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CHAPTER 2  

Theoretical and Computational methods 

2.1 Introduction 

Nanoparticles have received extensive attention with different sizes and shape, hence 

successfully applied in areas such as catalysis, sensors, photochemistry, and optoelectronics, 

material science [1,2]. It has also attracted researchers for intensive study of size and shape in 

order to understand the physical and chemical nature of the materials at nanoscale. Further, 

this study has revealed the difference in behaviour of bulk materials and nanoparticles in 

terms of electrical, optical, magnetic, mechanical and surface properties. These differences 

are originated due to the (a) large surface to volume ratio (b) quantum confinement. Because 

of these unique properties of nanoparticles, the fabrication becomes important and essential 

to understand and predict the thermodynamics of nanoparticles especially melting point for 

fabricating the materials for fruitful applications.  

In this regard, Pawlow had done pioneer work in 1909, who demonstrated the variation of the 

melting temperature with respect to size by experiments[3]. The investigation done by 

M.Takagi has open the doors of fundamental study of phase transition and physicochemical 

properties[4]. Parallelly many theoretical models[5,6]  came into existence along with  

computational methods like molecular dynamics[7,8]. Initially the models developed were 

size dependent[9] only and gradually they were extended for size and shape dependent[10].  

Many models are developed in this series which will be discussed in detail in the next 

section.  

2.2 Available  models 

This section briefly discusses some of the available thermodynamical models which are used 

to calculate size dependent melting temperature for nanoparticles. In this direction, 

Lindemann was the first one to study melting transition for single crystals with kinetic 

consideration and also explained that melting occurs when the root mean square shift of the 

atomic vibration in the crystal reaches a critical ratio of the nearest neighbour distance of the 

atoms [11]. Thus we have selected the theoretical models which are dependent on surface 

energy and nearest neighbour distance of the atoms.  
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2.2.1 Nanda’s Model 

An analytical expression for the size-dependent melting for low-dimensional systems was 

derived by Nanda et al [12] on the basis of an analogy with the liquid-drop model and was 

further extended to understand the effect of substrate temperature on the size of the deposited 

cluster and the superheating of nanoparticles embedded in a matrix. Using the liquid-drop 

model [13,14], the total cohesive energy (Eb) of a nanoparticle of N atoms equal to the 

volume energy avN minus the surface energy 4𝜋𝑟𝑎
2𝑁2/3𝛾, further the cohesive energy per 

atom, i.e. 𝐸𝑏/𝑁= 𝑎𝑣,𝑑  nanoparticle is given  by 

𝑎𝑣,𝑑 = 𝑎𝑣 −  
4𝜋𝑟𝑎

2𝛾

𝑁1/3   = 𝑎𝑣 − 𝑎𝑠𝑁−1/3                                           (2.1) 

Where 𝑎𝑣 is the cohesive energy of bulk, 𝑎𝑠 is the cohesive energy of surface, 𝑟𝑎 is the atomic 

radius and 𝛾 is the coefficient of the surface energy of the material. 

Further, using the relation given by Rose et. al. [15,16] between cohesive surface energy, 𝑎𝑠 

= 0.82𝑎𝑣. N represents the number of atoms in a spherical nanoparticle of diameter “d” and 

expressed as 𝑁 =
𝑑3

(2𝑟𝑎)3 

Thus, the expression for the cohesive energy per atom becomes  

                                                  𝑎𝑣,𝑑 = 𝑎𝑣 −
6𝑣0 𝛾

𝑑
                                                           (2.2) 

Further by using the data [17,18] of cohesive energy per coordination (av) and melting 

temperature (𝑇𝑚𝑏) of different bulk material, the expression obtained was  

                                          𝑎𝑣 = 0.0005736𝑇𝑚𝑏 + 𝐶                                                        (2.3) 

where C represents the intercept of the straight line,  𝑇𝑚𝑏 represent the melting temperature 

of the bulk material. 

