8.37(-3) T7.51(-3) 6.43(-3) 8.43(-3)
140.90 7.20(-3) b5.58(-3) 4.72(-3) 6.68(-3)
1690.9 6.20(~3) 4.59(~-3) 3.86(-3) 5.81(-3)
186.¢ 5.91(-3) 4.33(-3) 3.73(-3) 4.89(-3)

o e oo W~ —— -~ 1 " S~ > Yo" o—_o—-— ", g’ - - o’ " oo’ S - o, b T - t— ——— - - i e T T o o o . 2
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TABLE II.V

Value of the diffrential cross section for elastic scattering of
slectrons by hydrogen atom. For various incident energy range

from 1080 to 798 eV. [expressed in a.u. ] Results given here
includes exchange also.

5 18 20 30 4@ 50 60

—— - - | —— T — T - -~ - o ———— V" - W - - ——— T —_ T 0 Wk W W —— — N A ———— W W W — — — -~ -~ " ———

100 4.355 2.441 2.970 @.339 ©.216 ©.1186 2.0886
200 2.128 1.1380 ©@.417 2.1689 ©.0801 2.9426 ©.0272
300 1.5198 ©.8211 ©.1710 ©.05659 ©.0240 ©.01184 ©.0976
400 1.197 ©£.6401 ©.1698 ©.9579 ©.245 9.9119 ©.0078
500 1.9549 ©.5421 ©.1298 0.94047 ©.01657 ©.0085 @.0051
600 0.9527 0.46591 ©.10134 ©.02936 0©.91178 ©.00600 O.0036
708 ©.8794 ©.40702 6.27988 ©.02224 ©.00879 O.00446 ©.0026

e R T R e b o o e Rt p—_—
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Elastic Scattering of e by helium atom :

There is large amount of work reported for helium (z=2) such
as (Bromberg; 1969 ; Crooks and Rudd, 1971 ; Bromberg, 1974 ;
Jansen et al, 1974 ; Sethuraman et al, 1874 ; Mc Conkey and
Preston, 1975 ; Jansen et al, 1976 ; Byron and Joachain, 1877)
and so nanyiother, are also available for the comparision of
present theory.

Inspired by the success for the hydrogen atom, we now extend
our work in this section to study the elastic scattering of e by'
Helium atom. We wrlte the straight forward equation after +the
refinement is applied to the 2nd Born term.

From the theoretical point of view the situation 1is nearly
identical to that of atomic hydrogen, with the only difference
being that for helium we must rely on the approximate wave
functions derived tﬁrough different models and theories. The well.
known wave function for the ground state of helium atom 1is given
by

wls(x1,<x2) = ¢g(x1) ¢0(rz)

- {(p_*_Q) (R_+_S)
= {3 n)1/2 (4 )1/2 (39),
where
P = Aexp (~¥y ’:1), ; Q@ =Bexp (-~ ¥ ”xz).
= Aexp (¥ '12) ’ ; § =Bexp (~-y’ xz)-

The nprmalizgtion constants, and the exponential parameters
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are given as
A =2.69505 ; B = 2.98144 ; ¥y =1.41 and y - = 2.61

The product of the initial and the final states for elastic
scattering can be written as

vilks ) Vv (5 » k) =2l (v @2 R+ 8)% )

= seel (P2 + Q%% vapars) v ( P%% + Q%B%H 4

2 (PeS°+ Q°RS )+ 2 (PRPQ +P° RS )]

2 2

= =2-2-2 [ (PZ R® + Qz 82 + 4 PQRSBS )+ (2P 52 ) +2(2 P Q 52)

+2(2PR.2Q)] ' (49) .

All the terms in this expression can be written inm the

derivative form. Consider the typical term of above equation 1i.e.

2PR°Q= 2A%Bexp (- (y'+y ") x)) exp (- 27’ xp)
=Kexp ( -y(I) ry) exp ( ¥(J) x,)
= K D%(y) exp(-y,r;) (-i- ) D™y, exp(-yux, (-1-)
1 2
(41),
where
m=n :1,K:2A33,y1:y’+y",y2=2y”, like
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this the other terms of the above terms of the product of the wave

function can be written. We consider the above equation of the

derivative form to obtain the scattering' amplitudes
(equation).

The interaction potentlial between the incident electron and

the target helium atom can be written as
Vd = - =8 e + peme T (42),

where Xg» Xy and I, are the position vectors of the incident
electronand the target electrons with respect to the target
nuclei. Substitution of the above two equation in the expression
for the scattering amplitude (equatioms......... }J. We will get
the expression for imaginary and real term in the HHOB
approximation as follows:

the term corresponds to the first Born term is

1y 1 ig-
fi-5e = "z [ drg o TR Vu(xp) (43).
where
1 1
v = -1 I S S—
r1(Eg) = igm2 J [Jax dr,t r, I g5l " Trg- x5l L
(CP?R% + @°3° + 4 PQRS) + (2P°8%) + 2(2P Q s2) +

2 (2 PR%Q ) ) (44),
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1 »
=352 J J dry ary wi(ry. Bp) Vg veln;, Ip)

where,

PR =a' exp ( -y ¥y " r + )

Q? 52 =t pr (-yy ''(xry +1x,))

pZ? s2 = A% 82 exp (-y (y 'r; +y ’’ry))

2

4PQRS =4a%B%exp (-yy () + 1))

2PQ 82 = 2 33 A exp(-y (y "rz +y ”’rl))
2 _ 3 ’ yss
2PR“Q =2A"B exp (~-y (y r, +y rl))
B &
here y = 2 and y *’’ = _l-l%_ —’,. For the evaluation of the dr,

dzl and dxz integrals in the equations ( 41 ) and ( 42 ) conslder
the typical term of the equation ( 42 ),

p?s? =a?B% exp (-7 (v 'ty " ry)
=V exp (-y (M ry + N rz)) (45),
substitution of this term for (..... } terms in the equation ( 34)

We will obtain the closed form of equation ( 42) for the equations
( 45 ).
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+ ( N +-i1:—)exp(-Nr9y)}

"

2v (n o3 g 15'451’—92’2 + ig‘—*é‘-”-g 11 (46),
(4M™+ q7) (4N“+ g )

if M =N tﬁen
4V 7t o3 canr_o?) ]

(47).

1"
N

using equation ( 46 ) and ( 47 ) we get the closedform of
equation ( 43 ). The reduced form of this Born amplitude can be

obtainerd as

. ) s _
Sl S S e I R R I S eI
T e oo NP o NS : RS -/ S
(4y% + & ¥ y 932 v LA T
(82 o 8%, 4% [ _ A% _

]
(4y2’+§? yy,!:§;:3 y”’e yyu )3.3
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2313,,.2
[LQZ..__._tQ ) 1

(v +& §

( (8%t g7) S (48),

(anc 2+ £ 7

k=1 K

where Ck’s and yk’s are constants given as

C 2.420884 ;

1 r a2
1.41 ; 72 = 2.81 ; ¥ygq = 2.901

C, = 6.23336732 ; C, = 1.33543

3
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Equation { 48 ) represents the first Born approximation for the
elastic scattering of electron by helium atom process.

Now the‘imaginary part of the second Born amplitude equation
(18), for the interaction ﬁétential Vd (equapion, 42) can be

written as,

: 3 ) )
Inm fééi = ?;;f dp Uéi) (g -p - ﬁiy S - S & ﬁiy ) (49),

where

Uéf) {a-»p- ﬁiy »y p ot ﬁi; )} for helium atom is written as,

- — ~ - _ -
=< vy (x4, xy) | Via-p-87 ;2 +8y) V(e+ By
| v;C 10 r, ) >
V(....) s substituted from equation (12) in the above expression.

