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CHAPTER - IV
TWO POTENTIAL FORMULATION TO STUDY THE ELASTIC

SCATTERING OF ELECTRONS BY NEON ATOM.

INTRODUCTION :

The search for an improvement over +the HHOB approximation
(Yates, 1979) due ta the main short comings ¢of the approximation
is the appriciable over -estimation of the ¢ross sections in the
;arge angle region. As the scattering angle increases the
differential cross sections deviate more and more from the
corresponding experimental values. It is well known fact that the
Born approximation gives better results for the weaker interaction
potentials. Keeping this iﬁ mind, the present two -potential
method is decribed.

In this chapter a brief disecription of the HHOB and optical
potential model and the two potential method is describea. After
constructing the potential (comprising of static, exchange,
polarizatiop anq absorption interactions), we have carried out the
partial wave analysis to study +the elastic scattering cross
section of electrons by neon atom. In the two potential method
difference of the direct potential over the static potential is

treated in‘the HHOB approximation, and the remaining part of the
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static potential is treated using the partial wave analysis. We
use our results of the elastic scattering of electrons by neon
atoms calculated using the HHOB approximation for the direct
interaction potentiai which is described in detail in chapter 111.
We describe here the basic theory of partial wave analysis and the
calculation of the phase shift to study the elastic scattering of
electrons by neon atom.

PARTIAL WAVﬁ ANALYSIS AND CALCULATION OF PHASESHIFT :

The Schrodinger equation,

+ V() 1 v () =E v (1),

may be separated in spherical polar coordinates, and a simple
connection betwéen the radial solutions and asymptotic form of the
stationary scattering wave function may be found.

This procedure, which is called the method of partiai wave.
Two important resulfs, the optical theorem and +the unitary
relation yields from such analysis.

" The copmutation of phaseshifts, which play a key role in the

method of partial waves.

The Hamiltonian operator H = - 5 m Vr + ¥V, now reads in

spherical polar coordinate as,

2
- - _h" i, 9,29 1, 1 8 o_ 1
8 = z2m [ 72 Kr%p ¢ r2sine 4§ ot8ime 3 ) + 2
2
.2 -1 3
{(Sin“e) 5152 1 + V(1 (2),
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and the Schrodinger time independent equation (1) for the

+
stationary scattering wave function Wki can be written as,

2
1 2.9 i, 1. 9 9_
T zm U ¥ 5ETP Y 2 Eims 5 (sine 35 > +
2

1 2,\,-1 __ @ (+) (+) - (+)
z2(sin%) 3 ¢2] Wiy (X)) + V(X) Vey () = Ewki () (3),
where the operator “"square of the orbital angular momentim " given
by, )

2 _,2 ,..2 2 _ _,2 1_ @ -2 2_.-19°
L = Lx + Ly + Lz = by zimo 5 é(sine 3 e> + (sin™®) "3 ¢2

(4),

and using

2 _ 2 _ 2 _
(L", Lx] = [L7, Ly] = [L7, Lz] =8 (5).

From (5) we deduce that one can find eigenfunctions which are
common to the operators Lz and one of the components of L.

These are the spherical harmonics Ylm(e,¢) such that,

2 _ w2

L Ylm(9.¢) =1 (1 +1)h Ylm(9:¢) (6),
and
Linm(e’¢) = mh Ylm(9,¢) (7).

We now return to the Hamiltonian (2) which we rewrite with

the help of (4) as,

2 2 ' .
- h 1, @ I
R L A B R (63 (8,
so that
(8,11 = (8, L] =9 (9).

Expanding the scattering wuave function wiz)in partial wave
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correponding to given values of the gquantum numbers 1 and m as,

(+) 0 +1
vy () = B E Cpp (1) Ryp(kr) Ypu(0.8) (19).

The central problem of the method of partial wave is to take
the advantage of the expansion (18) in order to obtain a
convenient expression of the scattering amplitude.

Using the expansion (1@) in the Schrodinger equations (6) and

(8), we obtailn every radial function of the equation.

~ n® 1, 4. .2 d _ 1(it1) '
5m L 22 g5 ¢ 32 3 JRy(k,x) + V(x) Ry(k,r)

= E R, ( k1) (11),

Ry(k,r) 1is wrltten instead ‘of Rip(k,r) since there 1is no

dependence on magnetic quantum number m in the equation (11).
Using the new convenient unknown function ‘

r Rl(k,r) = ul(k,r) (12),

and introducing the reduced potential U = 2

"
hz v .
The new radial equation which are obtain from equation (11)

is then,

2 |
[ Sz +6® - MLEA) oy 1wk -0 (13).

