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CHAPTER - IV
TWO POTENTIAL FORMULATION TO STUDY THE ELASTIC 

SCATTERING OF ELECTRONS BY NEON ATOM.

INTRODUCTION :

The search for an improvement over the HHOB approximation 
(Yates, 1979) due to the main short comings of the approximation 
is the appriciable over -estimation of the cross sections in the 
large angle region. As the scattering angle increases the 
differential cross sections deviate more and more from the 
corresponding experimental values. It is well known fact that the 
Bom approximation gives better results for the weaker interaction 
potentials. Keeping this in mind, the present two -potential 
method is decribed.

In this chapter a brief discription of the HHOB and optical 
potential model and the two potential method is described. After 
constructing the potential (comprising of static, exchange, 
polarization and absorption interactions), we have carried out the 
partial wave analysis to study the elastic scattering cross 
section of electrons by neon atom. In the two potential method 
difference of the direct potential over the static potential is 
treated in the HHOB approximation, and the remaining part of the



static potential is treated using the partial wave analysis. We 
use our results of the elastic scattering of electrons by neon 
atoms calculated using the HHOB approximation for the direct 
interaction potential which is described in detail in chapter III. 
We describe here the basic theory of partial wave analysis and the 
calculation of the phase shift to study the elastic scattering of 
electrons by neon atom.
PARTIAL WAVE ANALYSIS AND CALCULATION OF FHASESHIFT :

The Schrodinger equation,

h2 2
C " 2~i r + V(£) 3 ¥ {r) = E v'(£) (1).

may be separated in spherical polar coordinates, and a simple 
connection between the radial solutions and asymptotic form of the 
stationary scattering wave function may be found.

This procedure, which is called the method of partial wave. 
Two important results, the optical theorem and the unitary 
relation yields from such analysis.

The copmutation of phaseshifts, which play a key role in the 
method of partial waves.

.2 2The Hamiltonian operator H = - V + V, now reads in
c, aI JT

spherical polar coordinate as,
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and t.he Schrodinger time independent equation (1) for the 
stationary scattering wave function can be written as,

Jl- r 12 + Jo -i__ _«?_2ml xc & irr a xr xc sine a « (sin© a ©•

|2(sin2e)_1 ^-|2 ] v^Cr) + V(x) ^}(r) = E w£*}(x)

where the operator "square of the orbital angular momentim
by, 
T 2

{3),
given

+ Lf + L .2, x-1 sino a ©a^(sine + (sin2©)-13-r2
a <p

and using 
CL2, Lx] [L2, Ly] = [L2, Lg] = 0

(4),

(5)
From (5) we deduce that one can find eigenfunctions which are

ocommon to the operators L and one of the components of L.
These are the spherical harmonics such that,
L2 Ylm(e,0) = 1 (1 + 1) h2 Ylm<e,0)

(6),

and
LsYlm{®’0) = Ylm(e’0) (7).

We now return to the Hamiltonian (2) which we rewrite with 
the help of (4) as,

to
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gorreponding "to given values of the quantum numbers 1 and m as,

w£^(k,r) oo +1
E E1=0 m=-l 'lm (k) R^k.r) Ylm<*’*> (10).

The central problem of the method of partial wave is to take 
the advantage of the expansion (10) in order to obtain a 
convenient expression of the scattering amplitude.

Osing the expansion (10) in the Schrodinger equations (6) and 
(8), we obtain every radial function of the equation.

2 m [ d r
, 2 d . (r d~p R-^k.r) + V(r) R^k.r)

= E Rx ( k,r) (11),
R^(k,r) is written instead of Rijn(k,r) since there is no 
dependence on magnetic quantum number in in the equation (11).

Osing the new convenient unknown function 
r R1(k,r) = u^k.r) (12),

pand introducing the reduced potential U = —r2 V .n
The new radial equation which are obtain from equation (11) 

is then,

+ k ra. - 0(r) u^(k,r) = 0 (13).

There is no loss of generality in assuming that u^tk.r) is 
real. Since both the real and imaginary parts of a complex 
would seperately satisfy the equation (13).
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RADIAL EQUATION FOR FREE PARTICLE :
In order to solve (13) for the radial wave functions u± it 

is necessary to specify the boundary conditions which must be 
satisfied by these equations.

