LIST OF FIGURES

Figure 1.1	Young colony of fungi arising from a spore, note the large number of hyphal tips.	2
Figure 1.2	Precursors of lignin: From left to right: p- coumaryl alcohol, coniferyl alcohol, sinapyl alcohol, and a model for the numeration of the carbon skeleton.	11
Figure 1.3	Lignin polymer model for softwoods (spruce) and hardwoods (poplar).	12
Figure 1.4	Catalytic cycle of Lignin peroxidase.	18
Figure 1.5	The catalytic cycle of Manganese peroxidase.	20
Figure 1.6	Schematic diagram of catalytic reaction of laccase and proposed active site structure.	22
Figure 1.7	General structure of azo dyes (where R can be an aryl, heteroaryl or - $CH = C$ (OH) - alkyl derivative).	33
Figure 3.1-3.10	On plate dOn plate decolorisation of the ten reactive dyes by <i>Irpex lacteus</i> and <i>Phanerochaete chrysosporium</i> .	109
Figure 3.11-3.12	Solid plate Solid plate dye decolorisation by Irpex lacteus and Phanerochaete chrysosporium.	122
Figure 3.13-3.17	Decolourisation of ten reactive textile dyes in liquid medium by <i>Irpex lacteus</i> and <i>Phanerochaete chrysosporium</i> .	119
Figure 3.18-3.19	%Decolorisation of ten reactive textile dyes by Irpex lacteus and Phanerochaete chrysosporium.	123
Figure 3.20-3.21	Optimisation of different solid substrates for ligninolytic enzyme production by <i>Irpex</i> <i>lacteus</i> and <i>Phanerochaete chrysosporium</i> .	124
Figure 3.22-3.23	Production profile of ligninolytic enzymes produced by <i>Irpex lacteus</i> and <i>Phanerochaete</i> <i>chrysosporium</i> .	125

Figure 3.24	Electrophoretic analysis (SDS-PAGE) of the purified MnP from <i>Irpex lacteus</i> and <i>Phanerochaete chrysosporium</i> .	128
Figure 3.25-3.26	Influence of pH on ligninolytic enzyme activity produced by <i>Irpex lacteus</i> and <i>Phanerochaete chrysosporium</i> .	126
Figure 3.27-3.28	Influence of incubation temperature on ligninolytic enzyme activity produced by <i>Irpex lacteus</i> and <i>Phanerochaete</i> <i>chrysosporium</i> .	127
Figure 3.29-3.38	Comparison of the FTIR spectra of ten control dyes and their degradation products extracted after 48 hours of reaction with <i>Irpex lacteus</i> and <i>Phanerochaete chrysosporium</i> MnP.	129
Figure 3.39	Portion of infected wood (A, B) and transverse (C-F) view of xylem showing fungal invasion in different cell types of <i>Ailanthus excelsa</i> wood.	139
Figure 3.40	Transverse (A-C, E, F) and tangential longitudinal (D) view of infected wood of <i>Ailanthus excelsa</i> showing different stages of wood decay.	140
Figure 3.41	Transverse (A–F) view of infected wood of <i>Ailanthus</i> excelsa showing different stages of wood decay.	141
Figure 3.42	Transverse (A–F) view of infected wood of <i>Ailanthus excelsa</i> showing different stages of wood degradation.	142
Figure 3.43	Transverse (A–E) and radial longitudinal (F) view of secondary xylem of <i>Azadirachta indica</i> showing features of decay by <i>Irpex lacteus</i> .	143
Figure 3.44	Transverse (A–F) view of secondary xylem of <i>Azadirachta indica</i> showing features of wood decay by <i>Irpex lacteus</i> .	144
Figure 3.45	Tangential longitudinal (A–D), transverse (E) and radial longitudinal view of secondary xylem of <i>Azadirachta indica</i> showing pattern of decay by <i>Irner lacteus</i>	. 145
	or accay by Irper increus.	•

~

Figure 3.46	Radial (A, D) and tangential (B-C) longitudinal, view of secondary xylem of <i>Azadirachta indica</i> showing stages of advance decay by <i>Irpex lacteus</i> .	146
Figure 3.47	Transverse (A, B, D, E) and radial longitudinal (C, F). view of secondary xylem of <i>Azadirachta indica</i> showing features of wood decay by <i>Phanerochaete chrysosporium</i> .	147
Figure 3.48	Transverse (A, E), radial (B–D) and tangential (F) longitudinal, view of secondary xylem of <i>Tectona grandis</i> invaded with <i>Irpex lacteus</i> showing stages of advance decay.	148
Figure 3.49	Tangential longitudinal (A) and transverse (B–F) view of secondary xylem of <i>Tectona</i> grandis showing pattern of decay by <i>Irpex</i> <i>lacteus</i> .	149
Figure 3.50	Transverse (A, C–F) and tangential longitudinal (B) view of secondary xylem of <i>Azadirachta indica</i> (A) and <i>Tectona grandis</i> (B–F) showing pattern of decay by <i>Irpex</i> <i>lacteus</i> (A) and <i>P. chrysosporium</i> (B–F).	150
Figure 3.51	Transverse (A, B, D) and tangential longitudinal (C) view of secondary xylem of <i>Tectona grandis</i> showing pattern of decay caused by <i>P. chrysosporium</i> .	151

IX .