There is no loss of generallity in assuming that ul(k,r) is

real. Since both the rcal and imaginary parts of a complex Uy

would seperately satisfy the equation (13).



RADIAL EQUATION FOR FREE PARTICLE :
In order to solve (13) for the radial wéve functions uy it
is necessary to specify the boundary conditions which must be

satisfied by these equations.

Let us examine equation (13) for u(r) = 0 , viza.,

2
d 2 _ 1(1#1 -
[ §g2 + E° - iy y ey =0 (14),

equation (14) is a radial equation for free particles. Changing

variables to p = kr and defining

- )
fl(p) = {15},
equation (2)without interaction potential reads

2

d”
[ d_Z +

2 _d

- 1(1+1)
P 4

5 tC1-=2m D] fe) = 8 (16),

equation (16) is known as “Spherical Bessel differential equation”
Particular solutioun of this equation which are often used in
scattering theory are the spherical Bessel function jl, the

spherical Neumann function n, and the spherical Hankel function
(1) (2)
h1 and hl .
Equation (16) is then a linear combination of +two linearly
independent particular’ solutions.
Since the prirs of functions (jl, nl) and (hil), h§2)) are

linearly independent‘solutions of equation (18). We may write the

general solution yl of equation (16) as

62
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2
yer) =k [ {0 ke + cfP ) nyen ] (17,
or
v, = ke [ D{Mao n{P ey + pf¥ 0 n{?) e (18),
where two palrs of "integration constants (Cilz C§2)) and

(Dilg Diz)) may still of course depends on k.

BOUNDARY CONDITION :

The radial equation (13) to be examined using the boundary
conditions which we must impose upon the radial functions ul(k,r).
Outside the "range” of the potential we may use equation (17) to

express ul(k,r) as,
u(k,r) = kri (k) 3.(ke) + C{%3)V(k) n.(kr) 1, r >»a  (19)
1{ks 1 (B 3y 1 1 , :

Assuming r so large that the terms u(r) and 1(1+1)/rz may be
neglected in equation (13).
An asymptotic solution is +then obeviously of the form

exp(t ikr). We may write for large r
up(k,r) = Fi (k1) exp (& ikr) (20),

Fl(k,r) is slowly varying function of r to be determined.
Substitution of (20) in (13), we find
Fi! F'

i ik ~i- =
F * 2ik F,T W, (r) (21),



ey

where we have set

Wi(r) = u(z) + L(1+1)/x | (22),
we have

aF &%,
Fi=a HhFar’

since Fl" is a slowly varying functlon we mnmay drop Fi’/Fl in

egquation (21) and write

+ 21k ¢ = Wi(r) (23),
1 .

for large r

- i r ’ ,
therefore, 1if
lim
r-->o0 | u(r) | < m/r1+1 (28),

vhere m is some constant greater then zero. We deduce (24) that
the function Fl is independent of r for r ~—>0 . Thus 1f the
condition (25) satisfied the gengeral solution of equation (24)

for large r given by,

w (k,r) = B{l)(k) RS S B§2) o 1kr (26),

where Bil)(k) and Bgz)(k) are lndependent of r. using the facts

31(x) zmm357 > - osin x - o) (27a),

0 (x) 7275z - i cos(x - B- ) (27b),
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(1) gy oome _ 4 exe_{i(x - Lr/2)} 27c),
by (x) oIS i % (27¢)

(2) e _exp_{i(x = _11/2)} —_—
hl (x) x—-~>c:o> i X ( )

We may use equation (26) in the form of equations (17) or

(18). Thus we have, inaccordance with the equation (19),

u (k) ooz ke [oodPoe 5o+ P npaen L (28,
or
u (k,r) zmmso> ke 0 DDV mi{P ey 4 p{%) (k) n{?) (k) (29).

Coulomb field which falls off like r_1 as r —-->0 does not
satlisfy the condition (25}, so that equations (28) - (29) are not
valid for coulomb interaction.

Ve may usé equation (27) to express boundary condition (28)
or (29) in glightly different manners. For example, from equations

(27a) and (27b), we obtain

u,(k,r) z-=52-> Ay (k) sin [ kr - '3’%" + &,(k) ] (398},
with

A =¢eiVa 17« [ elPlx) 17,172 (31a),
and ‘

tan 6, (k) = - ¢iP )/ eV x) (31b).

We note that equations (12), (28) and (31b) also imply that

R, (k,r) O3> A(k) [ 3;(kr) - tan &, (k) n, (kr) ] (32),
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where Rl(k), is independent of r. Quantities él ,which are called

the phase shifts, display the influence of interaction.