Hence,

S S A S dr, dr, ve(r ,r,)v,(r,,r,)
*da - 21 6% % 8Y I amy dzg vatryomglvyteymg

[ exp (i{a - p)'b; - i8,2,) + exp(i(a - p)-b, - 1;2,) - 2]
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[ exp (1 p-by +1£;z,) + exp (1 by, + 183, -2 ]
= -—-'—; ------------------- ﬁ'— f f dll dxz W;(rlrrz)wi(rltrz)

[exp(ir'g-hl- 2 exp (i(g - n)ohl- mial) - 2 exp(in'hl* mizl)

+ exp (ia-b,)- 2 exp(i(a - B)-h,~ iB;2,)- 2 exp(ip-by* i5,2,)

+ exp (i(g - 2)eh1+ if?izz + 1 n'hz- 11?131) + 4 + exp(i(a - )

‘b, + 18,2, + 1 pby - i8,3,) ] (58),
Substitution of exponential term (41) for product of the wave
function (equation,4@), we can evaluate the above dr; and dr,
integrals. We have

t ) e k D(Ys) D(Y2) ______

. e w 3 e s s 8w -

exp(-y,;r;) (ry) 1 exp(-yzrz) [ -————=—~ ] ‘
The evaluation of the integrals dxl and drz is performed in a

simllar way applied to the hydrogen atom. We write the closed form

of the above integrals'as

2

S E ) e [ D(Y,) -3 2 D(Y,) (315 + -2 2 -
ant(ja - 212+ %) 0%+ 5H 1y 2" q%v?2 %
—————— DYe)ooos - ATy pey,-E-2 DoY)
(Ja - p|"+ B8] + Y3) (p™+ By + Y,) 2
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D(Y2) _ ____D(Ys) D(Vz2) __ _ ___D(Y1) D
Y 2 2 2.2
2 ('Q - Bl +ﬁi+ YI)YZ Y

[ Ua-22+p%+v2) (p?+p2 vt +cm¥§;z> c-‘-’i-‘-’;;z > -

-1 1

2, .2 -1 -1, 2 2 -
D(Y,) D(Y,)([a - 2%+ % + v, i1 - pvnery) v e 2+ YD)

+ D(Y,) D(Yp) (la - 2% + 5% + ¥ yle?m? + 1111 ) (51),

Substitution of (41) in equation (39) we get the close form

of equation (31) of the product of the wave function (38). Hence,

2
t _(4)7k o de___________ 1
Imel = I - [ D(Y,) -2 I(Y,)
HEA k (p%+ B?) (la - B} 4 f?iz) 17y 2
¢ g%+ 2v® | ______ D(Yed o _ ____D(Y2) _ ), piy.,-la
Cf+é (la - P+ A+ ¥ P+l + ¥)) SR
pery) ¢ ) « RS 10 2 N DY) ),
Cd+?  (a-pfepfevd  @2epZevh)
C 1., 2.2 -1 1 2, 2. .2.-1)
Py 2 - Ua - 21% 467+ YO0 - F + le )]
C 1, 2. .2 2 -1 1, .2 . 22 , v2.-1)
(D(Yz)(Yzz (jJa - p|“+ By + Y,°) D(Yl)(;:,«-lz (2% + 8] + Y] 3]
(52),

using»the solution obta;ned for elastic scattering of e by
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i

hydrogen atom we can write the solution of the imaginary term as

2
- (#4)7k, _ _2 H(Y2) _ _2 H(Ys
= - g ) Yzé 7.3 DY) Yli + 2D(Y,) D(Y,)
y o2 o2 -2
I (Y7, Y3 ) (Y ¥,)7% ] (53),
if Y1 = Yz then,
2 N
- (#)" k. _ _4 H(Yz) P~ -4
(54),
where the quantities B(Yl) and I((Yf , Yg )} are given as
BY,) = 21, (32 7'12)‘”-— 92 g T A ) and
1 - 1 i’ "1 2 2 1 i’
q- + Y1 .
E ] 2 2 B e e o s o s ot e e s e v s s SR o ot e o o S s T P s e o Ton S o

using the same treatment applied to the hydrogen atom process and
the results derived in the appendix the closed form of the above
equation can further be simplified in the following way to have

the final form of the imaginéi'y term of the 2nd Born term,

4 2,2 3
(2) _ -1, _ A A_B_ A_B (Y1)
1 2 3 1
4 2,2 R 2,2 3
- B_ AB_ B_A H(Yz), _ A'B_ A’B
4 Y23 + 4 Y13\+ 3 ’Y33' ),D(YZ) Yzz ( 16 Yg + 8 =3 f
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2

+ 8 BA3y peyy) BBz 42 a% pevp) poyp (7t 1 L vS
2 3

1)
+ 2 B2 DY) DY) (Y. % 1,7(¥2, Y2) + 8 A%B% Dy, )p(Y,) (¥4
(Y, 2) (X 4 (g Xy 3)D(¥3) (Y5

vy? y2 252 ey, -2 1 . (y2, Y2 3

I1,° (Y5, Y3) + 4 A%B® D(Y,) D(Yp) (Y ¥,)™% T°(Y], Yz) + 8 B°A
-2 5, y2  y2 3 -2

D(Y,) D(Yg) (Y,¥g) 2 I,7(Y5 , Y3) + 8 A”B D(Yy) D(Y;) (Y;¥y)

s vl 2
1,°(Y], Y3) ]

= mx) E o - A DY) HY) R B DY) DY) (Y, Y72

k=1,2,3
3=1,2,3
vey? vy 4 DY -2 1 (g2
1002, ¥2) ¢ By DY) DY) (MLY% 10v2, Y5 )1 (88,

where Ais‘. Bkk 8 and Ygs s Bk3 s are constant given as,

Y, = 2.82 , A = 13.873 , B, = 92.1874 , B,, = 117.604
Y, =5.22 , A, = 8.665 » B,, = 37.5382 , B,, = 187.831
Y, = 4.62 , A; = 21.689 ,’ By, = 235.208 , B,, = 284.376
Now to evaluate the real part of the 2nd Born term of order.
k;l can be written as equation (16). The basic difference between

the evaluation of the imaginary and real term is the evaluation of
the principal value integral dp; evaluation of the dx1 and dxz
integrals are same as the imaginary par;. Replacling ﬁi in equation

{52) by P, and using the results obtained for hydrogen atom we can
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write the closed form of equation (16) for the product of wave

function (equation ,. 38) as,

(2) _ 2 -1 -2 ' -1 _2

Rel £} = (4% k (Nky) [ Y13 D(Y,) B(Y,) Yzz + Yz:s D(Y,)
e , 2 -2

H’(Y ) "‘ - 2;'D(Y1») D(Yz) I (Y ’ 2 ) (Yle) ] (56).

1

1f Y1= Y2 a similar expression can be obtained as equation (52)

for the equation (54). Where B'(Yl) and 14’(Y§, Yg ) are given as,

, - 2 2, _ 2,2 2,-1 ,
I (Yl.'Y ) =@ f (5—:“5*) f ““““““““ §'“~~§g ******* Z:-'é ~~~~~
1 (la - p|"+p "+ le) (p% p+ ng
Thelterm 14(....) ’ 12(T"") are defined in the appendix. Using

the above expression and making use of equation (38) we get the

close form foréthe}rggi(part through O(kil) as,

Rell NO lox! g

B 1
[ A D(Y,) B(Y,) -3 2 - B D(Y,) D(Y,)
HEA R T k) 7Y 27 By DO DOY
. \ J=2,3,1
2 42, 2 y2,-1 ., _ 2 42, 42 y2,1
1,02, ¥2) (¥ vByty - B, pyp povp 1,02, v3) (v v¥iy

(57).
All constants appered in the above amplitude are given under
equation (55).
‘ The real part through order O(ki }) of the second Born
approximation equation (17) can be written as
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2, 2
(p“+ »7) -

' s ___ 2’ gl2), . _ 4 - .
e fd _J B h Usi'(a - p P,V

NN

(2) _ _ 2
Re2 fopy =

k
B+ p,Y) R 7 (58).

