
125

CHAPTER - III
. ELASTIC SCATTERING OF ELECTRONS BY NEON ATOM 

USING THE HHOB THEORY.

INTRODUCTION :

In this chapter we discuss the HHOB theory to study the 
elastic scattering of electron by - Ne atom. A number of fairly 
accurate measurements of the aboslute differential cross sections 
for the elastic scattering of electrop; by neon atom at low, 
intermediate and high energies have become available ( Bromberg 
1964, Fink and Yates 1970, Crooks 1972, Oda et al 1972, Furness 
and McCarthy 1973, M.Inokuti and M R C McDowells 1974, Byron and 
Joachain 1974a, 1976, 1977, Bromberg, 1974, 1975 as quoted by 
Jansen et al 1976, Gupta and Rees 1975, Williams and Crowe 1975, 
Kurepa and Vuskovic 1975, Jansen et al 1976, D F Dewangan and H R 
J Walters 1976, Du Bois and Rudd 1976, Jhanwer and Khare 1976, 
Riley and Truhlar 1975, 1976, Bransden et al 1976, F J de Beer et 
al 1978, Bonham and Konaka 1978, B L Jhanwer et al 1978, R W 
Wagenaar and F J de Beer 1980, W C Fon and K A Berrington 1980, 
Kaupilla et al 1981, D.A.Kohl and M.M. Arvedson 1981, D F C Brewer 
et al 1981, D.Thirumalai and D.G.Truhlar 1982, Y D Kaushik et al 
1982, G. Staszewska et al 1983, R P Me Eachran and A D Stauffer
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1983, Coffman and Fink 1985 ,S Y Uousif and J A D Matthew 1986); 
hence its theoretical study is of interest.

Calculation of the phaseshift using the partial wave analysis 
method using the static interaction is also reported by many.

The methods for the measurements of the differential cross 
section were based on, static -exchange -plus -polarization -and 
-absorption model potentials, use of Hartree -Fock results for 
static potentials, use of semiclassical exchange approximation, 
and the absorption potentials applied especially for low angle 
scattering in the energy range 30 -100 eV, variational matrix
-effective potential (MEP) method, energy -dependent polarization 
potential and dispersion relation, localized central potential 
method applied for the energies between 100 -1000 eV, where the 
results are in satisfactory agreement with the experiment results 
for E £ 200 eV. Optical potential from quasifree -scattering model 
where the absorption potential is made localized and energy 
dependent and is a function of the electron density of the target 
applied at 30 -3000 eV, where reasonably good agreement with 
experimental data is found. R -Matrix calculation at 5 -200 eV.
Distorted -wave second Born approximation applied in the energy 
range 100 eV to 3 KeV, where the agreement is not remarkable. 
Considering the effects of polarization and exchange in low 
-energy elastic scattering are also reported at 5 -50 eV in the 
angular range tf* - 18. Polarized orbital method , where the 
polarization potential is obtained using the Hartree -Fock -Slater
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(HFS) approximations is applied in the energy range 0-1 Ryd. 
Modified Bora approximation is studied in the energy range 45 
750 eV, where the results obtained is quite different from those 
obtained by the partial wave method. bocal density approximations 
to the exchange and coorelation potentials using the Bara exchange 
coupled with a Hedin -Lundqvist correlation at high electron 
density is also studied. Use of Bora approximation using the form 
factor to calculate the elastic differential cross section in the 
energy range 100 -700 eY in the angular range 2 -5° , indicating
the situation is not clear for neon atom and concluded that neon 
atom behaves anamalouly where the data obtained through this are 
in poor agreement with the others. Charge cloud polarisation 
effects is applied in the energy range 100 -500 eY for the angular 
range 5 -16£p. Eikonal -Bora series method for the optical -model 
formalism and static interaction which accounts for polarization,

i I ' j , / /

absorption and exchange effects and ab initio optical -model 
theory is studied at 100 - 700 eY , where the agreement is found 
excellent with the absolute experimental data. Byron and Joachain 
in their manuscript (1977) did not account for the absorption 
effect. These absorption effect were taken into account by Jhanwer 
et al (1978).