THE PHASE SHIFTS

Knowledge of phase shifts allows one to obtain the scattering

amplitude by means of the important relation

D
f(ke) = 3ig E, (21+1) [expi2is; (K)} -11 Py(cose) (33),

we may write
€0
f(k,e) =% (21+1) al(k) Pl(cosé) {(34),

where the partial wave amplitudes al(k) are such that

- 1 _ . -
rewritting equation (33) again as
1 0
f(k,e) = i T (21+1) exp { iél(k)} sinél(k) Pl(cose) (36),
1=9
while {(35) becomes
aj(k) =1 exp{ i5 (k) } sind (k) (37).

Now let us deduce the relation between the phase shift and

the interaction potential. For that let us consider the scattering
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by two reduced potential u(r) and u{r), with respective radial

equations as,

2
d_ 2 _ 1{l+l) _ ‘
(er + k rz u(r) 1 ul(r) = @ (388),
and
[ng + g2 -¥) Loy ) Gr) =@ (38b)
ar 2 1 ,

uy and u, are normalized. Hence,

u(r) zo=5po> & [osin (ke - 35T + cos (kr - 15T) tans 1 . (39a),

and

u,{r) =—-—c=— > 1 { sin (kr - l*-T-t-) + cos (kr - l-"-T-) tan & ] {38b)
l r"""m k 2 2 l .

The Wronskian of the two solutions u, and Gl is defined as,

W(ul, ul) = uy u1 - ul’ ay (49),

where the prime denotes the derivatives with respect +to wvariable
r. Multiplying equation (38a) by~x_11 , equation (38b) by uy and

substracting the terms we have

ul uy Y al - {u - u’) ulal =@ or

d - ! -
dr W (ul, ul) = -~ (u - u’) u (41),

upon integration over variable r in the interval [a,b]. We deduce

that,
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b _ -
[ Wuy,5,) 10 = - f 9(r) [ux) - G(xr)] uy(r) dr (42),

choosing a = @ and b = « and using u (@) = ﬁl(ﬁ) = @ and with
the help of equation (38) that,

— w- w—
- tand; = - k 0[ uy(r) [u(r) - u(r)l uy(r) dr (43),

tanél

provided that u(r) and ﬁ(r) tend to zero faster then r—l when

r--->o . Also it is must that the potential u(r) and u(r) should

2 at origin.

not be more singular than r
Since uﬁ(r) - r as r —->0 for u = P, equation (43) reduces to

an important integral representation,

oD
tans, = -k f J,(kr) u(r) Ry(r) r? dr (44),

- where Rl(r) the radial function is mnormalized. Equation (43)

provides the dependence of the phaseshifts on the potential.

CALCULATION OF PHASE SHIFT

Phase shift expression can be obtained 1if one solves the
radial equations (1l1) and (13) numerically.

Solution ohtained 'inside the range of the potential must go
over smoothly to the "asymptotic " solution, valid outside the

range of the interactlion.
When the poctentlal has a strict finite range, i.e. vanishes

for r > a, one can devide the domain of the wvariable r into an
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interval region (r <a) and an external region (r>aj. R

The boundary condition at r = a are then that both R1 and a;l

[ or u; and ggl] be continous at r=a.

Now exterior solution can be written as,
Rl(k,r) = Al(k) F Jl(kr) - tanél nl(kr) ] (45).
Thus, if we denote by
dRr. .
- -1, -1
?’1 - { Rl ( dr ) 33."-'-'& (46))

value of logarithmic derivative of the interior solution Rl(k,r)

at r = a, we find that

k [31’(ka) - tanél(k) nl’(ka) ]

r1(E) = =Ty iRe) T Eand, (B) n (ka) (473,
1 1 1

where we have defined

- dj; (x) dn, (x)

J1 (ka) = [ TTdx ]x = ka and ny (ka) = [ TTdx }x = ka

Hence,

k 31’(ka) - Yl(k) Jl(ka)
tanél(k) il e e et e e e (48).
k n, (ka) - yl(k) nl(ka)
If the potential does not vanish idemtically beyond a certain
value of r, but has nevertheless a " range ", one can choose a

distance d 2 a at which the influence of the potential 1is

negligible.
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The value of the logarithmic derivative of +the interior
solution is then matched at r=d with that of the exterior solution

- (free), in that case

tans (k) =  —omFoooomessesTemmemSesos (49).
k n;’(kd) - v;(k) n,(kd)
Phase shift so obtained are insensitive (within the accuracy
required) to any increase in the quantity d.

The potentials having a strict finite range and those having

a range

.

will then be treated on the same footing.