By comparing the results terms of the amplitude (equations
55,57) with the equations derived for the hydrogen atom case
(equations 31,33), we can directly write the closed form of

equation (58) of the wave functions product equation (40).

L,
(2) _ (4)k. p.op 2 iy 2 1 g.) -
Re2 fgp| = D' [ 3-3 Dlyy) B''(yy) + 53 D(yy) B (7))

2 n1%x? 1
2 2
I (yys ¥0?
- D(y;) Dly,) -2-3t-5-20) (59)

where H”(Yz) and Is(yi, yg ) are given as,

, ‘ , 2
I, (3,, @) . I (3,,¥5)
B (y,) = 35—l % 311l oo 6?2, 5E
(@” + vy) 71
and 2
5\ Yal) = (o - Ry 4 T TTTeT T et T T Tt T T T
o . .;_‘hfFi - i) (lg~plz + p:+ yf) (p%+p%+ y2)
. ¢ ] 2
. : . -, 2 2
N PR s N
265 (la-p| “+ po+ yg) (p2+ p§+ yf)
- .72, ¥3) - 1,002, ¥3) 3+ 53 + I, (3%, y2
335 ¥; 4y Y3) gt oy, 3 By ¥3)

The above three terms are obtained by adding abd -deducing y%
and yg in the preceding two terms of Is(yf, yg), and making use of
the prevous results. Using equation (59), the real part (58) can

be obtained through the equations (40,49).
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Rez ti2) = (1%k5)1 p  DUADYY By - 55‘3 D(y,) D(yy)
§23:48;2
2 2 2 2
Io(yysvy) I(yys7y)
—§§""§§-! - "‘éi D(yk)n(yj —é_ék_il_.— ] (60).
Yy Vi Tk V3

Now to get the closed form of the terms corresponds to

imaginary and real through O(kﬂz) we use the relation

(2)( a - ﬁiY: pt+ ﬁiYs Ilixz) -
<wf(x1.32} | Via-»p - ﬁi;; rl.xz) V(p + ﬁiy. xl.xz) | "’1(‘1"2)
> = L yelryr,) | V(a - p -ﬁi;. ) | owilery) > < owe(rgry) |

V(p + ﬁiys tz) | wf(rl;r2)> (61).
Now the 1maginary (equation 49) and real parts (equation, 58)
can be derived. The closed form of the imaginary part in the

elastic gcaptering»of‘éiéétfons by helium atom can be obtained as,

= ﬁl f __________ ég-‘ ________ f dI f d: [ eig hl 1(9 bl + ﬁi }
57 (1ampl 3¢ 6% 0%+ 5% 1 2
b 4
vy ve Jdry [ dr, exp(i(la - » |'D, + i8y2,) 1 v, w; (63).

Substituting the product of initial and final states of
Hartree -Fock wave functions (equations,4® ,41) and following the
procedure of dr, >, dr, and dp , the closed form of the above

equation (63) can be written .s



. , 2
Im f(Z) = = _1_ g D(y.,) ﬁlh-ffll_g_)_ - ﬁ.l- )
HEA = Tk gz 1 (45D ky 11,3 [ A5 Dy
3=1,

N
[\

Divy) 73 vy Tt 136t @) - 1,605, vD - 1,68, v ¢
7@ 2
14(71, yJ) }‘] (64).
Similarlly resal parts through O(klz) can be derived through
equations (4@,41 and 63). The closed form of these term can be

written as it is written in case of the hydrogen atom. Hence,

2
3 A, 12,0
Rel £{%) = -3~ E Dlyy) -t-pP-—3=— - -l £ [ A D(yy)
N7k, i=1 (a” + ¥) n“x, i=1,3
1 i g 1513

2.2.-1 . _ 2 2, _

2 2 B :
14 (yi, YJ) 25 B (65},
and 9
3 I1.'(3,.9)
(2) _ 2.2.-1 3 h 2,.2,.-1
Re2 £ = (7)) © Ay D' D(yy) —S5-—=—5- - (2%k5) ¢
HEA SR = R 1 @® + yh 17 4318
j=1.,3
’ '—2 2 2 2 2

All the constants A, , y; and A13 » ¥4 can be obtained from

LI A

the equation (39),

: Al = 6.7863, A, = 4.3324, A, = 106.845

2 3
vy = 2.82, ) ¥yq 5.22, y3 = 4.02
A11 = 46.6537, A22}= 18.76986, A33 ='117.69431
A1z = 29. 4029, A,, = 29.4009, Ag, = 73.5939
A13 = 73,5939, A23~: 46.9327, Ay, = 46.9827
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We use eqﬁétions (64,65,66 and 38) in equation (22) for the
calculation of the differeﬁtial cross section for the process to
study théyelastic scattering of electrons by helium atom. We also
perform the calculation of the term corresponds to /3 = € and for
finite value of f3 as_?i ié,dpne for the hydrogen atom after the
refinement is apﬁii;dﬂ forj the above said process. We also
»caiculate the third term in GES 1l.e. fééé and the exchange term
Eooh in the Ochkur apﬁroximation which 1s described as follows:

(3

GES ) for helium atom :

Calculation of third term in GES (f

We usé the exﬁreésion of scattering amplitude obtained in

Glauber Eikonal Series method given as,

(n) S QY 1 ¢ AP, 2 ol 2
fGES ( QIki) = mki Gk k)n o ! f Plz fdp-n-*l(pn—lﬂg Bl
< vl B(ey) B(p,_4)..... B(ls% -2 f vy >

Coﬁsidering the prdduct‘qf the wave function of the helium atom
and the iﬁféiaétidﬁiﬁaiehtiai of helium ‘atom in the calculation
we can simplify the above torm.”

Singh and Tripathi (1980) evaluated the 34 term of GES for

elastic and inelastic 5cattefing of € by helium atom. We use the'

simplified form of the same as,

+ X

£83) = 3 (I‘Iki)_z [ X 3z ]

GES 31
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where 131 and X32 are well defined quantities given by Singh and
Tripathl (1988). ‘

Calculation of the exchange amplitude for helium atom :

We use the equation (39) and Ochkur approximation ( Joachain,
1875) for the evaluation of the exchange amplitude for He atom. We
write the straight form as follows :

_ -2 2 -2
Boon = ~ 32 (X,)7° (@ + 4 )7

RESULTES AND DISCUSSION :

Results obtained through the refinemént in the HHOB theory
for the differential cross sections are compared with the two sets
of measurements viz., those of Bromberg (1969,1974) and Jansen
etal (1976) and theoretical rcsults of Dewangan and Walters (1977)
of DWBSA method, EBS and UEBS resultes of Byron and Joachain
(1974, 1975); We alsé compare experimental results of Crooks and
Rudd, Vuskovic et al and Jost etal. Theoretical results of the
optical elkonal method of Byron and Joachian are also compared. Ve
also compare theoretical results of Rao and Desai and Suja and
Desai. The choice for choosing these groups of data are that,
firstly they tend to support one another and together cover a
large energy range (100 eV to 3 KeV) and, secondly the systematics
of the improvements in agreements between these data and our
resultsﬂasﬂfhe.energy is increased, and therefore the comparison

is made in this manner.
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We find in general that for the incident energy E = 200 eV
gives better rgsults and it improves further as the energy of
incidence is increased fﬁrther. We find that our results agrees
well with the EBS results as compare to the results of Rao and
Desai (1983) and Suja and Desai (1987). Further due to the
refinement results at large .scattering angle also improves further
as compare to the earlier methods., When the results obtained
through the refinement is compared with the optical model they
fouﬁd to differ. This may be due to the fact that optical model
treats the static potential (which 1is very important im large
angle écattering) exactly to all orders of perturbation theory,
the optical model results should be preferred at large angles,
while the results obtained through the refinement in the HHEOB
theory agrees well over the entire energy range. As the energy of
incidence increases further the accuracy also inocreses further.