Let us examine equation (13) for u(r) = 0 , viz.,

r Ao + k2 _ lil±ll 1 dr2 * r* yi(k,r) = 0 (14),

equation (14) is a radial equation for free particles. Changing 
variables to p = kr and defining

fx(p) = -J- (15).

equation (2)'without interaction potential reads

S Ad p d p + ( 1 - 1 f1CP) 0 (16),

equation (16) is known as "Spherical Bessel differential equation" 
Particular solution of this equation which are often used in

scattering theory are the spherical Bessel function j 1’
the

spherical Neumann function n^ and the spherical Hankel function 
and hj2).

Equation (16) is then a linear combination of two linearly 
independent particular solutions.

Since the pairs of functions (j^, n^) and (h^^, h^2^) are 

linearly independent solutions of equation (16). We may write the
general solution y^ of equation (16) as
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y^(k,r) = kr [ C*13(k) j-^kr) + C<2)(k) n-^kr) ] (17),

or
y-^k.r) = kr [ D*13(k) h*13(kr) + D*Z)(k) h*Z) (kr) 3 (18),

where two pairs of "integration constants “ (C^) G^23) and
(Dj'3'? D^23) may still of course depends on k.

BOUNDARY CONDITION :

The radial equation (13) to be examined using the boundary 
conditions which we must impose upon the radial functions u^(k,r). 
Outside the "range" of the potential we may use equation (17) to 
express u^k.r) as,

u1(k,r) = kr ( cj13(k) j]L(kr) + c|2)(k) n^kr) ] , r »a (19).

Assuming r so large that the terms u(r) and l(l+l)/r2 may be 

neglected in equation (13).
An asymptotic solution , is then obeviously of the form 

exp(± ikr). We may write for large r

Ujik.r) = Fjik.r) exp (+ ikr) (20),

F1(k,r) is slowly varying function of r to be determined. 
Substitution of (20) in (13), we find 
F'’ F’
F~~ ± 2ik “tT ? WL(r) (21),
1 1



\<A

where we have set 
W^(r) = u(r) + l(l+l)/r2

we have
dF,

Fi dr T? 9 9, Fx
d2F,
rf2

(22),

since F^ ’ is a slowly varying function we may drop F^’/Fj^ in 
equation (21) and write

+ = WL(r) (23),

for large r

Fx(k,r) = exp t ± gib I r wi<r'3 dr' 3
0

therefore, if

lim
r—>oo j u(r) | < m/r1+1

(24),

(25),

where m is some constant greater then aero. We deduce (24) that
the function F^ is independent of r for r--->cc . Thus if the
condition (25) satisfied the gengeral solution of equation (24) 
for large r given by,

X . tu^k.r) = B[1}(k) eikr + B^2) e~ikr (26),

where B^^(k) and B^2^(k) are independent of r. using the facts
Jl*x) x~>5T > ~x sin{ x *2 * (27a),

n, (x)----—>1 ' x—>c$ COS ( X In (27b),
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h

h

(

(1) (x) x->co

(2). * ___ 5, , _§XE_liix_l_ln:/211
1 x—>oo x

We may use equation (26) in the form of equations 
18). Thus we have, inaccordance with the equation (19),

(27c), 

(27d). 

(17) or

^(k.r) kr f C^1}(k) 31(kr) + c£2)(k) n^kr)] (28),

or
^(k.r) -=I~> kr [ D[l)(k) h<l)(kr) + D^Z)(k) h[2)(kr)] (29).

Coulomb field which falls off like r * as r —>co does not 

satisfy the condition (25), so that equations (28) - (29) are not 
valid for coulomb interaction.

We may use equation (27) to express boundary condition (28) 
or (29) in slightly different manners. For example, from equations 
(27a) and (27b), we obtain

u-^k.r) x-~>co'> Ai<k> sin
with

Ax(k) = { [C^1}(k) ]2 +

and
tan 61(k) = - c[2)(k)/ c[1}(k) (31b).