Jhanwer and Khare (1975) have obtained A by demanding that 
the total inelastic cross section in the Born approximation 
correct upto k 4 is equal to that given by the sum rule of Inokuti 

et al (1967). Such a procedure has yielded,
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A = exp [L(-1) / S(-1) ]
where L(-l) and S(~l) are the properties of the target and require 
the oscillator -strength distribution for their determination. 
L(-l) and S(-l) for neon atoms have been computed by M Inokuti 
(1975, in their private communication) and are equal to 2.394 and 
1.94 respectively. Thus, A for the neon is equals to 1.717 a.u..
Jhanwer and Khare obtained the DCS and TCS for energies varying 
from 100 eV to 1 keV are in three different approximation vis., 
the static -field (SF), static field Polarization (SFP) and static 
field -polarization -exchange (SFPE) approximations. For energies 
1 > 200 eV and 300 eV, inclusion of polarization effects
considerably improves the results at low scattering angles. The 
inclusion of exchange further increases the cross section by a 
small amount at small angles. In general the results are in 
satisfatory agreement except for large Scattering angles. The 
agreement between the theory and experiments is expected to 
improve further if a better ground state wave function is taken 
and the absorption effects are taken into account.

. 11 i , . * J

However for. large -angle electron -(positron-) atom elastic 
scattering eikonal methods may lead to serious inaccuracies in the 
intermediate -energy -region. Since the large angle scattering is 
dominated by the short range static potential. The static 
potentials obtained in this way are very simple and behave like |- 

at small distances, and fall off exponentially outside a distance 
of order of the size of the atom. Because of the strong Coulomb
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potential.it will play a very important role in large -angle
scattering. With this type of calculation it was clear that
agreement is better at small angles than at large angles. First
Bom approximation does very poorly at all angles. Inside about
2fiP the lack of a polarization term and omission of absorption
effects are very serious. A likely reason for this is the
absorption and exchange, tend to cancel each other at large angles
and have to be handled very carefully in order to achieve
excellent agreement with the experiment. Further absorption
potential is treated using the Glauber approximation. Another
source of error is in inaccuracy for the ground state wave
function for the atom also leads to a discrepancy in the results.
Dewangan and Walters .(1977) (applied a distorted -wave second -Bom
approximation to calculate the o' ^ and at incident energies
of 200 eV and higher. Their elastic cross sections are
systematically too high by 30 -40 %. Jhanwer etal (1978) applied a
real effective potential of the SEP type. Since they neglect the
absorption potential for their method yields zero for a , . Thisabs
probably also explains why their calculations overestimate a , inel
at 200 eV and 400 eV. Fon and Berrington (1981) performed R 
-matrix calculations in which the ground state wave function is 
coupled to a1? pseudostate. These calculations are in excellent 

agreement with the experimental differential and integral elastic 
cross sections at both 150 and 200 eV. Devarajan Thirumalai and 
D.G. Truhlar (1982) applied MEP model which was very succesful
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at predicting the integral and differential cross sections for 
elastic scattering and absorption cross section for electron -Ne 
collision at 150 - 700 eV.

Having reviewed the work reported and the methods used to 
study the electron -Ne elastic scattering, we report here the same 
process but using the High Energy Higher Order Bom approximation 
(HBOB theory). We report here the calculation of differential 
cross section and total cross section in the wide energy range 100 
to 700 e? for almost the netire angular range.

Hence motivated through the limitation in the calculation 
involved in the above stated methods and overcoming the 
shortcomings in the methods used earliar. We report here the 
calculation of DCS and TCS using the BHOB approximation.