After studying the linear relation between cohesive energy and melting temperature, Equation 

2.3   holds good for nanoparticles and can be written as 

                                              𝑎𝑣,𝑑 = 0.0005736𝑇𝑚 + 𝐶                                                  (2.4) 

where Tm represents the melting temperature of nanoparticle. By simplifying Equation 2.2, 

2.3 and  2.4 , 𝑇𝑚 / 𝑇𝑚𝑏 can be expressed as 

                                           
𝑇𝑚

𝑇𝑚𝑏
= 1 − 

6𝑣0

0.0005736𝑑
 ( 

𝛾

𝑇𝑚𝑏
) = 1 −  

𝛽

𝑑
                                      (2.5) 

where 
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                                                𝛽 =
6𝑣0

0.0005736𝑑
 ( 

𝛾

𝑇𝑚𝑏
)                                                           (2.6) 

The value of 𝛽 depends upon the materials. Nanda et al [12] has calculated  𝛽 values of all 

the elements. Thus, Equation 2.5 becomes the equation for calculating melting temperature of 

spherical nanoparticle, further this model was extended to calculate the pancake shaped thin 

wires and thin film shaped nanoparticles and for superheating of embedded 

nanoparticles,  and the equation was expressed as,  

                                             
𝑇𝑚

𝑇𝑚𝑏
= 1 − 

𝛽

𝑑
( 1 −

𝛾𝑀

𝛾
)                                                            (2.7)                                        

where 𝛾𝑀  represents the co-efficient of surface energy of the Matrix and 𝛾 represents the co-

efficient of surface energy of the selected atoms of embedded nanoparticle. Thus by using 

Liquid drop model, Nanda et al [12] developed a model which not only be applied for free 

nanoparticles but also for embedded nanoparticles for size dependent melting temperature of 

nanoparticles. 

2.2.2 Qi's Model 

This model [19] was developed using surface to volume ratio and cohesive energy of the 

nanoparticles. For calculating melting temperature, shape factor was introduced and 

expressed as,  

                                                𝛼 =
𝑆′

𝑆
                                                                                    (2.8)                                                                                                                                                       

where S' represents the surface area of the nanoparticles in any shape equivalent to the 

volume of spherical nanoparticle. S represents surface area of spherical nanoparticle i.e. S = 

4πR²  where R is radius of nanoparticle. Further two more terms were introduced 

(i) N- which represents surface atoms of nanoparticle and simplified as  

 

                               N = 
4𝛼𝑅2

𝑟2  = 
4𝛼𝐷2

𝑑2                                                                                       (2.9)                  

                                                                                                                            

Where R is the radius of the nanoparticle, r is the atomic radius, D is the diameter of the 

nanoparticle and d is the atomic diameter. 

(ii) n – which represents the total atoms of the nanoparticle and expressed as the ratio of 

particle volume to the atomic volume ((4/3) πr3) which leads to  

                                          n = 
𝑅3

𝑟3  = 
𝐷3

𝑑3                                                                                (2.10) 
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After considering that more than half of the bonds of the surface atoms are dangling bonds, 

so number of bonds of the surface atoms can be expressed as (
1

4
 ). As cohesive energy of 

metallic nanoparticle is the sum of all bonds of all the atoms, so cohesive energy of metallic 

nanoparticle (Ep) of any shape can be expressed by using Equation 2.10 as  

                              Ep = 
1

2
[

1

4
4α

𝑅2

𝑟2 + (
𝑅3

𝑟3 - 4
𝑅2

𝑟2)] Ebond                                                    (2.11) 

  represents the bonding of interior atom with its surrounding atoms. Ebond  represents bond 

energy. On further simplification of  Equation  2.11 

                                                 Ep = 
1

2
 n Ebond ( 1 - 6𝛼 

𝑟

𝐷
)                                                (2.12)                                                                                                                         

Where D = 2R and represents the size of the crystal. Assuming E0 = 
1

2
 nEbond as cohesive 

energy of bulk solids, Equation 2.12 can be written as 

                                                Ep = Eo ( 1 - 6𝛼 
𝑟

𝐷
)                                                                (2.13)                                                                   

By combining the theory of Rose [15,16,20] and Debye’s model, the empirical relation of 

between melting temperature & cohesive energy for pure metals can be written as,  

                                                    𝑇𝑚𝑏 = 
0.032

𝐾𝐵
  Eo                                                                                                 (2.14) 

Where, 𝑇𝑚𝑏 is the melting temperature of bulk pure metals and KB  represents Boltzmann’s 

constant. Hence melting temperature of nanoparticle can be expressed as  

                                                 𝑇𝑚 = 
0.032

𝐾𝐵
  Ep                                                                                                        (2.15) 

After substituting the value of Ep from Equation 2.13 we get,  

                                               𝑇𝑚 = 
0.032

𝐾𝐵
  Eo  ( 1 - 6α 

𝑟

𝐷
)                                                           (2.16) 

On further simplification and substitution of Equation 2.14 in Equation 2.16, we get  

                                                         𝑇𝑚 = 𝑇𝑚𝑏 (1 - 6α 
𝑟

𝐷
)                                                          (2.17) 

Equation 2.17 represents the size and shape dependent melting temperature of nanoparticle. 