As the energy of incidence 1s increased the contribution of"
the 2nd term of the real part of the 2nd term is getting less.

The ef(eot of the exchange is treated separately using the
Ochkur approximation. The difference between our results, KBS
results and optical model results are mainly due to large angle
behaviour of differential cross sections. Further, due to
refinement'the contribution of the imaginary term 1is significant
for the energy E = 200 eV.

Tables II1.VI, I1.VII shows the behaviour of the individual

terms of the HHOB approximation at 200 eV and 402 eV respectively.
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In table II1.VII we compare our results with the results of Singh
and Tripathi (1980) and results of Rao and Desai (1983). We find
that there is remarkable difference in the results. But when it
compared with theoretical result of the optical model of Byromn and
Joachain (1977) and the experimental results of Crooks and Rudd
(1971), Bromberg etal (1974) , Sethuraman etal (1974), we find
that there is good amount of improvements in the results Ifor
E =z 260 eV. We also compare our results with the 1results of KBS
method, results of Jansen etal, HHOB method and the results of
Suja and Desali in the table II.¥III. We £find that our results
agrees well with these methods. We alsc compare our results for
E 2 400 eV in the table II.IX and II.XI with the experimental
results and the other theoretical results available.

We have also compared our results in the graphical manner
also. Figure II.V shows +the values of +the differential cross
section for the energy of incidence 208 eV. We find that there 1is
a good amount of improvement in the results. We have compared our
resuls with the experimental ard tbeoretical results for the
angular range 1€ to 138 deg. Similarly firgure 1II.VI shows +the
results for 200 eV as well as for 400 eV. Here also we compare our
results with the theoretical and other experimental results also.

In figure II.VII the results are plotted for the energy of
incidence 200 eV and 408 eV respectively. Hence 1looking +to the
comparison we can say that through refinement i.e. by including
certain low lying energy states in the calculation results can be

improved upon. We also calculate the differential c¢ross section
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for the energy of incidence 10 eV to 700 eV which 1is given in
the table II.XIII. Results are expressed in ag /sr. We also
conclude at the séme time that the effects of the higher order
terms of the exchange can improve the results further.

Hence looking to the easiness in fconputing the results
through the refinement in the HHOB theory and the improvement
obtained in the results we extend our method to study the elastic
scattering of electrons by lithium atom followed in the following '

gsection of this chapter.
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TABLE II.VIII

91

Differential Cross Section (in a%/Sr )} for the elastic scattering for

Angle
(Deg. )

Present

results
1.338
5.78(-1)
2.86(-1)
1.52(-1)
8.78(-2)

TABLE II. IX

Jansen
et al
1.08
5.28(-1)
2.81(-1)
1.51(-1)
8.85(-2)

Crooks &
Rudd
1.93
7.18(-1)
3.25(-1)

1.88(-1)

HHOB

1.3113

6.4973(-1)
3.1266(-1)
1.8634(-1)

1.0794(-1)

€ - He atom at incldent energy E = 200 eV.

1.34
5.83(~-1)

2.88(-1)

1.54(-1)

8.81(-2)

1.3249

6.1141(-1)
3.1662(-1)
1.7582(-1)
1.0400(-1)

Differential Cross Sectionm (in a% /Sr ) for the elastic scattering for

Present
results
7.71(-1)
3.72(-1)
1.83(-1)

8.89(-2)

Jansen
et al
7.87(~-1)
3.65(-1)
2.47(-1)

1.69(-1)

Bromberg

8.10(-1)
3.67(-1)
1.76(-1)
8.85(-2)

4.81(-2)

6.7601(-1)
1.3199(-1)
1.3199(-1)
6.6050(-2)

3.7678(-2)

7.61(-1)
3.79(-1)
1.78(-1)

8.78(-2)

6.8589(-1)
2.8982(-1)
1.2847(-1)
6.1727(-2)

3.5825(-2)



TABLE II.X

Comparison of the differential cross

sections

for

92

elastic

electron -helium atom scattering at an incident -electron energy
of 200 eV. [ expressed in a}/ sr. ]

——— -~ — — - - - " o . . " -~ — ————— - - > o —— - S T o T o W ] Tt G o T o " O S T — — i U W T _—— ot W1

Theoretical

theta  Present
deg. results
5.0 1.81

16.6 1.338 }
28.6 5.78(-1)
3.6 2.80(-1)
6.8 8.78(-2)
76.8 3.43(-2)
98.6 1.75(-2)

116.0 1.11(-2)
136.8 7.96(-3)
156.¢ 6.88(-3)

EBS

Optical

method Eikonal

o Y D o o i o W~ — e " ] W — e i . Sl W s ey . Y W M W T e o R W N B o S . S A W — i M o e o

5.83(-1)
2.88(-1)
8.76(-2)
3.61(-2)
1.97(-2)
1.32(-2)
1.81(-2)
8.60(-3)

1.28

5.81(-1)
2.990(-1)
8.42(-2)
3.08(-2)
1.41(-2)
7.85(-3)
5.17(-3)
3.95(~-3)

et al

3.20(-1)
1.90(-1)
4.11(-2)
2.98(-2)
1.21(-2)
8.57(-3)

Experimental
Croock & Vuskovic Jost

Rudd et al
1.93 1.72
7.13(-1) 3.83(-1)
3.25(-1) 1.41(-1)
1.63(-1) 6.28(-2)
4.23(-2) 2.39(-2)
2.33(-2) 1.45(-2)
1.41(-2) 9.47(-3) _
1.85(-2) 7.37(-3)
8.43(-3) 6.43(-3)
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TABLE II.XI

Comparison of the differential cross

sections

for

9>

elastic

electron -helium atom scattering at an incident -electron energy -
of 400 eV. [ expressed in d%/ sr. ]

- ———— - —— " o - - - Y N ani W SO W " W S — " " W Soy " T ST Dol o SO T Wl Sl S S WD O RS S T S T . . . T~ T~ S -~

Theoretical

Present
results

EBS
method

Optical
Eikonal

———————— —— - - - " -~ o~ o Moo e s 2. s cosl . . S, S O S T T i, WO D117 O, 0 SO S V. S ) S, . O O . St W . o D . . W S o S o Vot W, Tt B o i o

80.9

7.71(-1)
2.72(-1)
1.83(-1)
3.41(-2)
1.86(-2)
4.78(-3)

116.6 3.72(-3)

130.0 2.26(-3)

150.2 1.89(-3)

" 102 2005 Yo oot T o S S — o " {7~ - - A ok Tl (ot Sl 2 s S W TN T SR W o S S S S SO W 1 U i Sk P S TS W B ST i " S ot o S o o . - - " -

6.89(~-1)
2.85(-1)
1.23(-1)
2.96(-2)

1.99(-2)

5.34(-3)
3.37(-3)

2.44(-3)

6.75(-1)
2.82(-1)
1.20(-1)
2.78(-2)
9.29(-3)
4.16(-3)
3.18(-3)
1.55(-3)
1.20(-3)