Having reviewd the HHOB theory in detail (Chapter II) and its 
complete study, we .extend the HHOB theory for the elastic 
scattering of electrons by neon atom. We use the Hartree -Fock 
wave method and use of Clementti and Roettie tables for the 
orbital calculation. The interaction potential between the target 
neon atom and the incident electron is given as

ZQ 10 1Vd ~ ~ r~ + £ ( a = 10 for neon) (1), 0 i=l ,jC0 £i«

where the symbols have their usual meaninigs. The full interaction 
is considered where,we have not neglect the cross term arising in 
the calculation. Hence the whole configuration is taken care. We
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also calculate the third term of GES (Gkauber Sikonal Series)
method and instead of third Born term we replace the third GES
term. Hence the consistent picture of the scattering amplitude 

-2through 0(k^ ) in the HHOB theory is written as discussed in the 
chapter II. To calculate the wave function more accurately we use 
the Hartree -Roothan -Fock wave method, where we used the 
Clementii -Roetii tables for the orbital calculation. Wave 
function obtained through this method for neon atom is more 
accurate. We treat neon atom as ten electron system and we include 
all the cross terms arising in the calculation. Further, while 
performing the calculation of the terms of the HHOB theory i.e. 
f^il^ (first Bora term); Rel f^jj^ (first real part of the real 
term through OCk”1) and Re2 f^j (second term of the real term 
through 0(K'2) ). The «.v. function uning the Hartree -Jock nave 

method is just the sum of contributions from each Hartree -Fock 
orbital. The orbits for the neon atom is written as,

ha<rl> (4n)'

--- 2 (4TJ j

*2s(V -1_ 2 (4n)^

*2a(jc4}
-1- 2 (4TJ)<s

2[ E A± exp (-X^) 

2
£ E A. exp (-x.r„) 1=1 1 1 ^

3
[ EBj exp (-XjTg)

2t E B. exp (—X.r.) i=l 1 14

6
+ Ei=3

6+ E1=3
6

+ Ei=3
6

Ai r^exp ("X^) 

Air2 exp (-X^g)

Vs (^xir3>
+ Ei=3 Bir4 GXP (-Xir4}

]
(2a),
]
(2b),
]
(2c),

]
(2d)
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<fi2Fxi£s) = Sln0 e1*

$ 2Px ^ £6 ^ = ^ on5 ^ Sln^ e

^2Py(JC7) = Cii>1/Z Cose c

W1*1 = C^1/2 Coae 1

^2Pz*x9* = ^80* ^ Sif)0 e ^ 

^2Pz(ri0) = <'m)1/Z Sin2> •**

10 10t E E C^rg exp (-X r ) ] 
1=7 a=7
10 10E E E C1rfi exp (”XM*6) ] 
1=7 a=7

10 10E E Cjr-f exp (-X^r.^) ]
1=7 m=7

10 10E E Vg exp C-Xmr8) ]
1=7 a=7

10 10E E E C4rfl exp(-X r ) ]1=7 m=7 1 M m v

10 10
1 i=T »=7 °iri0 eIP<^>*r10) ]

(2e),

(2f ),

(2g),

(2h),

(21),

(2 j ),
where the exponents As , Bs, Os and X's are defined as follows:
Ax = 55.7513411 
A4 = -0.0102605 
Xt = 9.98486 ;
X4 = 2.86423 ;
Bj = -13.47907 
B4 = 10.677485 
Ct = 0.6395614 
C3 = 16.198531 
X? = 1.45208 
Xg = 4.48489

; A2 = 1.1182599 ; Ag = 3.6104 E-04
; Ag = 0.3254106 ; Ag = 3.9125783
X2 = 15.5659 ; Xg = 1.96184
Xg = 4.8253 ; Xg = 7.78242

; B2 = -0.1449469 ; Bg = 1.1590656
; B5 = 18.25468 ; Bg = -27.149262

C2 = 5.3915624 
C4 = 5.4513467 

; Xg = 2.38168 
; X10 = 9.13464.
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We then calculate the complex for* of <£’s i.e. <t>* , and then

i

we take the product with the <#> ’ s which is total charge density of
the target atom. This is nothing but the ground state wave
function for the target atom. The product 4>*<P is used to evaluate

the terms of the scattering amplitude in the HHOB approximation.
xThe cross terms arising in the product 4> 4> are all

considered as well as the target atom i.e. neon is considered as 

ten electron system.
We then perform the calculation of the terms in the HBOB 

scattering amplitude for the energy of incidence from 100 e? to 
700 eV for the wide angular region. We then compare our results 
with experimental and theoretical results in the tabular form as 
well as through graphs also. And in the last we have discussed the 
results produced by this method with the others.