We note that equations (12), (28) and (31b) also imply that 

Rl(k,r) ~zz>zr> Ax(k) [ j2(kr) - tan 6^k) n^kr) ]

[ kr - + ^1(k) ] (30),

i C<2)(k) ]2 >1/2 Ola),

02),
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where A^k), is independent of r. Quantities 6^ .which are called 
the phase shifts, display the influence of interaction.

THE PHASE SHIFTS :

Knowledge of phase shifts allows one to obtain the scattering 
amplitude by means of the important relation

f(k,e) = 2 (21+1) [ exptZi^Cktt -1] F^cose) (33),
1=0
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by two reduced potential u{r) and u(r), with respective radial 
equations as,

- u(r) y ux(r) = 0 (38a),

- u(r) ] u^(r) = 0 (38b),

u^ and are normalized. Hence,

u-^r) r~~>ocT> £ ^ sin ~ “jj”) + 003 ~ ~2~^ (39a),

and

u1(r) ^ E sin (kr - -g-) + cos (kr - -g-) tan <5^] (39b).

The Wronskian of the two solutions u^ and is defined as, 
W^ul’ ~ U1 ul’ ~ ui’ ul (40),

where the prime denotes the derivatives with respect to variable 
r. Multiplying equation (38a) by- u^ , equation (38b) by u^ and 
substracting the terms we have 
u^ u^’’ ~ ui ui’’ ~ (u - u’) UjU^ =0 or

3" w («!> ax) = ~ (u - u’) UjUj^ (41),

H2
lhz
and

k _ Hltll 
_2

tf2 + kZ 
dr _ umi2

upon integration over variable r in the interval [a,b]. We deduce 
that,



[ W(ulfUj ) ] ^ =

I6S

b
-J u-^r) [u(r) - u(r)] u-^r) dr (42),

choosing a = 0 and b - a and using ux(0) = u],(0) = 0 and with
the help of aquation (39) that,

_ co _tan^ - tan5^ = - k ^ u-^r) £u(r) ~ «(*)] u-^r) dr (43),

provided that u(r) and u(r) tend to zero faster then r 1 when

r-- >co . Also it is must that the potential u(r) and u(r) should
_onot be more singular than r at origin.

Since u0(r) - r as r —>0 for u = 0, equation (43) reduces to 
an important integral representation,

co _taoS^ = - k gj j-^kr) u(r) %(r) * dr (44),

where RjCr) the radial functioh is normalised. Bquation («3) 
provides the dependence qf the phaseshifts on the potential.

CALCULATION OF PHASE SHIFT :
Phase shift expression can be obtained if one solves the 

radial equations (11) and (13) numerically.
Solution obtained inside the range of the potential must go 

over smoothly to the "asymptotic “ solution, valid outside the 
range of the interaction.

When the potential has a st.rict finite range, i.e. vanishes
for r > a, one can devide the domain of the variable r into an



interval region (r <a) and an external region (r>a).
dRxThe boundary condition at r = a are then that both R-^ and g-- 

[ or u^ and be continous at r=a.
Now exterior solution can be written as,

R^(k,r) = A1(k) [ j1(kr) - tai^ n-^kr) ] (45).

Thus, if we denote by
-1 *^i

' S1 < d?' > 1 r=a (46),

value of logarithmic derivative of the interior solution R^k.r) 
at r = a, we find that

k t j^’(ka) - tanS^k) n^’(ka) ]
^^^{k) - j”(ka)-::-tan^?kT~n£Tka) (47),

where we have defined

^’(ka) 
Hence,

dj1(x) 
dx x ka and ^’(ka)

dn,(x)
r —±------I1 dx J x ka’

k V<ka) “ j, (ka)
tan5 (k) = ----------- ------ ----- (48).

*nl'lka) -('jtWn^ka)

If the potential does not vanish identically beyond a certain 
value of r, but has nevertheless a ” range ", one can choose a 
distance d i a at which the influence of the potential is
negligible.



i?0

The value of the logarithmic derivative of the interior 
solution is then matched at r=d with that of the exterior solution 
(free), in that case

tan6^(k)
k .^’(kd) - rx(k) j1(kd)
k ^’(kd) - r;L(k) n^kd)

(49).

Phase shift so obtained are insensitive (within the accuracy 
required) to any increase in the quantity d.

The potentials having a strict finite range and those having 
a “ range “ will then be treated on the same footing.