Experimental

Croock & Chamberlain Jost
Rudad et al et al
— 1.04 1.39
7.61(-1) 6.22(-1) 8.93(-1)
3.17(-1) 2.37(-1) 3.64(-1)
1.41(-1) 9.48(-2) 1.55(-1)
3.34(-2) --- 3.57(~2)
1.17(-2) --- 1.21(-2)
6.60(-3) --- 5.18(-3)
3.33(-3) --- 3.98(-3)
2.32(-3) --- 1.86(-3)
1.83(-3) --- -—-
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TABLE II. XII

theoretical and experimental
differential cross sections for elastic electron -
helium scattering at inicdent ~electron energy 208 eV.
Results expressed in a% /8r. '

Comparison of various

v s o - - T o - e - - S -~ T Y Yt s 900 O G . S A Wt Sl ks S, S P i o e S S A s S g . s T T W >~ s S " - - —" "

Experiwental values

theta OM Crooks and Bromberg  Sethuraman Ours
deg. BJ Rudd et al

1977 1971 1974 1974
5.6 1.98 — 1.13 — 1.81
19.6 1.25 1.93 1.12 -—- 1.338
28.8 5.75(-1) 7:13(-1) 5.27(-1) ——— 5.78(-1)
3.6 2.91(-1) 3.25(-1) 2.76(-1) 2.63(-1) 2.80(-1)
40.9  1.55(-1) - 1.82(-1) 1.57(-1) 1.82(-1)
50.6 8.86(-2) 1.03(-1) 8.91(-1) 9.30(-2) 8.78(-2)
68.6 5.43(-2) - 5.57(-2) 5.38(-2) 4.89(-2)
70.9  3.57(-2) 4.23(-2) 3.72(-2) 3.57(-2) 3.43(-2)
880.9 2.49(-2)y - ~-- 2.63(-2) 2.47(-2) 2.51(-2)
99.0 1.84(-2) 2.33(—é) 1.98(-2) 1.77(-2) 1.75(-2)
1026.80 1.42(-2) -—= 1.45(-2) 1.48(-2) 1.36(-2)
116.2 1.14(-2) 1.41(-2) 1.18(-2) 1.15(-2) 1.11(-2)
120.0 9.51(-3) - - 9.88(-3) 8.89(-3)
132.6 8.20(-3) 1.85(-2) —-— 8.08(-3) 7.96(-3)
148.8 7.28(-3) —— - 6.80(-3) 7.12(-3)
1586.6 6.65(-3) 8.43(-3) -— 6.08(-3) 6.89(-3)



TABLE II1.XIIA

95

Values of differential cross section for € - He elastic
scattering at various incldent emnergles and scattering angles.
[expressed in 8% /sr].
theta N ENERGY (eV)
deg. 1092 200 300 400 590 100
gj;“n 2.53 1.68 1?55 ljgg 1.99 n8.95(—1)
1.6 1.98 1.338 1.91 7.71(-1) 5.89(-1) 5.01(-1)
20.6 1.38 5.78(-1) 5.43(-1) 3.72(-1) 3.32(-1) 3.02(-1)
3.4 6.78(-1) 2.88(-1) 3.89(-1) 1.83(-1) 1.30(-1) 1.02(-1)
A0.6 4.34(-1) 1.52(-1) 1.11(-1) 8.89(-2) 7.89(-2) 8.89(-2)
5.6 2.56(-1) 8.78(-2) 8.47(-2) 4.98(-2) 3.78(-2) 4.92(-2)
60.0 1.68(-1) 5.69(-2) 4.39(-2) 3.21(-2) 2.91(-2) 1.91(-2)
76.8 1.43(-1) 4.91(-2) 2.21(-2) 2.06(-2) 1.01(-2) 8.32(-3)
86.6 1.91(-1) 3.32(-2) 1.54(-2) 1.56(-2) 8.65(-3) 7.11(-3)
99.8 7.85(-2) 2.32(-2) 1.91(-2) 1.96(-2) 5.88(-3) 4.32(-3)
100.0 6.45(-2) 1.68(-2) 7.59(-3) 6.01(-3) 4.93(-3) 2.89(-3)
120.9 4.56(-2) 1.91(-2) b5.81(-3) 5.89(-3) 3.33(-3) 1.92(-3)
140.6 4.91(-2) 9.43(-3) 5.11(-3) 4.63(-3) 1.23(-3) 8.89(-4)
160.9 3:67(~2) 7.54(~-3) 3.89(-3) 2.65(-3) 9.98(-4) 6.43(-4)
3.01(-2) 6.23(-3) 2.56(-3) 1.89(-3) 8.53(-4) 5.59(-4)

e
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e -Li ,elastic scattering using the refinement in the HHOB theory :

The study of electron - alkali atom - collision became an
interesting area in the recent years both theoreticllay and
experimentally. Among them is the discovery of alkall atoms in the
atmosphere. The theoretical work was ' stimulated in the
intermediate and high énergy'range due to availability of the
experimental results of Willams and Crowe (1976). The part played
by the alkali atoms in the Magneto -hydrodynamics is very
important in the present day of energy crisis.

It is a known fact that the methods which applies well to the
elastic scattering by the light atoms will not be too effective in
the alkali atoms. It is due to the pecular nature of the alkali
atoms. It is because of the quasi degeneracy of the ground and
first excited states, there exists a strong coupling between these
states. The large polarisability of the alkali atoms can be
accounted mainly dup to this coupling. The outermost electron in
this atom is loosely bound S-electron hence the increased activity
of these atoms. The absorption effect (removal of electrons from
the elastic to the inelastic channel) also plays a important role
in the alkali atom scattering. But, the L1 atom being the first
member of the alkali atoms, the above discussed deviations from
the closed shell atoms will be a least case. Because of this it
gives an oppurtinity to test the theoretical model which applies

well to the lighter atoms like hydrogen and helium atom. There has
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been many atteméksﬁima&e to study the elastic e- Li atom
scattering in the intermediate and high energy region. Sarkar etal
{(1973) used eikonal >ap§¥oximation to study the e -Li elastic
scattering for a wide energy rande ©.8 eV to 500 eV. Gregory and
Fink (1974) solved the relativistic Dirac equation to calculate
DCS and TCS in the energy range 100 eV to 1.5 KeV. Chan and Chang
(1976) applied Glauber approximation to obtain DCS at 100 eV, 200
eV and 480 eV. Vanderpoorten (1976) used a local optical potential
consisting. of static, polarisation, absorption and exchange
effects to evaluate the DCS at 54.4 eV and 60 eV. Mukherjee and
Sural (1979) used integral abproach to the second order potential
(SOP) to calculaté DCS and ‘TECS at 10 eV to 200 eV. Gien (1981)
investigated the exchange effécts in the frozen core Glauber
approximation at 20 eV to 1000 eV. Tayal etal (1981) have
calculated the DCS and TECS using corrected static approximation
and in an approximation which combines the contribution of the non
- static parts of the higher order terms in the Glauber
approximation with the static part treated exactly for the enrgy
range varying from 10 eV to 200 éV. Wadhera (1982) used first Borm
approximation along with the polarised Born amplitude to obtain
integrated elastic cross sections from 50¢ eV to 1080 eV. Dhal
(1982) used two potential formation in which the close encounter
cpllision are treated.exactly and the polarisation, exchange and
absorption effects -are: treated through the optical eikonal

approximation at 60 eV, 200 eV and 408 eV. Rao and Desai (1983b)
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used the high energy higher order Born (HHOB) approximation along
with the Glaubér eikonal series (GES) to calculate the DCS from 5@
eV to 100¢ eV and TCS from 100 eV to 700 eV. Tayal (1984) applied
corrected static approximation to obtain TCS from 1€ eV to 200 eV.
Vijayshri (1985) evaluated the DCS and TCS wusing modified
Glauber app;oximation (MGA) 20 eV to 1000 eV. They used the two
models mainly, the single particle scattering model (SPSM) and the
inert core (IC) model. They ignored +the multiple scattering
effects. Chandraprabha (1985) used modified Glauber eikonal series
(MGES) and (GES) to calculate DCS in the energy region 1lying in
between 190 eV to 800 eV. Yadav and Roy (1987) have calculated the
DCS using the Coulomb -projected -Born approximation with Junker’s
modification to obﬁainlthe DCS for energy region 18 eV to 20 eV.
Amongs all discussea above mentioned work, the results of
Vanderpoorten (1976)' '.-;nd MGA (sfsu) of Vijayshri (1885) are
reasonaly close to the experimental data. Suja and Desai {1988)
used the extension of Rao and Desai (1983b) theory of HHOB
_approximation. Where the Li was taken as a three electron system.
‘::Whpre the long range polarisation and absorption effects are
accounted.