The relation between Tm & Tmb  is  similar to Ep   and Eo for bulk metals. 
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This model was extended for superheating of embedded nanoparticles with two conditions (a) 

the nanoparticles have coherent or semi–coherent interface with the matrix (b) melting 

temperature of matrix should be higher than the bulk material of nanoparticles.  

In this superheating model [21], coherent interface is selected between nanoparticle and the 

matrix. In case of embedded nanoparticles, the cohesive energy is due to (a) interior atoms of 

the nanoparticle and represented as (n – N)Ebond/2 and (b) Surface atoms  

Here it is assumed that approximately three fourth of the total surface area of each surface 

atoms is embedded in the matrix and one forth   within the nanoparticle. Therefore, number 

of bonds will be 3/4 and /4 for surface atoms with matrix and surface atom with interior 

atoms respectively. If EM  represents the bond energy of matrix then the bond energy between 

surface atoms and matrix can be written as (
𝐸𝑀+𝐸𝑏𝑜𝑛𝑑

2
). Thus the cohesive energy of all the 

surface atoms of nanoparticle  is N[3(
𝐸𝑀+𝐸𝑏𝑜𝑛𝑑

8
) + 

𝐸𝑏𝑜𝑛𝑑

4
)]/2, where ½ is seen due to the fact 

that each bond is shared by two atoms. So cohesive energy (Ep) of a nanoparticles embedded 

in a matrix can be formulated as the sum of interior atoms and surface atoms and can be 

written as  

                    Ep = 
1

2
 (n – N)𝐸𝑏𝑜𝑛𝑑 + 

1 

2
N[

3

8
(Ebond + EM) + 

1

4
Ebond]                                   (2.18) 

By substituting Equations 2.9, 2.10 and 2.12 in Equation 2.18 we get 

                                     Ep = Eo [1 - 
3

2
 
𝑑𝛼

𝐷
(1 - 

𝐸𝑀

𝐸𝑏𝑜𝑛𝑑
)]                                                            (2.19)      

For bulk materials, the bond energy is linear to the melting temperature Ep ≈ Tm , Eo  ≈  Tmb , 

EM   ≈  TM and Ebond  ≈  Tmb. So Equation 2.19 can be rewritten as 

                                                  Tm  = Tmb [1 - 
3

2

𝑑𝛼

𝐷
(1 - 

𝑇𝑀

𝑇𝑚𝑏
)]                                               (2.20) 

Where TM   is the melting temperature of the matrix. Equation 2.20 becomes the ultimate 

equation for size and shape dependent melting temperature of nanoparticle embedded in the 

matrix. 

By using this model Qi et al[21] investigated the melting temperature of In  nanoparticles 

embedded in Al matrix and Ag nanoparticles in Ni matrix for regular spherical and 

tetrahedral shaped nanoparticles and compared with experimental data. 
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2.2.3 Bhatt's model 

Bhatt’s model [22] is a combination of Qi’s model[23] and Sharma and Kumar’s work [24] 

where the later group discussed that bulk modulus of a nanomaterial depends on size and 

shape by 

                                          Bn = Bb (1 −
𝑁

2𝑛
)

𝑘

                                                                                                     (2.21) 

Where Bn and Bb are the bulk moduli of nanoparticle and bulk material respectively, N 

represents surface atoms and n represents total no. of atoms and k is dimensionless parameter 

which can be positive, negative or zero. Thereafter a linear relationship between melting 

temperature and bulk modulus was established and the melting temperature was written as 

                                                    Tmn = Tmb  (1 −
𝑁

2𝑛
)

𝑘
                                                       (2.22) 

Where Tmn and Tmb represents melting temperature of nanoparticle and bulk material 

respectively. Here if k has positive values, then Equation 2.22 will give the size dependent 

melting temperature of free standing nanoparticles. According to the values of k, three cases 

were observed,  

(i) If k > 0, then Equation 2.22 will result into size dependent melting temperature of free 

nanoparticle. 

(ii) If k  = 0, then for the selected nanoparticle, no size effect is visible. 

(iii) If k < 0, then Equation 2.22 will result into size dependent melting temperature of 

embedded nanoparticle. 