Let us discuss the behavior of the phase shift at low 
, high and at intermediate energies with the scattering length. We 
also discuss here the behavior of the phase shift with the partial 
wave.

Scattering at low energic > is isotropic.
1=0 and ka < < 1,

tan5 (k) = ka ----- (50),1- 3(ka) ^(k)

r/here k tend to zero , the quantity tane5^ behaves as k *. So that 

the phase shift 60 reaches the value g (modulo n ) in this case 
S -matrix elemeht S0 and S wave amplitude a0(k) are such that,

S0(k) k-->0> ~l Vk> k-=->0 1
k (51).
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BEHAVIOR OF THE PHASE SHIFT FOR LARGE 1 :

Increase In the value of the 1 (for fixed k ) tends to
diminish the importance of a given potential of finite range

2because of the centrifugal barrier term 1(1+1)/r appearing in the 
radial equation (13).

We expect that the phase shifts 6^(k) will tend to zero
(modulo n ) as 1-- >co (for fixed k).

For a potential of finite ” range ", we have already shown 
that the redial function Kj will differ little fro. the
corresponding free wave when 1 > > ka. Hence we may write,

^ O ptanS^ = (tancS^)g^ = - k ^ [ J1(kr) ] ^IKr) xc dr (l>>ka) (52),

where (tanS^)^ - first Born approximation to ta»5 ^. If the 
potential has a strict finite range, we may use the approximate 
formula fof to obtain simple estimate as

tan6 1 1 >>ka [Ul+lijn]2 ^ ^ u(r) dr21+1 cO 21+2 (53),

in case of the square well (reduced) potential u(r) such that 
u(r) = * ~u0’ r < a (54).

{ 0, r > a

We deduce (53) that

2 ka21+1tan6 u a
[(21+l)!!;T<21+3)

(55),
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Phase shift d-^k) -> 0 {modulo n ) as k —>co . This suggest that

for 1 >> ka ( for1 fixed k ) quantities tanS^ falls off rapidly as 
1 increases. In fact, we have

1+1 f k a ^2 C 2~1~J 1 » ka, (56)

It worth watching that simple formula (53) can not be used 
for interaction potential which have a sizeable “tail”, since the 
major contribution to the integral (52) comes from the region near 
the point Tq - where the function j^(kr) takes as 
significant values. Hence in the case in particular for the Yukawa 
potential

-r/aU(r) J0 (57),

for the potential haying the form U^/r for large r.
8H- II) Hi H* X 0 (X s a t*
r©Jis©m©oo©
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a reasonable absolute definitions of phase shift may be requiring 

that,

We require that <5^ = 0 when particle is effectively free.
We can separate out the terms of equation (36) in the real 

and imaginary parts of the f (k,e). We also obtain for the total 
elastic cross section given by,

known as the optical theorem.
Having dicussed the method of the partial wave analysis and 

how the calculation of the phase shift is to be carried out and 
the behavior of the phase shift for large 1 (fixed k) and for high 
k (fixed 1), we apply this method to study the elastic scattering 
of electron by neon, atom in the two potential method.

If we look at the interaction potentials expression and if 
such interaction i3 studied then we can say that the interaction 
is strong enough. We also know that when the interaction is too 
strong and if one applies the HHOB theory then still one concludes 
that there may not be a accuracy at large angle. To study the 
scattering at large angle we have to make the total potential weak 
enough so that we can rely upon the accuracy in the measurements 
of the cross sections. Bence we write the total potential in the 
two potential method as follows.

0 (59).

~2 Im f(e = 0) (60)

V (61).



Here we have already done the calculation considering the 
part which is reported in the chapter III. Here we calculate the 
Vstl part usin8 the static potential of the simple form in the 
BHOB approximation, where we use the Cox -Bonhamm parameters. 
Hence from the full interaction the contribution due to the static 
part is substracted. This makes the interaction weak. The 
remaining part of the potential i.e. V^g we treat this through 
the partial wave analysis. Which is found to give more accurate 
information about the scattering. Hence using this picture of the 
two potential method we again calculate the differential cross 
section and using optical theorem we calculate^ the total cross 
section.