Inspired by the success of applying the refinement in the
HHOB theo;x we now extend the same for the lithium atom to study
the elastic scattering procéss. The differential cross section are
calculated in the eﬁergy ranéé 100 eV to fﬁﬂ eV . Here we also

consider the Lithiqm atom as +three electron system. The wave
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function for the ground state of Li atom has been considered as

that of Veselov et al (1961) as quoted by Chan and Chang (1976),

S
v o= 52 @ op L 21510 %1510 Y251 ! (67),

i

(_g? 172 gar

with %18 ) (68),

5 1/2
[emn3B. 2 (1 - -2LL dr e7F (69),
N(l- ofp + B

1§

Pas

where ¢ = 2.694 and 3= 9.767. This wave function gives an energy

of -7.414 a.u. against the experimental value of -7.478 a.u..

2

_ L2 2 . 2 2

(719),
further,
3
- _ A -A, I _
“1s%1s T g e 1, M=24a (1),
AS
* 2 1 a2 A, I
“pstps = 8 MO DOF (g 2p) -3 gy e 2 (12),
where,
N% -3°
R VA, =23 , A, s +p (73),
@f-apefFy 2 3
and DOP (x x)-(1+.2.):§,. 2 . 32 2
3ha) = ERONS Ty e xZ) (74).

The intgractiqn between the incident electron and the target

lithium atom can be written as,
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v, = - -3 4t . 1. PR e — (75),

where, xg.xr xz . 13 are the posltion vectors of the
incident and target electrons with respect to the target nuclie.
Now the closed form of the first Born approximation can be

written as,

oy
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substitution of equn. (71,72,73) in the above expression yields

the final form of the first Born term as,

(1) ng w25 ) 2 2 (é?+ ZKg)
Toga = 4 37 pTn Y 8 NTDOP (R gA,) <33 (C-pmm--T5- )
(a2 %) (& +122)
(77).
similarly the imaginary term Im Féé& can be written as,
(2y _ 403 (2) ~ ~
In oA = k" JaeUgy’ (a-phyy i 2 o+ (78),

(2) - - - —
where, U;y"( g B tE;yR Y83y ) = wel oy, X,.kq )|
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P vi(xgrxp23) > (79),
substitution of VY from {9,18) and w* y from (7€) we can write,

(z) -~ . . -~ _ L
Uei’(a —~p+By 3 ¥B,¥y) = —ogmooompTop TSy
i voo o at(a ol % 8h % e)

JIf U avyavadv, o2 (r,) 2 (x,)e5 (£g) - #54r.) #,4r,) #,L(r,)

, ,
L [et® Ry * 12,35 g [elRlyr 1R,2

$olra) ¢,(x3) ]
28%3) #1453 Bl

‘;;-Mm

(88).
carrying out the integration of ( 78) and using (89) we can write

the imaginary term as follows:

(2) 1 16 aong 2 o 1
Im £ = =7 [ -3 + -5 -5t + 4N" DOP (- 5-) (5% J
HEA o ki (7\%_ + qz> 2 ° >\2 7\22+ E
2,.2.2 B, a 1 a 1 2 2 2
Il(q .f?i-ﬁi)"’ 32 o (- ~—6~X1- )~3—\; - “E“Xt )] ';‘2 I(a™r 1.?’2) +
3 a 1 2 .2 .2 2 I 1 2 2.2
16a¢- -5—;\)1--)\21 I (a% % 3;7) + 8N" DOF(- 53‘2“}‘2? 1 (a” z°67)
+ G4 NZaZ 7] 22 2 32 4

-2 5.1 50 pope-o-@.- 1 _—

4 »
32 457253 + 2834 )

2 1,67 6% R%) - -
3 3 3
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2 2.2 a 1 a 1 - AR o -
II(Q: uyﬁi) + B ("" 'a"{'}) ”x‘“az ("' a’?})"x‘az + ZBB ( E3 B) )\g a [?2
2 2
,2 @ 1 a 1 22 2
Y BT ap? (2Rt X2 hildupup) ). (81)
2 _ .2 2 . 2 _ .2 2 2_ .2 2
where, 71 ..{?i +x1 ; 72'“{31 +A2 ;ou —Bi +>\3 and
3 ) A
I el e 112 apa B- = ¢-D B.
n (@ -ap + %)
Integrals of the form I1 . .....> 1s defined in the appendix. Here

{3.1 = AE/x i AE the excitation energy. Here for 1lithium atom

AR

it

@.08825 is taken, which was calculated by Vijayshri (1985).

Further, the terms corresponding to real part i.e. Rel ff(ég‘ can be

written as follows :

(2) _ (2) (2)
Rel fgoq = Rel 1 fgoi + Rel 2 fgoi (82)
where,
2 oy dp
(2) _ _ _an z (2)
Rel 1 fopy = - =5p= P [ap [ ----F%- Y (83)
HEA k; J _cof I e 11 ,
2 +00
(2) - -4 2, 2 (2)
Rel 2 fggp =~ %, 2P Jae [ ep, 0% 5, ) Ugy (84)

Where symbols have thelir usual meanings as defined earlier. Again
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using the same mathematical treatment for the lithium also we can

write the solution“ of t.h'e‘ above equation as follows :

(2) _ _1 16_a3s 2 a 1
Rel 1 £ = ~Ze [ 3 + -FEenCl~ + 4AN” DOP (~ o-s- ) —g-sp-z
HEA ~ﬂ2k ¢ >\2+ qz)z oA 2 (Az +a ¢
i 1 2
2 2 3 a 3 2 .2.,2 2
4 1 2 2.2 6 a .1 a 1
- —35-) 2 I, (qQ", B{A,) - 32 a” (= 55=)-2-2 (= 57— ) -c-2
37&2 )s.z 2 172 37\1 }\l )\1 )\1
2 ,.2.2.2 1 a 1 a 1 2 .2.2 .2,
- 36, 3. 8 2.2,2 .2 2
64 a"N° (- 373 52 DOP - 3D 2 1,(aZpZaZ 23 -2 ()
- 1 1 2 2
' 2
4 2 68BB 9B’ 2,2 2 2 _ 6BB a
{-s6 (B™~ ==+ -5-- ) 1,(q587,8) } - -2 (B~ =77) {(- 3%
3\3 ?\3 ?\3 2 i ?&3 )~.3 a3
d .2 2 2 ..._ZG....?_;;

2
ry 2.2 .2, . 63 1,

_ e 1 2 a .1 2
- 357 @) 2 14(Q2, jo8hg )+ £ - 5’7})'%"2 - 37 ~)1-\’52
2 .2.2.2 4BB- a
I3 PEATAF ) + T2 - % 144% 0% .0 0%y -2B B

3

-2y 1, 242 1 252, 2, 2, 6B 2,1
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a .1 2 2.2 2
(- -5-?’\)"7:"‘:;2 14(‘1 y Bia)‘-ss >"3 ) (85).