Let us discuss the behavior of the phase shift at low
» high and at intermediate energies with tﬁe scattering length. We
also discuss here the behavior of the phase shift with the partial
wave,

Scattering at low energic- is lsotropic.

1 =0 and ka << 1,

tand (k) = ka 9-&151_:_:1:5 _____ (50).
1- 3(ka) “qu(k)

1

where k tend to zero , the quantity tanél behaves as k So that

the phase shift ég reaches the value % {modulo 7 ) in this case

S —matrix elemeﬁt Sb'ﬁhﬂ's wave amplitude ag(k) are such that,

{51).

g

Sg(k) go255> "1 Plaglk) p =,
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BEHAVIOR OF THE PHASE SHIFT FOR LARGE 1 :

Increase in the value of the 1 (for fixed k ) tends to
diminish the importance of a given potential of finite range
because of the centrifugal barrier term l(l+1)/rz appearing in the
radial equation (13). -

We expect that the phase shifts 6,(k) will tend to zero
{modulo )} as 1 --->0 (for fixed k).

For a potential of finite " range ", we have already shown
that the radial function Ry will difger little from the

corresponding free wave jl when 1 > > ka. Hence we may write,
S 2 2
tanél = (tanrsl)B1 = - k gj [jl(kr) ] 70(xr) " dr (1>>ka) (52},

where (t.ancSl)B1 - first Born approximation to tans If the

1-
potential has a strict finite range, we may use the approximate

formula fof jl to gbtaip si@ple estimate as
h -k 21+2
tand; ) yika  [(23TT32 o T u(r) dr (53),

in case of the square well (reduced) potential u(r) such that

u(r) - { —ug: r<a (54).
92, r>a

We deduce (53) that

2 ka
tand - U, 8 mooemTTeeepe—e—ee (55),
1 1 >ka [(21+1)!117%(21+3)
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for 1 »> ka (- for: fixed k ) quantities tanél falls off rapidly as

1 increases. In fact, we have

s
5.0 S %?Q-yz 1 >> ka, (56).
é -

1
It worth watching that simple formula (53) can not be used
for interaction potential which have a sizeable "tail™, since the
major contribution to the integral (52) comes from the region near
the point‘ ry = ~i—, where the function Jl(kr) takes as
significant values. Hence in the case in particular for the Yukawa
potential

e—r/a

U(r) = U, - (57),

for the potentiil ‘having the form Ug/r2 for large r.

PHASE SHIFT AT HIGH ENERGIES :

i.e. for a case where 1 is fixed and k ~--> ©

Importance of the potential will become vanishingly small so
that the radial function R, will again; be very close to the
corresponding free wave. .

Using equation (52) ( large x) and with the asmptotic form.
We deduce

Sy

1.,-1 -2
tand, L oo -3k o] O(r) dr + O(x™ %) (58).

Phasec shifﬁ él(k) -==> @ (modulo n) as k -->0¢ . This suggest that
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a reasonable absolute definlitions of phase shift may be requiring

that,

lim - 59).
k--—>0 1) = ¢ (59)
We require that él = @ when particle is effectively free.

We can separate out the terms of equation (36) in the real

and imaginary parts of the f£(k,®). We also obtain for the total

elastic cross section given by,

el

- 4 =
Ciot = k2 Im f(e —QG) (69),

known as the éptical theorcm.

Having dicussed the method of the partial wave analysis and
how the calculation of the phase shift is to be carried out and
the behavior of the phase shift for large 1 (fixed k) and for high
k (fixed 1), we apply this meth.d to study the elastic scattering
of ‘electron by ngon:atom in the two potential method.

If we look at fhé interactibn potentials expression and if
such interaction is studied then we can say that the interaction
is strong enough. W; also know that when the interaction is too
strong and if one applies the HHOB theory then still one concludes
that there may not be a accuracy at large angle. To study the
scattering at larquangie we have to make the total potential weak
enough so that we can rely upon the accuracy in the measurements

of the cross sections. Hence we write the total potential in the

two potential method as follows.

v = { VvV, -

a” Vst1! v

st2 (61).
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Here we have alre;dyfdone)the calculation considering the Vd
part which is rcported inwtﬁe cgépter I11. Here we calculate the
Vst1 part using the static potential of the simple form in the
HHOB apprgximation,&whare we use the Cox -Bonhamm parameters.
Hence from the full interaction the contribution due to the static
part is substrécféa. 'This makes the interaction weak. The
remaining part of ﬁhe potential i.e. vstz we treat this through
the partial wave analysis. Which is found to give more accurate
information about the scattering. Hence using this picture of the
two potentlal method we again calculate the differential cross
section and using optical theorem we calculate” the total eross
section.