The ratio of N/2n varies from shape to shape [23], So Equation 2.22 will be different for 

different shapes and becomes the ultimate equation to calculate size and shape dependent 

melting temperature of free as well as embedded nanoparticle. 

Thus by using Equation 2.22 Bhatt [22] calculated the melting temperature of spherical Ag 

NPs, spherical Au Nps, Spherical Al Nps, Zn nanowire and compared with the available 

experimental results with the fitting parameter k, which was found different for all 

nanoparticle. 

Further Equation 2.22 was used to calculate the melting temperature of embedded 

nanoparticles with k = -1, -2, -3 for embedded Pb Nps, embedded Ag NPs . Here k is a fitting 
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parameters whose appropriate value can be identified only when experimental data is 

available. 

2.2.4 Omid's model 

This model [25] was formed by integrating the cohesive energy with coordination number 

and ratio of atomic bond strength. The cohesive energy of bulk (𝐸𝑐
𝑏) can be written as: 

                                                        𝐸𝑐
𝑏 = 

𝜀

2
 CiN                                                                   (2.23) 

Where 𝜀 is the bond strength, Ci is interior average coordination number, N is the total 

number  of cluster atoms which consists of the interior (Ni) atoms and surface (Nσ) atoms. 

The expression of cohesive energy of a freestanding nanoparticle was given as [26]; 

                                                          𝐸𝑐
𝑏 = 

𝜀

2
  (Ci Ni  + Cσ Nσ )                                                  (2.24) 

As dangling bonds are absent in embedded nanoparticles, so the rest of surface coordination 

number (Ci - Cσ)  makes new bonds with the embedded matrix and represented by 𝜀. Thus 

cohesive energy for embedded NPs can be written as: 

                                         𝐸𝑐
𝑃 = 

𝜀

2
 (Ci Ni  + Cσ Nσ ) + 𝛼𝜀′ (Ci - Cσ ) Nσ                                    (2.25) 

 

By substituting Equation 2.23 in Equation 2.24  and on further simplification, the following 

equation was obtained, 

                                        𝐸𝑐
𝑃 = 𝐸𝑐

𝑏 (1 −  𝜇
𝐶𝑖−𝐶𝜎

𝐶𝜎
∙

𝑁𝜎

𝑁
) + 2𝐸𝑐

𝑏𝛼𝜑𝜇 (
𝐶𝑖−𝐶𝜎

𝐶𝑖
)

𝑁𝜎

𝑁
                         (2.26) 

Where  is the shape factor [27], 𝛼 is the correlation number between atoms of nanoparticles 

& matrix [12] so if 𝛼 = 0, Equation 2.26 could be used for freestanding NPs  and if 𝛼 = 1, it 

can be used for embedded NPs & 𝜑 denotes 𝜀′/𝜀 . 

After simplifying   Equation 2.26 the expression of cohesive energy can be written as  

                                            𝐸𝑐
𝑃 = 1 – ( 1 – 2𝛼𝜑) 

𝐶𝑖− 𝐶𝜎

𝐶𝑖
 . 

𝑁𝜎

𝑁
                                                   (2.27) 

As cohesive energy and melting temperature of nanoparticles has linear relationship due to 

bond strength [28], so 
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𝐸𝑐

𝑃

𝐸𝑐
𝑏 =  

𝑇𝑚
𝑃

𝑇𝑚
𝑏                                                                              (2.28) 

Therefore, melting temperature of NPs can be calculated by combining Equation 2.27 and  

2.28 as: 

                                    
𝑇𝑚

𝑃

𝑇𝑚
𝑏     = 1 – ( 1 – 2𝛼𝜑) 

𝐶𝑖− 𝐶𝜎

𝐶𝑖
 . 

𝑁𝜎

𝑁
                                                    (2.29) 

By using Equation 2.29 the melting temperature of free and  embedded In NPs, Ag NPs and 

Sn NPs was calculated. Here the input parameters are too many and needs further calculation 

which makes this model very lengthy and time consuming. 

2.2.5 Guisbier’s Model 

This model [29] is based on classical thermodynamics by using Gibbs free energy and can be 

used to determine size and shape dependent melting temperature of nanoparticle. The Gibbs 

free energy of a nanostructure can be expressed as sum of bulk free energy and surface 

energy [30,31,32]. 