We now directly write the terms of the HBOB theory and then 

evaluate them to a simpler form. We also use the Static potential 
i.e. and the use of Cox -Bonham parameters is also made to 
evaluate the term which is used in the chapter 17. We first took 
the fourier transform of the interaction potential as we took in 
the cahpter II for the various target atom. Since it. is co*>duded 

that the first Born term does very poor at all energies and at 
all angle for the neon atom we use the static potential 
expression and we use the Cox -Bonham parameters and we write 
directly the expression for the first Bom term using the 
following equation for neon atom as.
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~ ~ 2Ti J eXp(i Vfi(r0} (2),

= 20
6
E3=1

(3),

where the y ’ s and X ’s are defined as follows:

IIrt 1.2524 , rz ~
-0.2408, r3 = 3.5572, rA = 1.7522;

y5 = -3.5758 , rB = -1.7401 and
X1 = 2»T495| Xg * 22.8979, X3 = 9.5848, X4 = 15.8901;
X6 = 14.8774.

The imaginary term in the HHOB theory for the neon atom can 
be written as,

Ib fHKA = “k- J" ^Im* 3 " fi ^iy ’ 3 + ^iy; rl---x10*

The term .... .......J defined as.

UIm( a - j> - a + jc±... x10) = *V

--- dv10 ---*10* wi{jci--- xi0* * E E •B^'^i ^"i8!

- 10 ] * [ E0 ei]B,^j + 1 ^i*j - 10 ] } (5),
3=1

where the product of the <P 4> gives the total charge density of the 
target atom, which is nothing but the ground state wave function



of the target a toe. This can be obtain from the set of equations 
(2a to 23). Where we write the individual terms and the compound 
product of the 4>*4> . After substitution of £ and using the 

Fourier transform of the interaction potential we solve the above 
equation to get the final form of the imaginary term through 
Ode”1) as.

I* f = f- < 2 E A2 IjU2, tf2) l “D(X1)*(qZ+ X2)”1* 22?3 3 + E A2
1=1 i 1=3

.2 A2I1(q“,^7) [ -2 D (X.)S(q**+ XT')2, % 2%""i 530; 2 «2,!_>*<*“♦ X~) A - -“5 ] + 2AjAg I^q

l -2D(x15,)*(q2 + x22)-1 + 2|^3 3 + E Ij/q2,/*2) [ D2(XtJ)
12 i=l)2

3=3..6
i*3

.2. * 2 960(9“+ X“ )'*+ 4 ] + £ 2A.A* I1(q2,/32)C-2Da(X. .) (q“«X44)13 13 i=1,4,5 
3=4,5,6 
tti

13 1 13 13'

3840 , 2 2 D(Xi) 2 2 2 6 9 DfX,)X”® 3 - 40 E A“ “£±2 I-U2,/?2 X2) - 40 E a2 -- i 213 1=1 1 x 1 11 1=3 1 Xi



I3*f

1- < e=1 sl ii o2-^> £ _D(Xi’* + t;3 ] + J3Bf

.2 „2, .2 „2,E “2 D^(Xi) * (q^X|)_i - ***5 3 + 2 BjB,, I^q*. flj) E

2D{x12)* (q2+x12r1 + 3 3 + E 2 B±Bj I1{qz,/3j)
12 1=1,21=3,..6 ijtj

E aD^cx^)*

.2^,2 ,-l ^ 960 .2 «2, ,2_l , 2 ,-l(q ^il* " + “-43 + E 2 B^J I^q4*,/**) E -2Du(XiJ)*(q‘*+ X^)
11 1—3,4,51=4,5,6

ijtl
6 2.2,2, D<Xi>(E -2D3(Xtj)*(q2+X^)-l + “^5 3 - 40 B2 Ij(q*.^;,XJ)