The static potential given by Bonham and Strand (1963) is 
chosen and is of the form for neon atom as,

vst(£) = - 10 r3
X r§_*L (62)

which is simple in view of the analytical purposes and same 
formulation oan be extended to dlfforent atoms with change a in 
and X . , The r^’s and ^ s for neon atom is given below.

5

2.7495

8.5939

ro = 1.2524

-3.5758

Xg = 22.8979 ; x3 9.5848 ’ X4 15.8901

14.8774 and
Y2 = -0.2468 

= -1.7401

r3 - 3.5572 rA = 1.7522 ;

Now the scattering amplitude in the HHOB approximation id
given by
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f _ = + Rel tif3 + Re 2 fj?3 + i Im fjf3 + f^3
HHOB 1-- >f HEA HEA HEA 0ES (63)

We have to evaluate various terms using the static potential 
of the form ( 62).

First we evluate the first Born term appearing in expression 
of the scattering amplitude in the HHOB approximation. We write
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°fi>= V1 ( E+ pzF) v2 (l a “ £ 1 ~ Pa7 ) (69)

For the given potential we have,

r.iJiL= It4 e e —o—o—2'
fi m l 5 (p2+P^+x2) (jg pJ2+ p2 **)
so that 

,(2)Im - I1 f di V, V,HE A k J ^ Ik

reduces to a form

10ffk n 2r :+ btf^+X^) + 2£ y
E E ^ ^ 4 [ p p
i 5 1 J ^ (0*+ x p (b + 2C )

] (70),

where,
C2 = (q2 " X^ + )2 +• 4q2()'?2+ X^) ; b = ~2q2 - + X2

and
r = [ W2+x*j* ♦ w***)b+cal,/2.

-1,For the term 0(k^ ) real part of the second Bom term given

asD 1' (2) 4 n3 r , dB=
Rel f.'„/ = " ~£- (p J dp JHEA (lz” ^ (P2+ p2+xj) (|q-p|2+ P2+X^)

J
(71),

where Vj^Vg given by (62) and (p stands for the principal value of 
integral.
Hence,
Rel f (2)

HEA k jt‘ E E r,r 1 I +^ X J MV
(72),



\77

(p2+ p2 + >-2) {|a - p|2+ p2 +

—5-5 £ E 2 n'TtJ i j i ''i op
A. t ) - V

"st (75),

where I3(/7,\j) is "the same as Ig integral which is already 
defined in chapter III and Ia(. is defined as above and the nethod 
of evaluating such integrals is described in detail in the 
appendix.

~ 
l %

CO!>*

—j rf*«

r 
i

O.
 M
lM
l 

+ 
I i

*1
 I 

N
 Mlto

I 
01

i

t $' H CD

103 ft
! xin n 
{ 
ft

i + 
- 

IN 
I 
ft

I 
ft

•Cl
&!. 
"01 

KJ 
I ft
|w3.IIftn
i—
i

& tf ®ss 0 tis •o to ® P ft ft Xft Pa►ftDOft CDer ® ft ® h < & ft 0 p o Mi | P*

M CD is ft to Os H C+ 0 c+ It* CD C
D CD O o p ft w o H P e+ ® 3 ft u « H ft c+ ft ® P Os VIO X*
 

■*
 I Mft 0 e

<1
ft

Cl
M

C
M 

N
 

ftM
to

&to

ftto H4_
,

— M
M 

<*
lftii<

CM 
ui 

■—
 S

CM

ft P cmicm « 
A + 

CM?01to
M + to « 
M 
*4
*

ft
 Nft

rA
3

ft

i.c» J5
>l

W*W*I
 CM t-l 
l MI CM

ftl E 
I 
CM

III

4_
,ft to

ft
 M uM p« *< o. ft
l

_̂
lf
t

t5
iI CM ft 

I M
V—
II CM
: e® M 5 

*2

ii

•hQhN4.*T
I

CVS/<

*
O.
 Mcm ea 

ft 
.