The static potéptial'given by Bonham and Strand (1963) 1is
chosen and 1s,$fltﬁe £o£m f;r‘néon atom as,

B : D 3
Ve =-108 ¢ r, % (62),
j=1
which is simple ;n'rview of the analytical purposes and same
formulation can be;éxtended'to different atoms with cﬁanges in Y

< g

and kj . Tﬁb‘rj’h éﬁd‘ﬁ&’é“'fér neon atom is given below.

Ay = 2.7495 xz”: 22.8979 ; Xg = 9.5848 ; X, = 15.8901 ;
Ag = B.5939 ; Ag = 14.8774 and

¥y = 1.2524 ; y, = -0.2468 ; yg = 3.5572 ; y, = 1.7522 ;
rg = ~3.5758 ; yo = -1.7401 .

Now the scattering amplitude in the HHOB approximation id

given by, T

“-
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+ Rei £12) 4+ Re 2 £2) 4 § 1m £(2) 4 £(3) (63).

uHoB T i-->f HEA HEA HEA OES

We have to evaluate various terms using the static potential
of the form ( 6§2).
First we evluate the first Borm term appearing in expression

of the scattering amplitude in the HHOB approximation. We write

gy = -z J ¢TE v a (64),

where we substitute V{(r) by the static potential of the form given

by (61).

6
£.= 2 ¢ .

ig.r eﬁkér
B1 2 ks J e o & (65),

further simplifying the above as,

6 0 A.r
fg, = 10 j§1 7 @f e ' J sin qr dr (68),
reduces to

§ 1
I = 20 ¥ r THTETS (67).
Bl i=1 4 4% x?'

Now the imaginary part of the 2nd Born +term in +the HHOB

theory is given by,

3
(2) . 40 2
Im £ - = K~ J dp U£i) Covvn 5 e, ) (68),

where the term Uéi) is given by,
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-~

U§§): 61 (p + PZY) Gz (‘ a - P l - pzy ) (69).

For the given potential we have,

Yy v
(2) - 1, ¢ g g S I
ol2) = 14 g g -5
OO Y G et +nf ) (a - p?r e
so that
OIPSCO S A PR A
® Thea k f B 12

10 - z%+ p(0d) + 2z y
= ﬁE z E Yirj i'-‘ In [ ””””” ﬁ""‘"é ~~~~~~~~~~~~~~~~ ] (70),
i3 @G5 A5 (b + Z)
where, N
2 - (q? -a2 4222 2,2, 20 . o _ o2 _ 2,2
4 = (q A +hj )T+ 49%(B7+ A7) 5 b = -2q rg +Aj
and

' 3
y =1 %252« pfadp + 212
For the term O(kgl) real part of the second Born tefm given

as
: 3 +ot
(2) 4 dP=z 1
Rel £ = - == P dp T B e e e e e R e e
| HEA K . f \ “°J (&, - A) (p2+ piﬂf) (Ig-lez+ pg‘&?)

(7T1),

- -

where V1V2 given by (62) and (P stands for the principal value of

integral.

Hence,

Tt

Rel f(z) = -

HEA

'

-2 r L r.w I (72),
1 3 kIl st
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(73).
The derivation of which is given in appendix. Now, the term

through O(kzz) real part of the second Born term 1s written as,

2 +cb 2 2 -
(2y _ _ 21, @_ _..4dPz__ (ptp)) g
Re2 fea ™~ k2 5 ® J e _f (o, - A7) 2" ¥y ¥y
(74),
+co
1 aJ dPz 1
= - —=35-53 L L 3°5.J de ccI bt SRl Tttt it~ Sttt St~ St i
2 n%? 17 ¢ 5md (.71 (p%+ pZn?) (Ja-p| HpZnd)
. : +cO
(2) _ 1 4 _.db= __
Re2 f = - meEeg L Lryv7r === (@ dp
HEA mzkf i3 i3 @3 f —OJ (pz__ ﬁj_)
1 2 dFP=z
it Sl Sebebeil S - A ®P dp se=S=zec
|a-p| %+ pi + >~§ 1 Jaof (= 134)
________________ SN
2 2 2 , 2 2 2
(p%+ p, + 1Y) (|4 - p|"+ p, A
S S 2 2 -2
2

where I3(ﬁ,k3) is the same as 13 integral which is already
defined in chapter III and Ist is defined as above and the method
of evaluating such integrals 1is described in detail in the

appendix.
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We write the scattering amplitude for +the static potential