                                                         G = G + (𝐴
𝑉⁄ ) 𝛾                                                       (2.30) 

Where G represents bulk free energy, A and V are the surface area and volume of the 

nanostructure, 𝛾 is the surface energy. 

Further, Gibbs free energy difference between liquid & solid phases for a nanostructure at  

fixed temperature can be expressed as 

                                           𝐺𝑙 − 𝐺𝑠 = 𝐺𝑙,∞ − 𝐺𝑠,∞ +  (𝐴/𝑉)(𝛾𝑙 − 𝛾𝑠)                                   (2.31) 

The phase transition between liquid and solid can occur only when the gibbs free energy 

difference equals to zero. Two more conditions were established  

a) At T = Tm,  , 𝐺𝑙,∞ − 𝐺𝑠,∞  = Hm, - Tm,  Sm, = 0 

                                b) At T = Tm,  𝐺𝑙 − 𝐺𝑠  = Hm - Tm Sm = 0 

where Hm  and Hm, are size dependent melting enthalpy and bulk melting enthalpy 

respectively. Sm and Sm, are size dependent melting entropy and bulk melting entropy 

respectively. At T = Tm, Equation 2.31 can be written as 

                     ∆𝐻𝑚,∞ − 𝑇𝑚∆𝑆𝑚,∞ + (
𝐴

𝑉
) (𝛾𝑙 − 𝛾𝑠) = 0                                             (2.32) 
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After executing little steps of rearrangement of the Equation 2.32 will lead to describe the 

size & shape dependent melting temperature of the nanoparticle [32, 33]. 

                                            𝑇𝑚/𝑇𝑚,∞= 1 + (𝐴/𝑉)[(𝛾𝑙 − 𝛾𝑠)/∆𝐻𝑚,∞]                                    (2.33) 

                                            𝑇𝑚/𝑇𝑚,∞= 1 − 𝛼𝑠ℎ𝑎𝑝𝑒/𝐷                                                             (2.34) 

Where 𝛼𝑠ℎ𝑎𝑝𝑒 represents shape parameter and defined as 𝛼𝑠ℎ𝑎𝑝𝑒 = A𝐷[(𝛾𝑠 − 𝛾𝑙)/∆𝐻𝑚,∞], 

D is the size of the nanostructure. 

In this work Equation 2.34 seems to be very simple but shape parameter requires inputs like  

𝛾𝑙  – surface energy at liquid state,   𝛾𝑠 − surface energy at solid state which is difficult to get 

from literature easily. Further, this model is not extended for embedded nanoparticles. 

2.3 Present method of computation : Nano thermodynamics 

In the previous section we have studied five theoretical models which investigates the 

melting temperature of freestanding nanoparticles[12,19,22,25,29]. However, few models 

were proposed to evaluate the melting temperature of free and embedded nanoparticle 

simultaneously. So there arises a need to develop a single model which can be employed to 

calculate size, shape and dimension dependent melting temperature for free and embedded 

nanoparticle. In this direction, Nanda et al[12] developed a model for free and embedded 

nanoparticles using the empirical relations between cohesive energy, surface tension, and 

melting temperature of different bulk solids according to it superheating is possible if the 

surface energy of the nanomaterial is smaller than that of the embedding matrix. Qi et al [21] 

proposed a model based on cohesive energy of bulk and nanoparticles which can evaluate 

melting temperature for free as well as embedded nanoparticles according to which 

superheating is possible if melting temperature of matrix is higher than the embedded 

nanoparticles. Omid et al [25] developed a model using surface and interior average 

coordination number of metallic clusters, cohesive energy and the ratio of atomic bond 

strength in turn requires lot of input parameters which may not be available through 

literature. According to this model, superheating is possible when the value of correlation 

number(𝛼) between atoms of the nanoparticles  and those of the surrounding matrix is unity 

and have coherent interface between embedded nanoparticles and matrix. Bhatt et al.[22] 

proposed the model with fitting, dimensionless  parameter k which ranges from negative to 

positive value and the best coinciding value of  k is completely dependent on experimental 
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values and varies from element to element. According to which, superheating can exist only 

when k has negative values.  Other than these, computational methods like Monte-Carlo 

method, molecular dynamics method and numerical path integral methods, etc., were also 

used to study the melting process [34,35,36]. When these computational methods are used to 

accurately describe melting process, the computation times can be excessively long and 

increase dramatically with temperature, as a result shows wide deviation with respect to 

experimental values which are observed. In this contribution, we have developed a simple 

model, free from any fitting parameters for  calculating size, shape and dimension dependent 

melting temperature, CAE  and glass transition temperature of free and embedded 

nanoparticles. The model is based on cohesive energy expression and is extended  by using 

critical diameter(D0) and surface to volume ratio as shape factor for the calculations of free 

and embedded nanoparticles. In the case of embedded nanoparticles, the interface between 

nanoparticles and matrix is considered coherent or semi-coherent which is one of the 

important condition for superheating. 

