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CHAPTER 3  

BRAIN TUMOR DETECTION AND CLASSIFICATION 

 

Image dataset are bifurcated into two dataset; Training dataset and Validation dataset. 

Generation of Feature Matrix using Training dataset and Feature Matrix of Query image are 

performed with different processing stages, which are explained as a flowchart. Pre-processing, 

Segmentation, Feature Extraction and Classification stages are performed with a different 

techniques mathematical model is developed for proposed method. 

3.1 PROCESS FOR THE PROPOSED SYSTEM 

 

 

Figure 3.1: Generation of Feature Matrix using Training Dataset 
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Figure 3.1 shows the training flowchart depicts the stages required to train an object classifier 

utilising a Support Vector Machine model. Beginning the procedure is the collection of distinct 

datasets containing images labelled Image 1, Image 2, Image 3, and Image 4. 

The initial phase of the training procedure is pre-processing, which prepares the images for 

further analysis. This includes noise removal. After pre-processing, segmentation is undertaken 

to distinguish the objects of interest from the background. Following segmentation, pertinent 

features from the segmented objects are extracted using feature extraction. These 

characteristics may include shape descriptors, texture patterns, depending on the classification 

task's specific requirements. Once the features have been extracted, a feature matrix is 

constructed to symbolise the objects in a structured format that is appropriate for input to the 

SVM model. Using the feature matrix, the SVM model is then trained to understand the patterns 

and characteristics of the objects. The SVM is a supervised learning algorithm that seeks to 

identify the optimal hyperplane for classifying objects into their respective categories. The 

trained object classifier is the output of the SVM model; it can classify new objects into their 

respective classifications based on the learned patterns. The training protocol includes pre-

processing, segmentation, and feature extraction of various image datasets. The extracted 

features are then utilised to generate a feature matrix, which is then used to train an SVM 

model. The result of the training process is an object classifier that can effectively classify new 

objects based on previously learned patterns. 

 

Figure 3.2: Generation of Feature Subspace using Query Image 
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Figure 3.2 shows the "Flowchart of Query" is a graphical depiction of the stages required to 

process an image query. It begins with the query image as input and then proceeds through 

multiple stages of pre-processing, segmentation, feature extraction, comparison, and output 

generation. The initial step is the pre-processing phase, which prepares the query image for 

further analysis. This may involve noise reduction in order to improve the image's quality and 

eliminate unnecessary data. Next, the procedure of image segmentation occurs. In this phase, 

the query image is divided into meaningful regions or objects based on their visual 

characteristics. Segmentation assists in isolating distinct image elements, which can facilitate 

the extraction of relevant features for comparison. 

After segmentation, discriminative features are extracted from the segmented regions using 

feature extraction techniques. These features capture the distinguishing features of the objects 

in the query image. This may include texture and shape, as well as any other pertinent 

characteristics. Once the features have been extracted, they are compared to a pre-built Feature 

Matrix, which functions as a database of features from a set of known images or objects. This 

matrix contains feature vectors that represent numerous categories of objects or images. The 

objective is to locate the most similar features or objects in the Feature Matrix that closely 

match the extracted features of the query image. 

SVM algorithm is used to perform this comparison. SVM classifies the query image using the 

extracted features and the stored knowledge in the Feature Matrix. Each object or image 

category is assigned a similarity score or probability of match. The output is then generated 

based on the comparison outcomes. It could be a ranked catalogue of objects or image 

categories with their respective similarity scores or probabilities. This output identifies the 

closest parallels to the query image and provides pertinent information or suggestions based on 

visual similarity. The "Flowchart of Query" summarises the sequential stages involved in 

processing a query image, including pre-processing, segmentation, feature extraction, 

comparison with a Feature Matrix using SVM, and output generation based on the results of 

the comparison. This method facilitates effective and efficient image retrieval and object 

recognition duties. 

3.2 IMAGE DATASET  

MRI is a medical imaging technique that uses a strong magnetic field and radio waves to 

generate detailed images of the body's internal structures. The process needs an MRI scanner, 

which is a huge tube that contains a massive circular magnet. This magnet creates a magnetic 
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field that aligns the protons of hydrogen atoms in the body. The protons are then exposed to 

radio waves, causing the protons to rotate. When the radio waves are turned off, the protons 

relax and realign themselves, emitting radio waves in the recovery process that can be sensed 

by the machine to develop an image. In the case of brain imaging, different types of MRI 

sequences can be utilized to visualize various aspects of brain anatomy and pathology. 