For the calculation of Rel 2 féﬁ; we have omitted the cross
terms in 01(3?) . Because contributions are negligibly small. Hence
1 a 2 .2 .2

Re 2 fégg = —'E (ﬂki)-z [ ~6‘a3 (5_'5!) (- 52;’;) 12( q° Bi’kl) +

2
6 , 9_ _a- 1, 2 2.,2.,2, _ 2, 0_
32007 (5 ﬁ;) (3 KF ) NZ 12 (a ’ﬁi’xl’kl) 16 N” (5 i ) DOP

;] 2 .2 2 _ 3,2, 9 - _ 8
1 2 2 2 2
The integrals I2 { ...) and 14 {(..... ) are evaluated in the

appendix. The terms'correspoqding to 3 = @ and for finite wvalue of
3 is calcglated using the equation {(28), where +the use of the
Cox -Bonham parameters are used to evaluate the terms like I's for
y -8 and A - s. The values of Cox:and Bonham (1967) parameters for

the lithium atom i.e. values of y3 and A-s are given as follows:

rl= 1.3215, rz = -—912273,1 73 = 1.3369, 74 = 1.40709,
75=—1.6113, Yeg = -.9567 and,

kl = £.8737, kz = 7.9222, KB = 2.26456, x4 = 3.8024, AS = 1.3839,
ks = 2.7965.

The differential cross sections 1is obtained using the

following relation:

d o _ d 2
aa = | feog | . (87).
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s

where the term ngbB has ususal meanings given in equation (21).

We obtain the third GES term i.e. fg3 as follows:

3

Calculation of third GES‘term (fGES ) for Lithium atom :

We obtain the expression for fég% using,

(n) _ k! iab n
fi-"5¢ = giar J dbg e 770 e | x| vy > (88),

where substitution of mn = 3 yield the expression for Li atom.

Hence, for Li atom we can write,

1

fas = fgs *Tgs | (89),
where, ‘ ‘
1 _ .8 S 1 .H
fa3 = 2fgg Ay » @) + 8N DOP Ay , Ag) - =5 £, O, @) (90),
where,
A R S SIS DL TN PRSI <L
gz *q09) =2y 27) E 5% Gy x X
2
+ -5- - 2A(X) } - : (81),
2 ®© . _2mn
A =2+ & g (3 gor x <1
- n
n=1
® _g-2.\n
= - -7 L‘Z"ﬁ)a for X > 1 (92),
n=1

X being equals to q/kl. Now, fga can be written as
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, -2, % 2 2

= - (5°) gf kdb Jgla b) [I)I, + Lyl + LIy + IjTg- Lglg-IyTg ]
' (93)

where,

1 = <PlALle D> 5 I, = <oy JAIT[e, > ;5 I4= <&, |ALlS, >
| (94),
I, = <#,.|AIIle, > ;5 g¢lsgaxl¢25> 3 Ig= <oy |AT|¢, >

[ o]
i

"

and
2bb b
- S | --1,2
AI =1n( 1 g~ eose, + (517D
2bb b ‘
AT = 1% 1 - —g-leoss, + (z1)%) (85),

substituting the valu9 o: ¢1s and ¢23 from (68) and (69) and

carrying out the integration over z , we obtain the terms

‘ 30411 152 '
I, = (A )7 (41) b db, K, (A;,b,) ALN,(b,,b) (96a),
2,791 T2 * e
I, = (:)°(41) © ,f by db; K;(A;,b,;) ALN,(b,,b) (96b),

2 -1 °°2 )
3 (2R“) N gf b1 db1 DOP(X3,h2) Kl(xz,bl) ALNl(bl,b) (96¢c),

fod
H

!
i

2, -1 2
o= (2N 17 [ b8 db DOP( 4 h,) K (h,.by) ALNy (b ,b)  (96d),
3,2
AT N _ o A
A G A N L G T [ Kigeby) ALN (B ,D)

S (96e),
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_ . Ne1/2 -1 2 3 9_
Ig = (—327/°n " o by dby (1 + -3 55 % Ky (* 5,b;) ALN,(b,,b)
where, ‘ (96f),

21 '
- f _ 2bs bl

ALN, (b),b) = of Ln (1 -.22% cosp + (2hD a, (96g),
ALN,(b,.b) = | z;‘ 201 - P comp + (2HDH @ (96h)

2( 1- ) - Br n -b co P b 1 b}

and Kl(k,b) are the modified Bessel functions Qf the second kind.

The integrals (892) and (93) are tﬁen evaluated using the standard
numerical techniques (VijJayshri, 1985). Thus using the above set
of equations we have obtalned the DCS for elastic scattering by Li

atom from 190 to 400 eV.

RESULTS AND DISCUSSION :

The prqsent re#ults for the elastic scattering of electrons
by Li atom are £apulated;.1n the tables (II.XIV) to (II.XX).
Results are tabulated for the energy of incidence varying from 190
tb 400 eV. As stated earliar there is no divergent integrals and
is computationally very simple. Also if oﬁe substitute 3 = @ in
the presenf approximation terms, the corresponding terms in the
Glauber Eikonal Born series (GES) is obtained. The imaginary term
will not diverge due to the presence of (3 in the expression.
Results are compared with  the other theoretical results of
Vijayashri (1985), Rao and Desai (1983) , Chandraprabha (1986) and

Suja and Desai (1988).
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The pfeseﬁt results are quite good in agreement with MGA
(SPSM) than MGA (IC) ofAV1jayshfi (1985) for all angles. In MGA
(IC) core was ignored. Hence the results are lower in small
angles. In any model the inclusion of core is necessary due to the
deeper penetration of the incident particle into the atomic core
( Chan and Chang, 1976); The results of Yadav and Roy (1986) are
also compared. They used the single electron system, causing
decrease in the results for 108 eV and 200 eV for all(
angles. Flgures II. and II. results of 1 eV and
2080 eV are plotted along with the other results. From
figures we can say that the results of Rao and Desai are lower
estimated for all angles. Where they treat lithium as a single
electron system. This .emphasis the fact that one must considered
the lithium as a three electron system. From the terms of the HHOB‘
éheory We can see that contribution of the imaginary term is more
important phan the terms corresponds to the polarisation in the
alkall atom scattering.

The EBS method which gives good results for e -H and e - He
gives higher values in case of e - Li scattering.This may be due
to the fact of the cancellation of the higher order Born terms in,
e - Li scattering. Due to\#ery limited experimental data for e -
Li scattering in these energy range it is impossible to have a
complete analysis fq;’ the present calculation. BHaving obtain
success in case of ei:ﬁ& énqve“~ He scattering we extend it to the

e"j Li scatterihg.:Qeyqegnop'only the refinement is applied but we

e es -
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considered the lithium as three electron sysfem. The results
obtained through are well compared with +the other theoretical
results and the experimental data available. It is observed that
the results have improved when it is compared with the other
methods. -

Table IXI.XIV to-II.XVII describes the behaviour of the terms
- of the HHOB.scattexing amplitudes (equation, 21) for the energy of
incidence 1098, 300, 200 and 490 eV respectively in the angular
rénge 5 to 120 deg. The terms are expressed in ag / sr.

Tables II.XYIII)to‘II.XX compares the results produced after
the refineﬁent to the HHOB approximation of Yates (1978) for the
energy varving from 100, 200 to 400 eV in the angular range 5 to
150 deg. As stated above as the energy of incidence increases
beyond 400 eV or so the results are not upto mark.

