List of Figures

Figure 1.1:	A scale to show the relative size of various objects	01
Figure 1.2:	Classification of material into 0- D, 1- D, 2-D and 3- D and their	
	respective density of states as a function of dimension	03
Figure 1.3:	Difference in the bandgaps between insulator, semiconductor and	
	conductor as a function of energy	04
Figure 1.4:	Different colors of gold nanoparticles and their respective light	
	absorbance in terms of wavelength	05
Figure 1.5 :	An illustration to show coercivity-size relations of nanoparticles[10]	06
Figure 1.6 :	Schematic representation of Young's modulus as a function of	
	strength for Different objects	07
Figure 3.1:	Size dependent melting temperature of (a) spherical Ag NPs (b)	
	tetrahedral Ag NPs (c) icosahedral Ag NPs	34
Figure 3.2:	Size dependent melting temperature of (a) spherical In NPs (b) In	
	nanowire (c) In thin film	36
Figure 3.3:	Size dependent melting temperature of (a) spherical Pb NPs (b)	
	cylindrical Pb nanowire (c) Pb NPs with different dimension	37
Figure 3.4:	Size dependent melting temperature of embedded Ag nanoparticles in	
	Ni matrix for (a) icosahedral (b) different shapes (c) different	
	dimensions	39
Figure 3.5:	Size dependent melting temperature of In nanoparticles embedded in	
	Al matrix for (a) spherical (b) different dimensions (c) different	
	shapes	40
Figure 3.6:	Size dependent melting temperature of Pb nanoparticles embedded in	
	Al matrix for (a) spherical (b) different dimensions (c) different	
	shapes	41
Figure 3.7:	Size dependent ratio of catalytic activation energies of free Pt NPs for	
	(a) different shapes and (b) different dimensions	44
Figure 3.8:	Size and shape dependent ratio of catalytic activation energies of	
	embedded Pt NPs in Zr	45
Figure 3.9:	Size-dependent catalytic activation energy of Platinum for sphere,	
	cube and tetrahedron nanoparticles with different models and	
	experimental results	46

Figure 4.1:	Size (D) dependent glass transition temperature (T _g) of tantalum nanoparticles	52
Figure 4.2:	Size and dimension dependent glass transition temperature (T _g) of Ta nanoparticles	52
Figure 4.3:	Size and shape dependent glass transition temperature (T_g) of Ag nanoparticles	53
Figure 4.4:	Size (D) and dimension (d) dependent glass transition temperature	
	(Tg) of Ag nanoparticles	53
Figure 4.5:	Size dependent Kauzmann temperature of Ag nanoparticles	56
Figure 4.6:	Size and dimension dependent Kauzmann temperature of Ag nanoparticles	56
Figure 4.7:	Size dependent Kauzmann temperature (T_K) of Ta nanoparticles	57
Figure 4.8:	Size and dimension dependent Kauzmann temperature (T_K) of Ta	
	nanoparticles	57
Figure 4.9:	Variation in melting, glass and Kauzmann temperature of Ag	
	nanoparticles as a function of size (D)	58
Figure 4.10:	Variation in melting, glass and Kauzmann temperature of Ta	
-	nanoparticles as a function of size (D)	58
Figure 4.11:	Comparison of surface to volume ratio of atoms (N_1/n_1) for different	
-	shapes with inverse size (D ⁻¹) for Ag and Ta NPs	60
Figure 4.12:	Comparison of surface to volume ratio of atoms (N_1/n_1) for different	
0	dimensions with inverse size (D^{-1}) for Ag and Ta NPs	60
Figure 5.1:	Size dependent melting temperature of free and embedded virus	72
Figure 5.2:	Size-dependent catalytic activity of free and embedded virus	73
Figure 5.3:	Size dependent glass transition temperature of free virus	74
Figure 5.4:	Temperature dependent low-frequency vibration curve for a free and	
C	embedded virus (a) for 25 nm and (b) 50 nm	75