Following are descriptions of some common MRI sequences used in brain imaging, along with 

a sample brain image for each sequence: 

T1-WEIGHTED IMAGING: 

T1-weighted images provide good anatomical detail and are often used as a baseline reference 

in brain imaging. In T1-weighted images, cerebrospinal fluid appears dark, while gray matter 

and white matter have intermediate and bright intensities, respectively.  

T2-WEIGHTED IMAGING: 

T2-weighted images are sensitive to changes in water content and are useful for detecting 

abnormalities such as edema, inflammation, or fluid-filled spaces. In T2-weighted images, 

cerebrospinal fluid appears bright, while gray matter and white matter appear darker.  

FLUID-ATTENUATED INVERSION RECOVERY: 

FLAIR imaging suppresses the signal from cerebrospinal fluid, allowing better visualization of 

lesions that may be obscured on T2-weighted images. It is particularly useful in detecting 

lesions associated with demyelinating diseases, such as multiple sclerosis.  

DIFFUSION-WEIGHTED IMAGING: 

DWI measures the random motion of water molecules in the brain, providing information about 

the microstructural integrity of tissues. It is highly sensitive to acute ischemic stroke; as 

restricted diffusion can indicate areas of reduced blood flow.  

GRADIENT-ECHO IMAGING: 

Gradient-echo imaging is sensitive to magnetic susceptibility differences and is commonly 

used to detect hemorrhages, microbleeds, and other iron-related changes in the brain. It 

provides excellent visualization of blood products.  

Each sequence provides unique information about different aspects of brain structure and 

pathology, aiding in the diagnosis and management of various neurological conditions. It's 
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important to note that the provided sample images are for illustrative purposes only and do not 

represent real patient data. 

3.3 PRE-PROCESSING OF THE FILTERING ALGORITHMS 

In the Pre-processing stage, Median Filter, Wiener Filter, Anisotropic Filter and Non Local 

Means Filters are described. 

3.3.1 MEDIAN FILTER 

MSE, RMSE, and PSNR values from the Median Filter and Wiener Filter outputs on brain 

MRI images were compared in a study. The outcome demonstrates that the Median Filter 

outperforms the competition. In terms of PSNR, MSE, and RMSE values, Median Filter images 

have superior pixel quality than Wiener Filter images.  To help with proper diagnosis, noise 

must be removed, and image contrast must be increased. This study is a development of the 

earlier study [29], yet there are many details that are missing. Therefore, the goal of the current 

research is to use a hybrid method to preserve the intricate information included in the image.  

The windowed hybrid median filter is a nonlinear class windowed filter that effectively reduces 

impulse noise while maintaining edges. One has better corner-preserving features than the 

median filter hybrid's simple form. The fundamental principle of the filter is to take the median 

value obtained by applying the median approach to each element of the signal (picture) many 

times with a different window shape. The original pixel value and the median of these two 

medians make up the result. The noise levels were changed from 10% to 90%, and RMSE and 

PSNR values were determined at every level of noise. When the RMSE and PSNR values of 

all the filters are compared, it can be inferred that the adaptive median filter outperforms the 

other filters. Filters are put to the test at various levels and kind of noise. As a result, adaptive 

median filter has been employed to suppress noise in the technique[29]. 

Equation of Median Filter as follows: 

Q(i, j) =  median {I(s, t)},  where (s, t) ϵ 𝑀𝑖𝑗 }           … (3.1) 

where Q is output image, I is the input image and Mij (window/mask). 

The above equation Q (i, j) = median {I(s,t)}, where (s,t) ϵ Mij, represents a process of 

calculating the pixel values of the output image Q(i,j) based on the median value of a 

window/mask Mij in the input image I. The input image I is being analyzed with a sliding 

window/mask Mij of a certain size, which is centered at pixel (i,j) in the output image Q. The 
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median value of all the pixel intensities within the window/mask is calculated and assigned to 

the corresponding pixel (i,j) in the output image Q. 