Figures II. “yo/il. also compares our results with the
methods described above.

Hence, here we have considered the lithium atom as a three
electron system as well agughe.rgfinement is applied ta the HHOB
approximation, i.e..ipcluéipﬁ“of Eértain‘low lying energy states
in the calculationiof,tgeﬁdiffgrential cross sectlions.

Hence we find that 1ln  general without going in for much
computational complexity . of the higher order Born terms, if
certain low lying énergy states are included then the accuracy in

the measurements of the.cross sections can also increases further.



TABLE II.XIV

Behaviour of the individual terms of the refinment in

HHOB theory for Lithium atom scattering at 1900 eV.

[Results are expressed in a}/Sr.]
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.79
.86
A7
.64
.83
.40
.33

.16

(1) “(2) (2) (2)
Angle £ Im £ Re 1 f Re 2 £
(deg.) i-->f HEA HEA HEA
5.9 5.3104 4.619 1.315 4.04 (-1)
1.8 4.3589 2.953 1.305 2.248 (-1)
15.8  3.286 1.24 1.7 7.18 (-1)
20.6  2.3875 1.021 1.5 1.017 (-1)
25.86  1.741 9.53 (-1) 9.56 (-1) 3.68 (-1)
38.6  1.3077 8.976 (-1) 8.898 (-1) 9.77 (-1)
49.9  8.2825(-1) 7.637 (-1) 7.9 (-1) 2.28 (-1)
50.0  5.9833(-1) 6.877 (-1) 7.857 (-1) 1.117 (-1)
60.0  4.6904(-1) :p;ggéfxiiiﬁga.zs (-1) 6.14 (-1)
70.@  3.8601(-1) 4.69 (-1) 5.688 (-1) 3.37 (-1)
80.0  3.2863(-1) 4.158 (-1) 5.815 (-1) 1.95 (-1)
99.6  2.8809(-1) 3.758 (-1) 4.511 (-1) 1.18 (-1)

5

5

4
lﬁﬂ:ﬂ 2.5699(-1) 3.45 (-1) 4.09 (-1)

110.0 2.3240(-1) 3.213 (-1) '3

3

7
75 (-1) 4.74 (-1)
.47 (-1) 3

12@10 2.1216(-1) 3.3 (-1) .18 (1)
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TABLE II.XV

Behaviour of the individual terms of the refinment in the
HHOB theory for Lithium atom scattering at 390 eV.

o S v e e e o Y B S S . o o W T S o S T Y T, S S80S Wit YARS P L Sl . P A N W o o Y . i Y e . A o s S S o . A S T M P e e

Angle f(l) Im f(Z) Rel f(Z) Re2 f(Z) fg

(o) it e .
. 5.0 4.64 1.33 7.82 (-1) 1.27 (-1) 5.77(-1)
10.9 2.83 5.9(-1) 6.442 (-1) 1.23 (-1) 6.8 (-1)
20.0 1.92 4.694 (-1) 4.896 (-1) 1.296 (-2) 4.8 (-1)
30.0 5.48(-1) 3.43 (-1) 3.96 (-1) 3.78 (-3) 4.85(-1)
40.0 3.57(-1) 2.59 (-1) 3.16 (-1) 1.13 (-3) 3.6 (1)
56.0 2.65(-1) 2.97 (-1) 2.51 (-1) 3.8 (-4) 3.01(-1)
60.0 2.13(-1) 1.736 (-1) 2.1 (-1) 1.3 (-4) 2.87(-1)
16.9 1.68(-1) 1.45 (-1) 1.5 (-1) 3.522 (-5) 2.57(-1)
80.9 1.42(-1) '1.325 (~1) 1.36 (-1) 1.563 (-5) 2.31(-1)
90.9 1.22(-1) | 1.1983 (-1) 1.153 (-1) 1.12 (-5) 2.26(-1)

T —— ] —— - > o T o o " " S0, o710 " 1" Ve A W~ S . il ] . U > W o7 s W - s S Y o V—— Vo oo " W W S W - W W S - - - - -
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TABLE II.XV1

Behaviour of the individual terms of the refinment in the
HHOB theory for Lithium atom scattering at 200 eV.

- —— - 7o - 1ot Yoo T o S Y ] o - o W S o o S U Sl W W~ s S0 U Ml o L W B O U S S Y S W S A O Wt AT S D S S o W S o oo P S S, e B S i o o

.5178(-1)

ey

.67 (-1) 1.74 (-1) .26 (-4) 3.720(-1)

.3426(-1) 1.56 (-1) 1.55 (-1) .98 (-4) 3.420(-1)

Angle f(l) Im f(Z) Re 1f(2) Re 2 f(Z) fg
(deg.) i-->f HEA HEA HEA 3
5.0 4.9598 2.16 9.773 (-1) 2.109 (-1) 8.178(-1)
19.9 3.4641 8.826 (-1) 8.48 (-1) 5.94 (-1) 9.388(-1)
15.0 2.198 6.81 (-1) 7.273 (-1) 3.193 (-1) 8.67 (-1)
20.0 1.4213 6.34 (-1) 6.4881(-1) 2.34 (-1) 7.818(-1)
25.0 9.9998(-1) 5.74 (-1) 5.93 (-1) 9.77 (-2) 7.150(-1)
30.9 7.4431(-1) 5.263 (-1) 5.447 (-1) 1.1 (-2) 6.648(-1)
10.9 4.9194(-1) 3.92 (-1) 4.58 (-1) 3.9 (-3) 6.448(-1)
50.0 3.6469(-1) 3.15 (-1) 3.83 (-1) 1.55 (-3) 5.348(-1)
60.9 2.8809(-1) 2.642 (1)’ 3.2 (-1) 6.6 (-4) 4.858(-1)
0.0 2.3452(-1) 2.285 (-1) 2.69 (-1) 2.80 (-4) 4.458(-1)
80.9 1.9748(-1) 2.92 (-1) 2.29 (-1) 3.6 (-4) 4.258(-1)
90.0 1.7929(-1) 1.83 (-1) 1.982 (-1) 6.17 (-4) 3.928(-1)
1 3
1 2
2

120.0 1.22586(-1) 1.464 (-1) 1.41 (-1) .594 (-4) 3.398(-1)



TABLE II.XVII

Behaviour of the individual terms of the refinment in the
BBQB theory for Lithium atom scattering at 490 eV.
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Angle f(l) Im f(Z) Rel f
(deg.) HEA HEA

5.0 4.36 9.26 (-1) 6.585
19.¢  2.37 4.7 (-1) 5.285
15.¢  1.29 4.38 (-1) 4.5
20.6  8.98(-1) 3.68 (-1) 3.98
30.0  4.46(-1) 2.57 (-1) 3.09
40.86  4.26(-1) 1.92 (-1) 2.357
50.8  2.49(-1) 1.54 (-1) 1.804
66.6  1.78(-1) 1.29 (-1) 1.40
9.6 1.48(-1) 1,17 (-1) | 1.12
80.0  1.19(-1) 8.77 (-2) 9.1T
90.8  9.46(-2) 8.76 (-2) 7.70
160.6 8.56(~2) T7.97 (-2) 6.635
110.6  7.51(-2) 7.35 (-2) 5.84
126.8  6.52(-2) 6.86 (-2) . 5.25

b

[y

=

[ N N

.25
.26
.61

4.

N W W s

I S = T = S

488(-1)

.416(-1)
.818(-1)
.390(-1)
.849(-1)
.908(~1)
.858(-1)
.768(-1)
.708(-1)
.608(-1)
.528(-1)
.420(-1)
.320(-1)
.278(-1)
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