 

2.3.1 Melting temperature (Tm) of nanoparticle 

To reveal the variation tendency of melting temperature (Tm) in nanoscale for the 

understanding of melting behavior of nanoparticles (NPs), which is an important parameter 

for the design of nanodevices. Simple thermodynamical model without any adjustable 

parameters is proposed to predict the size dependence of Tm(D) of metallic NPs, 

where D denotes size. Melting occurs due to phase change in the material when sufficient 

heat energy is provided. As a result, cohesive energy plays a key role in melting and becomes 

an important physical parameter which is responsible for the thermal stability of any material. 

The total cohesive energy (E) for the free nanoparticles is the sum of energies contributed by 

both interior and surface atoms which can be written as [23], 

                                                    nEn = Eb(n-N) + 
1

2
 EbN                                                    (2.35)   

where   n, (n-N), N represents the number of total atoms, interior atoms and surface atoms of 

the nanoparticles respectively. En, Eb represents the cohesive energy of nanoparticle and bulk 

material respectively. Thus 

                                                      En = Eb (1 −
𝑁

2𝑛
)                                                           (2.36)                                       
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N/n ratio represents the surface to volume ratio of atoms. The surface atoms ’N’ and total 

number of atoms’ n’ of a nanoparticle can be calculated as [37], 

                                                       
𝑁

𝑛
=

𝑁1
𝑛1
𝑁2
𝑛2

                                                                        (2.37) 

𝑁1 =  
surface area of selected shape

surface area of atoms 
,   

𝑁2 =
surface area of spherical or 1D or 2D shape with D0

surface area of atoms 
,                                                                          

𝑛1= 
volume of selected shape

volume of atoms 
 

𝑛2= 
volume of spherical or 1D or 2D shape with D0

volume of atoms 
 

 

On further simplification, 

𝑁

𝑛
 = 

surface area of selected shape

volume of selected shape
 ∗

volume of spherical or 1D or 2D shape with D0

surface area of spherical or 1D or 2D shape withD0
 

 

where, D0 is the critical size where all the atoms of the nanocrystal are located on the surface.  

The relation between atomic diameter (h) and dimension (d) is shown in terms of critical 

diameter  expressions as D0 = 2(3-d)h [37] ; (1) D0 = 6h for nanoparticles with dimension 

d=0,since 4𝜋𝑟0
2ℎ =

4

3
𝜋𝑟0

3   (2) D0 = 4h for cylindrical nanowires with d=1, since 2𝜋𝑟0ℎ =

𝜋𝑟0
2 and  (3) D0 = 2h for thin films with d=2, since 2ℎ = 2𝑟0. This makes N/n ratio a shape 

and dimension dependent parameter.  

 

Crystals always possesses a characteristic of long-range order and according to Jiang et al 

[38] the smallest nanocrystal should have at least a half of the atoms located within the 

nanocrystal. Hence, the smallest size r of nanoparticle is 2𝑟0 where 𝑟0 represents critical 

radius. This estimation was found consistent with the available experimental results for Bi 

film and Pb nanowire in a carbon nanotube [38]. Thus, D0 is an important parameter which 

explains that no particles with r < 2r0 can exist in the crystalline state and will assist to 

understand the thermodynamical properties of nanocrystal in appropriate way. 

For a nanoparticle, D is considered as diameter for spherical shape and edge/length/thickness 

for polyhedral shapes. For a spherical nanoparticle with diameter D, its volume will be πD3/6 

and the atomic volume will be πh3/6, where h is the atomic diameter. The total number of 
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atoms can be obtained as n1 = (πD3/6) / (πh3/6). However, further simplification makes n1= 

D3/h3.  Surface area of a spherical nanoparticle with diameter D is πD2 and as each surface 

atom contributes to the surface area of the nanoparticle, thus the area of the great circle of the 

atom will be πh2/4[23]. For calculating total number of surface atoms, we get N1= (πD2) / 