The median is a statistical measure that gives the central value of a dataset and is less sensitive 

to extreme values or outliers than other measures such as mean or mode. By using median 

instead of mean, the output image is less likely to be affected by outliers in the input image, 

and the output is smoother and more robust to noise. the equation Q(i,j) = median {I(s,t)}, 

where (s,t) ϵ Mij, is a common image processing operation known as median filtering, which 

is often used for noise reduction and image enhancement. 

3.3.2 WIENER FILTER 

Among the most important steps in increasing the quality of a picture for visual perception is 

to remove noise. Filtering away undesirable signals is a good way to accomplish successful de-

noising. among all the noises, speckle noise provides the highest efficiency for the median, 

average, and wiener filters. In compared to various filters, the median and wiener filters require 

the shortest duration to execute. In general, salt and pepper noise produce the highest outcomes 

for average filter. Due to dual picture collection from clinical modalities and picture transfer 

from modality to workplace in the primary computing device, scans are frequently influenced 

by interference. Because this noise frequently degrades the overall clarity of the source 

pictures, picture noise removal is generally used in clinical picture analysis to speed up 

diagnosis. In this paper, researchers use the Wiener filter to offer a reasonably simple and 

effective technique for removing Gaussian disturbances from clinical pictures. Whenever it 

relates to noise removal or picture denoising, the Wiener filter is the best choice. As element 

of the picture processing, it examines both the deterioration value and noise. The practical 

findings show that the Wiener filter is resilient and preserves information. Due of its efficiency 

and quickness, the Wiener filter is widely used. It is considered simple since it calculates a 

collection of ideal filter weights that decrease the noise level of an incoming information using 

a system of linear equations. The accuracy, accessibility, and durability of clinical picture de-

noising are demonstrated in the following picture. Because Wiener filtering has the benefits of 

being simple to calculate and having a great noise impact, it is generally utilized. Several 

effective de-noising techniques are centered on the Wiener filtration concept, which aims to 

recover the actual picture while achieving the lowest mean errors[29].  



54 
 

Consider degraded input image 𝑥(𝑚,  𝑛), the Discrete Fourier Transform of 𝑥(𝑚,  𝑛) 

is 𝑋(𝑢, 𝑣). The estimated value of the input image is calculated by multiplying result of 𝑋(𝑢, 𝑣) 

with the Wiener filter 𝑊(𝑢, 𝑣): 

�̂�(𝑢, 𝑣) = 𝑊(𝑢, 𝑣) 𝑋(𝑢, 𝑣)        … (3.2) 

The Wiener filter is defined as, 

𝑊(𝑢, 𝑣) =  
𝐻∗(𝑢,𝑣)

|𝐻(𝑢,𝑣)|2  + 
  𝑃𝑛  (𝑢,𝑣)

  𝑃𝑠  (𝑢,𝑣)

         … (3.3) 

𝐻(𝑢, 𝑣) = Fourier transform of the point spread function (PSF) 

𝑃(𝑢, 𝑣) = Power spectrum of the signal process, generated by the application of the Fourier 

transform of the signal autocorrelation 

𝑃𝑛  (𝑢, 𝑣) = Power spectrum of the Gaussian noise process, generated by the application of the 

Fourier transform of the noise autocorrelation 

The inverse Fourier Transform of �̂�(𝑢, 𝑣), got the output (restored image). The Equation (3.2) 

represents a method for restoring a degraded image. The degraded input image is represented 

by 𝑥(𝑚,  𝑛) and its Discrete Fourier Transform is represented by 𝑋(𝑢, 𝑣). The estimated value 

of the input image is obtained by multiplying 𝑋(𝑢, 𝑣)with the Wiener filter 𝑊(𝑢, 𝑣). The 

Wiener filter is calculated using the Fourier transform of the point spread function (PSF), the 

power spectrum of the signal process, and the power spectrum of the Gaussian noise process. 

The PSF describes the blurring effect of the imaging system on the input image. The power 

spectrum of the signal process represents the frequency distribution of the signal in the image, 

and the power spectrum of the Gaussian noise process represents the frequency distribution of 

the noise in the image. The Wiener filter, the degraded input image is restored, and the output 

image is obtained by taking the inverse Fourier transform of the product of the Wiener filter 

and the Discrete Fourier Transform of the degraded input image. This method is commonly 

used in image processing to restore degraded images that have been corrupted by noise or other 

forms of distortion. 

3.3.3 ANISOTROPIC FILTER 

A pre-processing is used in an edge-preserving diffusion technique that has been presented. 