D(X )
80 B,B„--r-~2 .2 .2.2 DZ(Xia>

1
.2-2 , 2x - i1(q‘\/jr»x* > + 80 e b.b, 2 ifqr^r,x“ )JL O A.4 n JL JL Xh 4^-4 m X J »» i j X X Xy12

D3(Xii? .2 a2,2
1=1,21=3,..,6
ifj

11 
4 10

.2 .2,80 E B.B. —I1(q“,/J“<xr<) * * -Si £ Ewtl, (q? ftTl1=3,4,51 3 Ail i x 1J xt i=1 tt=7i x x

960.
1=4,5,6
i< c- -|23 E d2(xb)xm*<«2+x«)"1 + BCxlll)*(q2+x2)”13 + -§*-5 } + 2^-5

.2 „2 % 2, .2 „2, 12,Mq-./sr.x-) 3 + £ E C.C, £ i C- “2) E1=1,2,3 ia=7,8,9A *» ■*• x , «
1=2,3,4 n=8,9,10
1^1 mjtn

D (X ) v *n

x«n *(q2+ xL>1+ D(xto)*(q2+xL)l3 + Z~F6 > + ~§F 5
■n mn

I1(q2»^f,x2n) ]> + the other cross tern of different combination

(6)
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naxuner as wo did it in the chapter II (for the case of hydrogen,
helium and lithium atom). The only difference between the
imaginary term and the real term is that, instead of in
imaginary one has to replace it by p part only.

(21 aWe write 0ft'( s -p - P^y; b + p y) is equal to,
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= < Vj | V(S “ £ ~ PgF » I|< * * • • »I|0) ^^2 + PjjF» Xj' * * •■^10^

I Wi >
Substituting the fourier form of the potential 7 ’a from tbe 

set of equations (9 and 10, chapter II.) and substituting in 

equation (7), we get
p , #(2) 4TI2 1 f A e** ??■ _J®* - - -k- ST4 ^ * **-J (P, - ffj.) (U -B|2+p2, (p2 . p2,

vi < E0®1!3 "e| •6j
1 1 j=l

1010HE e*'® ,llJ + ±vzzi -10 )
3=1 (9)

Me use the same method of Yates (1979) of evaluating the real 
—2terms through 0(K^ ), which is discussed in detail in chapter II. 

Bence we write the straight forward solution of the above real 
term of the HHOB scattering amplitude in terms of the integrals 
term like I2(...)t I2*(••■•) and Ig(...) as follows:
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E BjBj1=3,4,5 1 J a2 + X2 q +
3=4,5,6

D2(X 1 x
/ ■ ■

D(X )
C q2 + X2

» BB

' «z + *■«

4 10

-5 I„(q2. tf?,0> - 24 E E C±C,
2 1 1=1,2,3 *=7,8,9i J

j=2,3,4 b=8,9,10Ijtj *#n
D <XBn)XBn 
- ------

BUI
D<V

.2 „2 4D(X )+ -5—-5 ) - 240 E E -ia2 4- X2 2 i m=7 1
10 o D2(X >

Cf [ —r~
Bnm

+ —f-2] I„(q2,^?,X2) - 480 E E ClCl [
■ z 1 a 1=1,2,3 m=7,8,9 1 3

3=2,3,4 n=8,8,10
1^3

I? (X )
x«m

D(X )x -2 ] ,/3±’Xwd}
nn

^ 3-® 2 1 2 2150 E E C“ “5 I2(q ,/3n 
1=1 b=7 b

9600 E E1=1,2,3 »=7,8,93=2,3,4 n=8,9,10 1#3 m£n

1 2 2 ^ 3.0C1C3 xl? I2(« ) 3 + 3 E E
Bn

C -
2D3(X ) A d2(X™>X™ D(x >
____9_ . jo r ____5—3 +____3_2X%2 q 1 2^.2 2.^2q + X ^ q + X q . + X■ * m ^ n

E
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* 60 E E CJ C-----C®®2 Ij,(q2,/?2,X2) + 4--£2 1 1=1 m=7 1 Xmn 2 1 * x

I2(q2,^l’XB) + 4 D(X ) 2 2 2--*-2 12(qz,/»J,Xj» 120 E E C,C,1=1,2,3 b=7,8,9 1 J 
3=2,3,4 n=8,9,10 i£3 m^n
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We write the equation (11) as,
+c$ dp.