using the HHOB theory as,
(2) (2) (2) (3)
+ i Im fHEA + Rel fHEA + Re2 fHEA + fcss (76).
Now to evaluate the vstz part which we +treat using the
partial wave analysis. Having discussed the partlial wave analysis

and the behavior of the phase shift for large 1 (fixed k) and for

high kX ( fixed 1 ). We write the scattering amplitude as,

(77),

- od L

I (21 + 1) P( cos ®) e™°L sin 5,
1

main part of the evaluation of the above scattering amplitude 1is

the determinatién of the phase shifts for the potential Vs Here

£°
again, to simplify the infinite summation over 1, we resort to the

method described earlier i.e.,

N . N
£ = % 1{3@ (21 + 1) P (cos @) &1 sins,  + fél) - -% L
= 1=

. , {
(21+1) P,(cose) s{B) (78),

through which we are considering the partial wave analysis
for 1= to <o . Here, fél) is the Ist Born amplitude for VSt and Sy
and é§B) are the exact and Born phase shift respectively.

The N -value ig qbtained by matching the +two phase shift
values. The Born phase shift 6§B) for the static potéﬁtial (62) is

given by
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"

(B) e S J 79).
61 Y Ql( p (79)

For the evaluation of the exact phase shift 61

‘correspondingly, the value of V(x)} is ,

F(x) = l~i£_2,22 - k? + 2 V(x) has to be taken as
x
e—?& Jx
V{x)}) = - 1¢ Z Yj X . (88).
J

There after same procedure has to be followed for the
solution of the differential equation and evaluation of the phase

shift. After obtaining the two phase shifts & iB) and & their

1
values may be matched to fix value of N suitably. To calculate the
phase shift one has to solve the second order differential
equation. We use the Numerov method for ihe evaluation with the
predictor —corrector method, where the step height is calculated
automatically.

The first Born amplitude fBl for the static potential (62)
is,

Y igq-r
fBl = 51 fdv e vst(;;) (81),

which can be evaluated using the standard integration techniques

as,

: Y3
fgy = 20 L --3*-- 5 (82).
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Hence, knowing all +the quantities in the scattering
amplitude, the Differential cross section for the e Ne process can

be caleulated as,

Q-:Qa
o1

This method which is formulated here, is an attempt to check
the feasibiiity of the two -potential method within the framework
of the recent HHOB approximation. This formulation was almed at
the improvement of the HHOB approximation, particularly 1in the
large scatterinig angle region. The value of DCS and TCS are
calculated and it is observed that the results through this method
is better +than their HHOB approximation. The partial wave
summation was taken with a view to account for the infinite number
of partial waves. For +this purpose, the method suggested by
Jhanwer et al (1978) was used, which involves the exact Born phase
shifts and their comparison . The phase shifts was generated with

the aid of computer. The present method can be extended to other

atom also.

RESULTS AND DISCUSSION

Here we neglect, the third Born term because of the following

reason.

v

e

It iﬁ found that even for +the whole interaction V the

. d
contribution due to this term is very small. Hence in the present



case where the interaction is Vd - Vst , the contribution will be
still less.

It is observed during the process of evaluaﬁion of the
various terms in the scattering amplitude in the HHOB theory that
the contribution éue to the Re2 term in the Born approximation is
spuriously large. Hence, the inclusion or exclusion of the less
significant third Born term does not make ‘much of a difference
because Re 2 and st afe of the same order.

The evaluation of the third Born term, further increses the
computation pomplq¥1ty.

In ordef to ha?e a éompariéon of the present two -potential
method results with the simple HHOB results, the two -potential
results excluding the third Born term may be compared with the
HIIOB results excluding the contribution of the same term. HBence
the comparison 1is justified.

The differential .cross section and the total cross sections
are calculated for the elastic scattering of electrons by a neon
atonm process»in the two -potential HHOB formulation as discussed
above for a variety of 1incident energies and wide range of
scattering angle. The present two potential method results are
shown at incident energies for 100, 200 and 500 eV along with the
other theoretical ﬁByroﬁ ‘and Joachain (1975)and etc.) and
experimentsl resulp#?kJagégé,etial (1976}, R D Du Bois and Rudd
(1975), Gupta and Rees (1975), Williams and Crowe (1975)) and

others.
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We also compare our own results of the HHOB theory with the
direct interaction potential which is discussed in detail in
chapter I1II. We conclude at thc end of the chapter 1II, that since
the HHOB theory is basically a good approximation for high energy
and small scattering anlg;. It may not give a very good results at
the large scattering angle. We found that at small scattering
‘angle the results are in better agreement as compare to the large
scattering angle also. This 1s due to the strong interaction
potential.