M

to Id



We write the scattering amplitude for the static potential
using the HHOB theory as,
f = f,{1) - + i Im f(2) + Rel f(2]
HHOB i-->f HEA HEA + Re 2 f (2)

HEA + f (3)OES (76)

Now to evaluate the part which we treat using the 
partial wave analysis. Having discussed the partial wave analysis 
and the behavior of the phase shift for large 1 (fixed k) and for 
high k ( fixed 1 ). We write the scattering amplitude as,

-£ E (21 + 1) cos ei<5l sin 6. (77),

main part of the evaluation of the above scattering amplitude is 
the determination of the phase shifts for the potential V .. HereSu
again, to simplify the infinite summation over 1, we resort to the 
method described earlier i.e.,
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(B) 10
k

6
Ej=l

2kJ + xQlC 2k? (79)

For the evaluation of the exact phase shift 

correspondingly, the value of V(x) is ,

F(x)

V(x)

l_i.i_t._ll - +• 2 V(x) has to be taken as
XT

-X ,x
(80).10 f r3

There after same procedure has to be followed for the
solution of the differential equation and evaluation of the phase

(B)shift. After obtaining the two phase shifts <5^ and 6^ their
values may be matched to fix value of N suitably. To calculate the 
phase shift one has to solve the second order differential 
equation. We use the Numerov method for the evaluation with the 
predictor -corrector method, where the step height is calculated 
automatically.

The first Born amplitude fg^ for the static potential (62)

is,
frBl 1___ J dv is**

vst(£) (81),

which can be evaluated using the standard integration techniques

as,

B1
1

20 E
j=l (q2 **j) (82) .



This method which is formulated here, is an attempt to check 
the feasibility of the two -potential method within the framework 
of the recent HHOB approximation. This formulation was aimed at 
the improvement of the HHOB approximation, particularly in the 
large scatterinig angle region. The value of DCS and TCS are 
calculated and it is observed that the results through this method 
is better than their HHOB approximation. The partial wave 
summation was taken with a view to account for the infinite number 
of partial waves. For this purpose, the method suggested by 
Jhanwer et al (1978) was used, which involves the exact Born phase 
shifts and their comparison . The phase shifts was generated with 
the aid of computer. The present method can be extended to other 
atom also.

RESULTS AND DISCUSSION :
Here we neglect the third Born term because of the following 

reason.• i, ’ -
It is found that even for the whole interaction V, the, .. ; , d

contribution due to this term is very small. Hence in the present
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case where the interaction is Vd - Vgt , the contribution will be 
still less.

It is observed during the process of evaluation of the 
various terms in the scattering amplitude in the HHOB theory that 
the contribution due to the Re2 term in the Born approximation is 
spuriously large. Hence, the inclusion or exclusion of the less 
significant third Born term does not make much of a difference 
because Re 2 and fBg are of the same order.

The evaluation of the third Born term, further increses the 
computation complexity.

In order to have a comparison of the present two -potential 
method results with the simple HHOB results, the two -potential 
results excluding the third Born term may be compared with the 
HHOB results excluding the contribution of the same term. Hence 
the comparison is justified.

The differential -.cross section and the total cross sections 
are calculated for. the elastic scattering of electrons by a neon 
atom process in the two -potential HHOB formulation as discussed 
above for a variety of incident energies and wide range of 
scattering angle. The present two potential method results are 
shown at incident energies for 100, 200 and 500 eV along with the 
other theoretical (Byron and Joachain (1975}and etc.) and 
experimental results (Jansen et al (1976), R D Du Bois and Rudd 
(1975), Gupta and Rees (1975), Williams and Crowe (1975)) and
others.



We also compare our own results of the HHOB theory with the 
direct interaction potential which is discussed in detail in 
chapter III. We conclude at the end of the chapter III, that since 
the HHOB theory is basically a good approximation for high energy 
and small scattering anlge. It may not give a very good results at 
the large scattering angle. We found that at small scattering 
angle the results are in better agreement as compare to the large 
scattering angle also. This is due to the strong interaction 
potential.

With the two -potential method we make the interaction weak 
enough so that we can expect more accurate information and 
differential cross section at large scattering angle. As expected 
and since the rest part of the potential where the partial wave 
analysis is employed accurately, we find that there has been a 
considerable amount of improvement in the results at the large 
scattering angle.

Hence we conclude that the present method gives better 
agreement over the entire angular region.