Bez f<|> * - (n2k|) 1 JT/5, <P J <te

»; f, < C jy ®l'a ■’I ~ 1pjs®J - 1® * C £0i=l
eiE.ij + ip^j . 10 > j.

i=i

(12).
We then use the product of y ¥> using the set of equations 

(2.0a to 2.0j ) in the above equation. We here write the straight 
forward solution of the above equation as.

(n^j -1 2 9 *>(X >
it “2 E A* ~5~”““gi=l 1 <f + xj

2 D(Xi\I3* (/^i*0) ♦ 40 E AJ--*

C 13^,0) - ^2 I3(^,X^) ) +25 EAj ~3 I^(^t,0) ] t t -2
i ±=1 i i _

,2 D <Xi>
1 2 . . q + X

.2 v 2,

6 ,, D°(X )
E A* - -1=3 1 X±2 ia’^.e) + 40 e_ a* —£—2 c i; </?4.0)

6 ,2 75
i=3

D(X12>

2D(X _)Win + V*i'wl + *Va‘ “q-2-;“2
1213^,0) + 40 Clg'^.0) - *- I3(/>|.a|) ) + *^3 I3^lf0)J400.

+ 2 E A. A. [
2E?(X

i4 )
,‘1 “4 1 „a~ a • 2C V^i-01
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 M 
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plus -the oth£y* compound cross -berm (12).
Here also we have not written all other compound cross term 

to reduce the text. Our program show that it calculates all other 
compound cross term.

We then use the set of equations (6,10 and 12) to evaluate
the scattering amplitude in the HHOB theory. Instead of the third
Bom term we evaluate the third Glauher term, so that a consistent

-2picture of scattering amplitude through 0(1^ ) is obtained. 
Further, if one looks at the expression of the second Bom term

~ .’O' ‘\ *
for the case of neon atom, is too cumbersome and too long. Hence 
to avoid all this discrepany and computational flexibility we 
replace third Bom term by third Glauber term. We have not 
included the exchange for the case of neon atom. But one can
always include the effect of exchange or the higher order exchange

iwdterms in the calculation. We use the equation (20,21 of chapter 
-II) to calculate the differential cross section. We report here 
the calculation of the process of elastic scattering of electrons 
by neon atom for 100 to 400 eV energy range in the angular range 
0 to 180 deg. The third Gluber term is calculated as follows:
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THE GLAUBER APPROXIMATION ;
The Glauber approximation is a many body generalisation of 

the Kikonal approximation for a direct collision leading from 
initial state | 0 > to a final state J n >. The Glauber scattering 

amplitude is given by

03).
where the Glauber phase shift function is given in terms of Yd as,

1 +oo
xG(b , *) = - ^ J Vd Q> , a, * ) ds (»4 ),

where integration is being performed along s - axis perpendicular 

to a . Where is written as

B
r + E 

i=l (‘JO.
Now expanding the bracket exponent terms in the 

( i 3 ). We have
equation

ei*QC t. i) 1 > =1 + + rr Aq * 3~t i3 ♦
negelcting the higher order terms after third term we have.
1* -1- i\2 + _ir t3 *3 1 *« 3 I 1 *GG ' 2 I * *G

Now, to have < 0 | | 0 >; when we take from | n
| 0 >. We can have a sum over all n state, hence the above 

can be written as
E < 0 | 0 > < n | ?d | 0> and this is nothing but,

> to 

term

< 0 I | 0 > < 0 | vd J 0 >
which is nothing but the form of the static potential. Hence, ?d 
can be replaced by . Hence, equation < ) can be rewritten as,



*a = - r V • ' > dsBence, we write the expression of the Glauber scattering amplitude

as,

f0 = m -*3 s t‘ *• *> ds >3
How we have choosen x = h + * n, such that b is always

perpendicular to s.
Now, writing the expression for the static potential using 

Cox -Bonham parameters for neon atom as,
_ *_(x) 2B(X) »