With the two -potential method we make the interaction weak
enough so that we  can expect more accurate information and
differential cross section at large scattering angle. As expected
and since the rest part of the potential where the partial wave
analysis is employed accurately, we find that there has been a
considerable amount of improvement in the results at the large
scattering}angle.

Hence we conclude that +the present method gives better
agreement over the entire angular region.

Since the two ;potential method Qiscussed here was basically
.an attempt to improve upon the HHOB Qethod of Yates (1979), the
real comparison should be made between the results produced in
the chapter III and the present method of approach. They are
compared graphically by the curve A and B, and they are also
compared with the other theoretical and experimental results as

discussed in the chapter III.
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However, thié type of reasonable comparlison between the
curves asserts that the improvements whatsoever obtained are due
to the approximation‘introduced and not due to the inclusion or
exclusion of any particular term. Thus avoiding the laborious
third Born evaluation finds enough Jjustification.

In the BHOB approximation Re fégA = fgs) + féa) and if 3 =0,
then only £§3) remaigs such that Re fégz (n=@) = f§3)(ﬁ=ﬁ) = fégé.
In the high energy approximation, /3 = AE/ki being very swmall, it
can be appr&ximated as zero in practical situations for +the sake
of simplicity. The éontribution of # in the scattering amplitudes
is small, when compared to the important part played by it in
saving some of +the integrals from the divergence problem
{comparison between GES and HHOB integrals), hence the
significane of the /2 factor. Keeping all this in mind, third Born
term can be approximated to the third GES term within a certain
accuracy. Thus the preaen£ study and the HHOB calculations were
done incorporating the third GES term. The detail calculation and
the basic formﬁlaes of the GES method (approximation) is given in
chapter I1I. The calculation of the third GES term for the elastic
scattering of electrons by neon atom is discussed and given in
detail im the chapter III. -

The mailn attraction of the present two -potential method in
the HHOB approximation 1is that 1t gives reasonably good

agreements even at low energles, for the entire angular range.

This is due to +the reason that, since the total interaction
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‘potential V, is replaced by a reduced interaction i.e. Vg - Vet
in the two -potential method, the lower limit of E can be pulled
down slightly such that % < < 1. Hence the approximation should
give better results than in the simple HBOB approximation in the
case of low enregy of incidence also. From the comparison one can
readily observed that as expécted the results improve with bhigher
incident energies. But the most covatable feature of the present
two -potential method results is the very satisfactory cross
sections in the large scattering szngle region. The general
_experience is that many a theory which gives quite good results at
small angle, gives poorer results at large scattering angles. Same
is the 6aae.with the HHOB spproximation of Yates (1979). Hencs,
the improvement of the present two -potential method is the wmost
significant in the large scattering region. At all incident
energies, the two ~potential method results are far better than
the simple HHOB approximation at large scattering angles.
‘“,. In light of the above discussion, the conclusion can be drawn
that the two ;potential method in the HBOB approximation as
.derived in this chapter, improves the basic HHOB approximation of
Yates (1979). We report here the calculation of the differential
cross sectlon and total cross section for the elastic scattering
of electrons by neon atomf The comparison is made with the same
experimental and theoretical methods compared in the chapter III.
Firgt we study the process described for the incident energy

of lﬂeth. We have compared the results in the tabular form
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One can observe that the discrepancy observed in the results
produced in the chapter III at the large acattering angle has
reduced a lot. Hencé for the whole angular range the results are
comparable and are found in better aﬁreement.

We also find that as the energy of incidence 1ncreases
further the accuracy alsé increases. This one can observe for the
incident energy 20¢ eV. The results improves further. We have
given the comparison of the results at this incident energy in
the tabular form.

We have done the calculation for the energy range varying
from 198 to 700 eV . We find that the results are getting closer
and closer for the high energy of incidence. We also find that.
"with the éresent method of approach the agreement is better at the
large scattering angle. The results ﬁre much better 1in agreement
at the small angular region.

We also compare the results produced by us, by taking the
ratio of the previous absolute experimental measurements and
theoretical caloulations with the present data. A comparision of
the type by means of ratio is given in the table IV.III. We
conclude by this comparasion that the present method of approach
and the results are in better agreement as compare to other
methods described above. We find that As the energy of incidence
increases the discrepancy reduces fagterlin comparasion with the

other methods desc;ibed. Also the results produced for the' large
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scattering angle match well compare to +the methods descriﬁad
earlier.