(πh2/4) which further turns as N1= 4D2/h2. As a result the ratio of N1 and n1 for spherical 

nanoparticle will be N1/ n1 = 4h/ D. Similarly, n2 will represent total number of atoms within 

size D0  of spherical nanoparticle  i.e. n2= D0
3/ h3 and N2 represents the surface atoms of 

spherical nanoparticle with size D0 as N2= 4D0 
2/ h2. Hence the ratio of surface to volume for 

D0 size can be expressed as N2/ n2 = 4h/ D0. Thus N/ n = D0 / D which on further substitution 

with D0= 6h for nanoparticle can be written as 6h/D. For regular tetrahedral shaped 

nanoparticle N1= 
√3𝐷2

𝜋ℎ2/4
 ,  n1 = 

√2𝐷3/12

πℎ3/6
 , N2/n2 = 4h/D0 and on further  substitution  N/n = √6 

D0/D. By replacing the value of D0 = 6h, N/n = 6√6 ℎ/𝐷 ≈ 14.7h/D. For regular icosahedral 

shaped nanoparticle N1 = (√75 𝐷2)/(
𝜋ℎ2

4
) , n1 = [5(3 + 51/2)D3/12] / (πℎ3/6) and N2/n2 = 4h/ 

D0 so we get N/n ≈ 3.96ℎ/𝐷 with D0=6h. For regular octahedral shaped nanoparticle  N1 = 

(121/2D2)/ (
𝜋ℎ2

4
),  n1 = (21/2D3/3) / (πℎ3/6) and N2/n2 = 4h/ D0. In case of spherical, cubical, 

tetrahedral, octahedral, icosahedral nanostructure d=0 and hence D0=6h [Lu et al. 2009]. For 

cylindrical nanowire  N1 = (πDl)/ (
𝜋ℎ2

4
),  n1 = (πD2l / 4) / (πℎ3/6), N2 = (πDol)/ (

𝜋ℎ2

4
),  n2 = 

(πD0
2l / 4) / (πℎ3/6), hence N/n= D0/D. As nanowire falls in d=1 category i.e.one 

dimensional, so D0= 4h resulting N/n=4h/D. For a rectangular geometry thin film, surface 

area will be length multiplied by the width of the film. Volume will be surface area 

multiplied by thickness. N1 = (lb)/ (
𝜋ℎ2

4
), n1 = (lbD ) / (πℎ3/6), N2 = (lb)/ (

𝜋ℎ2

4
),  n2 = (lbD0) / 

(πℎ3/6), hence N/n= D0/D. Substituting d=2 for thin films, D0=2h and hence N/n=2h/D, 

where D is the thickness of thin film.  The calculated values of surface to volume ratio for 

various shapes are shown in Table 2.1 [39]. Here h/D is the ratio of atomic diameter to the 

selected diameter/length/thickness of the nanoparticle. This ratio varies from selected 

material to material.  
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Table 2.1: Calculated values of  N/2n using  present  model for various shapes. 

Shapes of particles Present model  

Spherical/Cubical 3h/D 

Tetrahedral 7.35 h/D 

Octahedral 3.69h/D 

Icosahedral 1.98h/D 

Cylindrical Wire 2h/D 

Thin Film h/D 

 

In case of embedded nanoparticles, the surface atoms of the free nanoparticles will be 

covered with the layer of atoms of the matrix so the surface interface between them becomes 

a key feature to be taken care of. As a result, maximum dangling bonds of the nanoparticles 

will form a new bond with the host matrix. In this model we have selected coherent or semi-

coherent surface between nanoparticles and the matrix. Therefore the cohesive energy of the 

embedded nanoparticles will be the sum of bulk cohesive energy (Eb) of  interior atoms of 

NPs and the cohesive energy of the surface atoms along with atoms of matrix (EM). As each 

bond is shared by two atoms (NPs and matrix), so the mathematical mean of the above 

cohesive energies is taken into account for the surface atoms of the embedded nanoparticles 

[21]. Using  these conditions, we have extended our model of free nanoparticles for 

embedded ones and thus the cohesive energy of embedded nanoparticle can be expressed as 

nEn = Eb (n-N) + N (
𝐸𝑏+𝐸𝑀

2
) 

       = Ebn [1 −
𝑁

2𝑛
(1 −

𝐸𝑀

𝐸𝑏
)] 

 So, En = Eb [1 −
𝑁

2𝑛
(1 −

𝐸𝑀

𝐸𝑏
)]                                                                                           (2.38)                         

Equation 2.38 expresses the cohesive energy of the embedded nanoparticles. As there is a 

linear relationship between cohesive energy and melting temperature because they describe 

the bond strength [37,40]. So we get,  

                                                             
𝐸𝑛

𝐸𝑏
  =  

𝑇𝑚𝑛

𝑇𝑚𝑏
                                                                       (2.39)                                                        
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where Tmn, Tmb represents the melting temperature of nanoparticles and bulk respectively. 