V ^(r) = - ----and, -E— = £ r4 exp (-X.r)st'4-' rs * s 7 i ^ ' i 7

Hence,
- » 'Vst(x) = “ " E exp (-XjT)

Substitution of the above equation in ( ) we have,

1zrik*ff£2 I ®l3 l! <«> < -* E r. .J+00 exp(-X.r) _ ----dz >3
2r

We simplify the above equation further to get the simple 
analytical form. We then compute it using the numerical 
technique of Gauss quadrature rule to calculate the Glauber term 
appearing in the expression of the scattering amplitude. Where the

values of the Cox -Bonham parameter i.e. r ’s and X ’s are given 
as follows:
Xt = 2.7495, X2 s 22.8979, Xg = 9.5848, X4 = 15.8901,
Xg s 8.5939 and Xg = 14.8774 ;

r% = 1.2524, rz s -0.2468, r3 = 3.5527, r4 = 1.7522,
r8 = -3.5758 and Vg = -1.7401. 5
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Wo perform the calculation for the differential cross section 
in the energy range 100 - 400 eY with the angular range 5 - 180
deg. We compare our results calculated using the HHOB theory with 
the other theoretical and experimental methods available. We 
compare our results in the tabular form as well as in a graphical 
mode also. We compare our results with methods described in the 
beginning of this chapter.

As concluded by many workers that the accuracy in the wave 
function is seeking and the full interaction should be considered. 
Where the effect of polarization, absorption are to be handled 
very carefully.

We calculated the ground state wave function for the neon
atom accurately using the Roothan - Hartrre -Pock wave method,
where we used the Clementii -Roetii tables for the orbital
calculation. After having the accurate wave function we considered
the elastic scattering of electrons by neon atom through the
interaction potential. We also use the Fourier transform of the
inter action potential. We calculate the integrand involving dp ,
dp accurately, s

The terms appeared in the expression of the scattering
i

amplitude in the HHOB theory are calculated accurately. Each terms 
are calculated individually and .then at last the final sum is 
performed to get the scattering amplitude for the calculation of 
the differential cross section.
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The differential cross sections and total collisional cross 

sections are calculated for e HNe atom scattering for a variety of 
incident energies and a wide range of scattering angle using above 
discussed HBOB theory. As mentioned earlier the main advantage of 
the present approximation is that it is computationally simple. 
More over the problem of divergent Integral is not there. All the 
integrals are convergent due to the presence of term. If we put 

- 0 in the present HBOB terms we will get the corresponding 
terms in therGES (Glauber eikonal series). The imaginary part of 
the second HBOB term will not diverge for forward elastic 
scattering due to /?r

We did not neglect any of the cross term contribution in the 
calculation. We discuss the calculation of the differential cross 
section calculated in detail for the 100 eV first.

It is quite unfortunate that the experimental data and 
theoretical data for the given range are not available for the 
complete angular range i.e. 0 - 180 deg. Although there are some 
methods which calculates, for all angular range for a particular 
value of the incident energy and they are compared. Bence we 
compare and discuss our results for that angular range and energy 
range.

It is well known fact that the IBS results over estimate the 
experimental results for all energies. This being due to the fact 
that the Glauber series converge slowly.

As expected atlow scattering angles agreement is better
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compared to the high scattering angles. This Is due to the mutual 
cancellation of absorption and polarisation effects. The agreement 
can be improved farther if the absorption and polarisation effects 
are handled carefully and large scattering angles. Here ki 1 part 

of the real ter* partly corresponds to distortion. Where it is to 
understood that the distortion Is not complete one. This term 
where partly the distortion of Incoming wave and target wave is 
taken care off.

To have the complete account for the distortion we have to 
design a separate model or we can use the DWBA (distorted wave 
Bom approximation).