Pre-processing and diffusion are the two key steps of the suggested methodology. The pre-

processing pixel is replaced by the test image pixel that has been pre-filtered through a 
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Gaussian filter if the difference value between the pixels of the corrupted picture and the pixels 

of the smoothed image using a Gaussian filter is greater than the threshold the pixel is displayed 

unchanged if the difference is below the threshold T. To maintain the edge boundaries and 

detail information during the diffusion process, a semi-adaptive threshold function in diffusion 

coefficient is used. This technique improves the capacity to remove noise when the noise level 

is high and gets around the problem of the sharp edges blurring in photos. It is clear that the 

suggested strategy outperforms more traditional methods in terms of effectiveness. According 

to the testing results, the suggested approach increases SSIM by 5% and PSNR by 30%. The 

restored images show that this strategy can successfully enhanced edge retention and noise 

removal in the context of anisotropic diffusion filtering [117]. 

|∇I|| represents the magnitude of gradient, 𝑔||∇I|| indicates the edge stopping and σ is scale 

value, div is the divergence operator, ∇  and ∆ are the gradient and Laplace operator. The 

notations like N, E, W, S describes North, East, West and South & ∇ is neighbour differences. 

𝐼𝑡 = 𝑑𝑖𝑣(𝑐(𝑥, 𝑦, 𝑡). ∇I)               … (3.4) 

𝑐(𝑥, 𝑦, 𝑡) = 𝑔(‖∇I(x, y, t)‖)       … (3.5) 

Where, div is the divergence operator, ∇  is the gradient. The notations like N, E, W, S describes 

North, East, West and South & ∇ is neighbour differences. 

The Equation (3.4) represents an image processing operation for computing the temporal 

derivative of an image. I is the input image and ∇I represents its gradient. The symbol div() 

represents the divergence operator, which is applied to the product of a scalar function c(x,y,t) 

and the gradient of the image ∇I. The function c(x,y,t) is defined as g(‖∇I(x,y,t)‖), where g() is 

a scalar function that computes the magnitude of the gradient ∇I at each pixel location (x,y,t). 

𝐼𝑖,𝑗
𝑡+1 =  𝐼𝑖.𝑗

𝑡 + 𝜆 [𝑐𝑁. ∇𝑁𝐼 + 𝑐𝑆∇𝑆𝐼 + 𝑐𝐸∇𝐸𝐼 + 𝑐𝑊∇𝑊𝐼]𝑖.𝑗
𝑡

           … (3.6) 

The symbol ∇ (not to be confused with ∇, which we use for the gradient operator) indicates 

nearest-neighbor differences: 

∇𝑁𝐼𝑖,𝑗 =  𝐼𝑖−1,𝑗 − 𝐼𝑖,𝑗          … (3.7) 

∇𝑆𝐼𝑖,𝑗 =  𝐼𝑖+1,𝑗 − 𝐼𝑖,𝑗          … (3.8) 

∇𝐸𝐼𝑖,𝑗 =  𝐼𝑖,𝑗+1 − 𝐼𝑖,𝑗         … (3.9) 
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∇𝑊𝐼𝑖,𝑗 =  𝐼𝑖,𝑗−1 − 𝐼𝑖,𝑗       … (3.10) 

 𝑐𝑆𝑖.𝑗
𝑡 = 𝑔(∇𝑁 𝐼𝑖.𝑗

𝑡 )            … (3.11) 

 𝑐𝑁𝑖.𝑗
𝑡 = 𝑔(∇𝑆 𝐼𝑖.𝑗

𝑡 )            … (3.12) 

 𝑐𝐸𝑖.𝑗
𝑡 = 𝑔(∇𝐸  𝐼𝑖.𝑗

𝑡 )            … (3.13) 

 𝑐𝑊𝑖.𝑗
𝑡 = 𝑔(∇𝑊 𝐼𝑖.𝑗

𝑡 )           … (3.14) 

The symbols ∇N, ∇S, ∇E, and ∇W represent the north, south, east, and west gradient components 

of the image I, respectively. These gradient components are computed by subtracting the 

intensity values of neighbouring pixels in the corresponding direction from the intensity value 

of the central pixel (i,j). The functions  𝑐𝑆𝑖.𝑗
𝑡 ,  𝑐𝑁𝑖.𝑗

𝑡 ,  𝑐𝐸𝑖.𝑗
𝑡  𝑎𝑛𝑑 𝑐𝑊𝑖.𝑗

𝑡  represent the weights 

assigned to the north, south, east, and west gradient components, respectively. These weights 

are computed using the scalar function g (), which takes as input the magnitude of the 

corresponding gradient component at the pixel location (i,j) and returns a scalar value. 