Using Equations 2.36 and 2.39, melting temperature for free nanoparticle can be obtained as, 

                                                           
𝑇𝑚𝑛

𝑇𝑚𝑏
 = (1 −

𝑁

2𝑛
)                                                               (2.40)                                              

Similarly using Equations 2.38 and 2.39 the melting temperature of embedded nanoparticle 

can be obtained as, 

                                               
𝑇𝑚𝑛

𝑇𝑚𝑏
 = [1 −

𝑁

2𝑛
(1 −

𝑇𝑀

𝑇𝑚𝑏
)]                                                    (2.41)                          

2.3.2  Catalytic activation energy (Ea) of nanoparticle 

Catalytic activation energy (CAE) being an important kinetic parameter is a surface 

phenomenon and depends on atoms present on surface and edges. The CAE is the minimum 

energy of the catalyst to activate itself and initiate the chemical reaction. This means that low 

the CAE is, the most active the catalyst is. It means as low as the catalytic activation energy 

is, as high the reaction rate and yield of the desired products are [41]. Therefore, with high 

surface to volume ratio, the nanoparticle will exhibit higher catalytic activity with respect to 

bulk. As CAE is a surface phenomenon and completely depends on the bond strength, so a 

linear relationship can be observed between melting temperature and  CAE[40], so we get,   

                                                          
𝑇𝑚𝑛

𝑇𝑚𝑏
 =   

𝐸𝑎𝑛

𝐸𝑎𝑏
                                                                (2.42)                                   

Further on using Equation 2.42 with Equation 2.40 CAE for  free nanoparticle can be 

obtained as; 

                                                            
𝐸𝑎𝑛

𝐸𝑎𝑏
 =  (1 −

𝑁

2𝑛
)                                                             (2.43)                                                 

On simplification of Equation 2.42 with Equation 2.41, CAE for embedded nanoparticle can 

be obtained as; 

                                                    
 𝐸𝑎𝑛

𝐸𝑎𝑏
 = [1 −

𝑁

2𝑛
(1 −

𝑇𝑀

𝑇𝑚𝑏
)]                                               (2.44) 

 Ean, Eab represents the catalytic activation energy of nanoparticle and bulk respectively. 

2.3.3 Glass transition temperature (Tg) of nanoparticle 

The glass transition temperature is the temperature below which the physical properties of 

plastics change in a manner similar to those of a glassy or crystalline state, and above which 

they behave like rubbery materials [42]. Also it is very well known that melting temperature 

is the critical temperature above which the crystalline regions in a semicrystalline plastic are 
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able to flow[43]. Semicrystalline polymers begin to soften above Tg, however, they do not 

demonstrate fluid behavior until the Tm range is achieved. In fact, a linear relationship 

between melting temperature and glass transition temperature has been established as [44]  

                                                  
𝑇𝑚𝑛

𝑇𝑚𝑏
  =   

𝑇𝑔(𝐷)

𝑇𝑔(∞)
                                                                    (2.45) 

𝑇𝑔(𝐷) , 𝑇𝑔(∞) represents glass transition of nanoparticle and bulk material respectively. 

By comparing Equation 2.40 and Equation 2.45 we get glass transition temperature of free 

nanoparticle as, 

                                                
𝑇𝑔(𝐷)

𝑇𝑔(∞)
  =  (1 −

𝑁

2𝑛
)                                                                (2.46)                  

Further on comparison between Equation 2.41 and 2.45, we get glass transition temperature 

of embedded nanoparticle as,   

                                                        
𝑇𝑔(𝐷)

𝑇𝑔(∞)
  = [1 −

𝑁

2𝑛
(1 −

𝑇𝑀

𝑇𝑚𝑏
)]                                               (2.47) 

So by using our theoretical model one can calculate size, shape and dimension dependent 

melting temperature, glass transition temperature and catalytic activation energy of free and 

embedded nanoparticle with least input parameters which are easily available in the 

literatures.   
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