Table III.I and III.II compares the present DCS value with 
the theoretical and experimental results at a incidence energy 100 
eV and 200 eV respectively. The results are compared up to 60 deg. 
with the other results: It can be seen that the present results 
are in better agreement with the experimental results at small 
angle of scattering. Afterwards the discrepancy is observed when 
it is compared with the experimental results but this discrepancy 
observed is within the error limit. The results are still 
comparable compare to the other results available. At large angle 
this discrepancy increase further, but still one can compare the 
results at large scattering angle with the other theory. We find 
that for both energies i.e. 100 eV and 200 eV results are close to 
the results of Byron and Joachain (1974b,76).

Table III.Ill also compares the differential cross section

{
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for energy of incidence 400 eV with the theoretical and
experimental results for 10 to 180 deg. We find that our results
are close to the results of Devrajan Thirumalai et al and also
very close the results of Byron and Joachains (optical model
calculation). We find our results also agrees well with the
experimental results of Qupta and Rees within the error limit.

Table III.IV gives the present differential cross section
value for the energy of incidence starting from 100 eV to 400 eV

2in the angular range 5 to 180 deg. Results are expressed in a^/sr.
We also compare our results graphically also. We find that at 

large scattering angle the discrepancies between the results 
obtained increases further. This is due to the fact that HBOB 
approximation is found to give better results at high energy and 
for small angle of scattering. In figure III.I, III.II and III.Ill
shows the present differential cross sections for the energy of
incidence 100 eV, 200 eV and 400 eV respectively. As energy of
incidence increases further the discrepancies at small angle of
scattering is negligible but at large angle of scattering i.e. for 
© a 60 deg, results found to deviate from the experimental 
results. Still one can observe that the results are still 
comparable with the other methods.

The results improves for S > 200 eV. The first Born term 
calculation, where no approximation is made, does very poorly at 
all energies and angles.

The contribution due to exchange is not included for energy
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100 tv. Because at large angle the absorption cross sections 
overestimates at this low energy. Hence exchange effects may not 
be appreciable at 100 eV for neon like target. At large scattering 
angles with high incident energy one can include the first order 
or even higher order exchange terms in the calculation.

Here Hartree-Eoothan -Fock wave function with all completed 
correlated terms to remove the inaccuracy in the wave function 
used here for neon atom. Though all speak of non negligible 
contributions of polarization effects, particularly for dipole 
allowed transitions, Mohr predicted behavior of cross section 
could be explained through investigation of higher Bora terms.

The results can improve further at large scattering angles if 
the absorption and polarization effects are handled carefully. 
Neglecting distortion of incident electron wave function which can 
not be satisfied further for the strong scattering potential. 
Polarization effects should decrease as the interaction time 
decreases. For the energy S £ 200 eV results improves further and 
the results are quite comparable with theoretical and experimental 
methods.
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TABLE III.I?
Value of differential cross section for the process of elastic scattering of electrons by by neon atom, [expressed in a| /sr ].

theta
deg. 100 ENERGY200 IN eV300 400
5.0 13.8 10.9 9.63 8.64
10.0 8.98 7.89 5.43 4.87
20.0 4.28 2.45 1.87 1.78
30.0 1.76 3.97(“1) 6.87{-l) 5.45(-l)
40.0 6.65{-l) 3.46C-1) 2.54(-l) 2.42(-l)
50.0 2.43(-l) 1.45C-1) 1.32(-1) 1.21C-1)
60.0 1.18{-1) 3.98(-2) 8.87C-2) 8.76(-2)
70.0 8.61C-2) 6.54C-2) 6.87(-2) 6.63(-2)
80.0 6.86C-2) 5.40C-2) 5.65C-2) 5.32C-2)
90.0 4.43<-2) 5.10(-2) 5.23(-2) 4.76(-2)
100.0 2.92{~2) 5.21(-2) 5.10(-2) 4.19(-2)
120.0 4.43(-2) 7.64(-2) 5.87<-2) 4.12(-2)
140.0 1.42(-1) 1.10(~1) 7.10<-1) 4.32(-2)
160.0 3.87(-l) 1.89(-1) 8.82(-l) 4.65(-2)
180.0 5-10C-1) 2.0K-1) 9.34C-1) 5.21C-2)
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