Since the two -potential method discussed here was basically 
an attempt to improve upon the HHOB method of Yates (19T9), the 
real comparison should be made between the results produced in
the chapter III and the present method of approach. They
compared graphically by the curve A and B, and they are
compared with the other theoretical and experimental results as 
discussed in the chapter III.
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However, this type of reasonable comparison between the 
curves asserts that the improvements whatsoever obtained are due 
to the approximation introduced and not due to the inclusion or 
exclusion of any particular term. Thus avoiding the laborious 
third Born evaluation finds enough justification.

In the HHOB approximation Re f^j[ = flj3^ + f^3^ and if ft =0, 
then only f remains such that Re f^^ {ft=0) - fj3^(/?=0) =

In the high energy approximation, ft - AE/k^ being very small, it 
can be approximated as aero in practical situations for the sake 
of simplicity. The contribution of ft in the scattering amplitudes 
is small, when compared to the important part played by it in 
saving some of the integrals from the divergence problem 
(comparison between GES and HHOB integrals), hence the 
significane of the ft factor. Keeping all this in mind, third Born 
term can be approximated to the third GES term within a certain 
accuracy. Thus the present study and the HHOB calculations were 
done incorporating the third GES term. The detail calculation and 
the basic formulaes of the GES method (approximation) is given in 
chapter II. The calculation of the third GES term for the elastic 
scattering of electrons by neon atom is discussed and given in 
detail in the chapter III.

The main attraction of the present two -potential method in 
the HHOB approximation is that it gives reasonably good 
agreements even at low energies, for the entire angular range. 
This is due to the reason that, since the total interaction
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potential Vd is replaced by a reduced interaction i.e. ?d - Vstl 
in the two -potential method, the lower limit of S can be pulled 
down slightly such that g < < 1. Hence the approximation should 
give better results than in the simple HHOB approximation in the 
case of low enregy of incidence also. From the comparison one can 
readily observed that as expected the results improve with higher 
incident energies. But the most covatable feature of the present 
two -potential method results is the very satisfactory cross 
sections in the large scattering angle region. The general 
experience is that many a theory which gives quite good results at 
small angle, gives poorer results at large scattering angles. Same 
is the case with the HHOB approximation of Yates (1979). Hence, 
the improvement of the present two -potential method is the most 
significant in the large scattering regi on. At all incident 
energies, the two -potential method results are far better than 
the simple HHOB approximation at large scattering angles.

In light of the above discussion, the conclusion can be drawn 
that the two -potential method in the HHOB approximation as 
derived in this chapter, improves the basic HHOB approximation of 
Yates (1979). We report here the calculation of the differential 
cross section and total cross section for the elastic scattering 
of electrons by neon atom. The comparison, is made with the same 
experimental and theoretical methods compared in the chapter III.

First we study the process described for the incident energy 
of 100 eV. We have compared the results in the tabular form
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One can observe that; the discrepancy observed in the results 
produced in the chapter III at the large scattering angle has 
reduced a lot. Hence for the whole angular range the results are 
comparable and are found in better agreement.

We also find that as the energy of incidence increases 
further the accuracy also increases. This one can observe for the 
incident energy 200 eV. The results improves further. We have 
given the comparison of the results at this incident energy in 
the tabular form.

We have done the calculation for the energy range varying 
from 100 to 700 eV . We find that the results are getting closer 
and closer for the high energy of incidence. We also find that 
with the present method of approach the agreement is better at the 
large scattering angle. The results are much better in agreement 
at the small angular region.

We also compare the results produced by us, by taking the 
ratio of the previous absolute experimental measurements and 
theoretical calculations with the present data. A comparision of 
the type by means of ratio is given in the table IV.III. We 
conclude by this comparasion that the present method of approach 
and the results are in better agreement as compare to other 
methods described above. We find that as the energy of incidence 
increases the discrepancy reduces faster in comparasion with the 
other methods described. Also the results produced for the large
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scattering angle match well compare to the methods described 
earlier.