- Hence, looking at the simplicity in the method used and the
method of calculation of the two -potential in the BHOB
approximation gives ;ery good comparasion for the wide variety of
enrgies and for widefangular range. Further, +the avoliding the
computational complexity im +the calculation and the numerical
techniques used for the calculation of the phase shifts 1is self
sﬁarting. Where the computer programm is’so prepared that it can
generates‘tbo phase shifts for very large number of partial wave,
but the main problem is the computer machine used takes lot of
time for the calculation. We also know that for fixed incident
energy when We increase the number of partial wave to a large
value then it becomes less significant. Hence the calculation is
preformed her for few partial wave only. Hence we hope that the
present approach 1is very useful for the calculation of the
differential cross section and the total cross section, because 1t
gi?es better results than the results of simple HHOB approximation
given by Yates (1879). The method described here is such that, the
divergence probelm gets eliminated automatically due to the
presence of the term 3 1.e. the average excitation energy
transferred during the course of collision. And above all the wave
function used for evaluating the scattering amplitude in the HHOB
approximation is calculated accurately. Welhéve used the Roothan

-Hartree -Fock wave method for the calculation of the wave

"
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function and we use the Clementii - Roetii tables for the orbital
calculation for the neon atom.‘ Hence the present method where
the scattering amplitude is calculated for the direct interaction
potential where we have not neglected any of the cross ‘terms
arising in the expression. Hence we conclude that the results
produced here are in much better agreement as compare to any other

method described earlier.
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TABLE IV.I;
Value and comparison of the total cross section for +the elastic
scattering of electron by a target neon atom, with theoretical and

experimental results. expressed in ag ]. ?6r different incident

energy.

ENEBGY EXPERIMENTA THEORETICAL
eV RW K N . oM First Born DWBSA Present

¥FJ BJ IMcD Dw results

100 11.63 18.3 8.4 14.2 29.5 -— 13.8
200 8.456 7.98 7.9 9.64 16.8 9.77 9.87
300 6.80 6.38 5.4 7.53 11.9 7.83 7.85
400 6.76 5.47 4.5 6.29 9.27 6.35 6.86
500 5.02 4.78. --—- 5.45 7.57 5.47 5.89
100 4.93 3.9¢ --- 4.40 5.66 4.37 4.56

T G S > T WS U O O S S S AR W S W ST T W > S . T W7 S S T - S Yy . W B W e S S e W WU $oh Wi o o W i T W Tl W B S ALl WA LA SR GRS S AR A W W W B bt ks St

RW FJ - R W wagner and F J de Heer (1989)
K - Kaupllla et al (1988)

N - Normand (1939)

IMcD - Inokuti and Mo Dowell (1974).

DW - Dewangan and Walters (1977)

BJ - Byron and Joachain (1977).



TABLE IV.IIX

Ratio of previous absolute measurements and theoretical c¢aloulations to
present data for neon. Exptal.: J, Jansen et al {1978); B, Bromberg (1874);
GR, Gupta and Rees (1875) ; WC, Williams and Crowe (1975). Theoretical : FY,

Fink and Yates (1979); BJ, Byron and Joachain (1875). PR - present
results.

Thetsa 109 eV 208 oV

ee. B B K B BIE 8 & B B E
5 8.7 1.3 @9.21 3.86 ©.89 1.02

10 1.48 ©.86 1.12 0.31 1.00 ©.78 ©.81 £.89 @.15
20 1.9¢ 1.38 ©.96 1.02 ¢.51 ©.94 ©.82 1.12 1.1 1.99 £.19
30 1.22 1.27 1.18 ©.96 ©.88 ©.94 @.89 1.33 1.36 1.186 2.24
A9 1.29 1.31 1.65 ©.893 1.54 ©.94 @.856 1.564 1.568 1.16 0.26
50 2.65 1.29 2,66 ©.98 ©.34 £.99 ©0.95 1.88 1.88 1.22 ©.28
6@ 1.28 1.22 2.93 .33 1.090 ©.92 1.14 9.22
19 1.23 1.16 2.88 ©.28 1.3 ©.94 2.87 8.27
82 1.14 1.17 ?.68 ©.18 1.99 .87 2.92 ©.27
4 2.95 1.14 @9.67 9.98 1.24 1.1 2.88 8.27
100 B8.76 1.39 g.69 ©.18 1.29 1.05 2.73 @.32
110 #.99 .85 S.44 ©.30 1.27 .98 g.74 ©.34
120 1.1¢ @.67 @3.36 ©.31 1.26 @.93 .77 8.35
130 .96 @.81 2.53 98.290 1.30 @.84 2.77 ©.39
149 £.99 @.83 $.43 ©.27 1.23 ©.82 2.79 9.35

i5@ 2.98 ©.67 2.38 ©.26 1.21 ©.85 2.78 ©.35
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