Hence, looking at the simplicity in the method used and the 
method of calculation of the two -potential in the BHOB 
approximation gives very good comparasion for the wide variety of 
enrgies and for wide angular range. Further, the avoiding the 
computational complexity in the calculation and the numerical 
techniques used for the calculation of the phase shifts is self 
starting. Where the computer programm is so prepared that it can 
generates the phase shifts for very large number of partial wave, 
but the main problem is the computer machine used takes lot of 
time for the calculation. We also know that for fixed incident 
energy when we increase the number of partial wave to a large 
value then it becomes less significant. Hence the calculation is 
preformed her for few partial wave only. Hence we hope that the 
present approach is very useful for the calculation of the 
differential cross section and the total cross section, because it 
gives better results than the results of simple BHOB approximation 
given by Yates (1979). The method described here is such that, the 
divergence probelm gets eliminated automatically due to the 
presence of the term ft i.e. the average excitation energy 
transferred during the course of collision. And above all the wave 
function used for evaluating the scattering amplitude in the HHOB 
approximation is calculated accurately. We have used the Boothan 
-Hartree -Fock wave method foi* the calculation of the wave
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function and wo uso the Clementii - Roetii tables for tho orbital 
calculation for the neon atom. Bence the present method where 
the scattering amplitude is calculated for the direct interaction 
potential where we have not neglected any of the cross terms 
arising in the expression. Hence we conclude that the results 
produced here are in much better agreement as compare to any other 
method described earlier.
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TABLE IV.II
Value and comparison of -the total cross section for the elastic 
scattering of electron by a target neon atom, with theoretical and
experimental results. expressed

in a % 3. For different incident
energy.

ENERGY EXPERIMENTA THEORETICAL
eV RW K N OM First Born DWBSA Present

FJ BJ IMcD DW results

100 11.03 10.3 9.4 14.2 29.5 — 13.8
200 8.45 7.98 7.0 9.64 16.8 9.77 9.87
300 6.80 6.38 5.4 7.53 11.9 7.83 7.85
400 6.76 5.47 4.5 6.29 9.27 6.35 6.86
500 5.02 4.78 — 5.45 7.57 5.47 5.69
700 4.03 3.90 — 4.40 5.66 4.37 4.56

RW FJ - R W wagner and F J de Beer (1980} 
K - Eaupilla et al (1980)
N - Normand (1930)
IMcD - Inokuti and Mo Dowell (1974).
DW - Dewangan and Walters (1977)
BJ - Byron and Joachain (1977).
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TABUS XV.ra
Ratio of previous absolute measurements and theoretical calculations to 
present data for neon. Exptal.: J, Jansen et al (1976); B, Bromberg (1974); 
GR, Gupta and Rees (1976) ; WC, Williams and Crowe (1976). Theoretical : FT, 
Fink and Yates (1970); BJ, Byron and Joachain (1976). PR - present 
results.

Theta
deg. WC

FR
100

GR
FR

eV
J
FR

BJ
FR

FY
FR

WC
FR

GR
FR

200 eV
J B
FR FR

BJ
FR

FY
FR

6 0.76 1.03 0.21 0.86 0.89 1.02
10 1.48 0.86 1.12 0.31 1.00 0.78 0.81 0.89 0.16
20 1.00 1.38 0.96 1.02 0.51 0.94 0.82 1.12 1.15 1.08 0.19
30 1.22 1.27 1.19 0.96 0.88 0.94 0.89 1.33 1.30 1.10 0.24
40 1.29 1.31 1.66 0.93 1.54 0.94 0.85 1.64 1.68 1.10 0.28
60 2.65 1.29 2.60 0.98 0.34 0.99 0.95 1.88 1.88 1.22 0.28
60 1.28 1.22 0.93 0.33 1.00 0.92 1.14 0.22
70 1.23 1.16 0.88 0.28 1.03 0.94 0.87 0.27
60 1.14 1.17 0.69 0.18 1.09 0.87 0.92 0.27
90 0.95 1.14 0.67 0.08 1.24 1.01 0.89 0.27
100 0.76 1.30 0.50 0.18 1.29 1.05 0.73 0.32
110 0.90 0.85 0.44 0.30 1.27 0.98 0.74 0.34
120 1.10 0.67 0.38 0.31 1.26 0.93 0.77 0.36
130 0.96 0.61 0.53 0.29 1.30 0.84 0.77 0.39
140 0.99 0.63 0.43 0.27 1.23 0.82 0.79 0.35
160 0.96 0.67 0.36 0.25 1.21 0.85 0.78 0.35