For High contrast edges over low contrast ones, 

 Leads to Gaussian blurring different functions were used for  𝑔(∇𝐼) giving perceptually similar 

results. The images in this paper were obtained using g, 

𝑔(∇𝐼) = 𝑒
(

‖∇I‖

𝐾
)

2

         … (3.15) 

For wide regions over smaller ones, 

𝑔(∇𝐼) =
1

1+(
‖∇I‖

𝐾
)

2       … (3.16) 

K is the constant and 0 ≤ 𝜆 ≤
1

4
   for the numerical scheme to be stable, N, S, E, W are the 

mnemonic subscripts for North, South, East and West. The scale-spaces generated by these two 

functions are different: the first privileges high-contrast edges over low-contrast ones, the 

second privileges wide regions over smaller ones described by Canny[117].: a histogram of the 

absolute values of the gradient throughout the image was computed. The constant K was fixed 

either by hand at some fixed value or using the “noise estimator” and K was set equal to the 

90% value of its integral at every iteration.  
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3.3.4 NON LOCAL MEANS FILTER 

On brain MRI images, a study tries to identify non-linear noise reduction methods and noise 

models. The Non-Local Means filtration method was employed. The outcome demonstrates 

that Non-Local Mean Filters offer improved SSIM, PSNR, and MSE values for Gaussian 

denomination MRI pictures, however the mean application execution time for NLMF is too 

long. The goal of future development on NLMF is to speed up calculation. A non-local 

maximum likelihood method utilizing the Kolmogorov-Smirnov similarity test has been 

reported [111]. They took into account symmetric Rician noise that was roughly distributed 

using a Gaussian distribution with a mean and standard deviation of zero. 

In a distinct noisy picture, n = {n(i) | i ∈ I}, the projected result 𝑁𝐿(𝑛)(𝑥𝑖) is quantified as a 

weighted mean of entire pixel of scan, 

𝑁𝐿(𝑛)(𝑥𝑖) =  ∑ 𝑞(𝑥𝑖 , 𝑥𝑗) 𝑛(𝑥𝑗)𝑗 ∈ 𝐼         … (3.17) 

In the Equation's (3.17), 𝑥𝑖 and 𝑥𝑗 are variables that denote set or space elements or coordinates. 

The functions 𝑛(𝑥𝑖) and 𝑛(𝑥𝑗) assign a value to each element 𝑥𝑖 and 𝑥𝑗, respectively. 𝑞(𝑥𝑖, 𝑥𝑗) 

is a function that calculates the weight or influence of the relationship between the elements𝑥𝑖 

and 𝑥𝑗. The precise form of this function depends on the current situation or context. I is a 

collection of indices or elements j over which the summation is conducted. The symbol "∈" 

signifies that j is a member of the set I. The value of 𝑁𝐿(𝑛)at a specific point 𝑥𝑖 is determined 

by adding the product of the weight 𝑞(𝑥𝑖, 𝑥𝑗)  and the value of the function 𝑛(𝑥𝑗) for each 

element 𝑥𝑗 in the set I. This suggests that the value at 𝑥𝑖 is dependent on the values at other 

sites 𝑥𝑗, as weighted by the influence function q. The Equation (3.17) represents an application 

of a linear operator or transformation to the function 𝑛(𝑥), yielding the new function 

𝑁𝐿(𝑛)(𝑥𝑖). This equation's precise interpretation and meaning depend on the context in which 

it is used, such as physics, signal processing, or network analysis. 

In the Equation (3.18), 𝑞(𝑥𝑖, 𝑥𝑗) indicates the weight assigned to 𝑛(𝑥𝑗) in attempt to recreate 

the pixel 𝑥𝑖 and computed as: 

𝑞(𝑥𝑖 , 𝑥𝑗) =  
1

𝑍𝑖
 𝑒

(− 
‖𝑛(𝐼)𝑖−𝑛(𝐼)𝑗‖

2, 𝑎

2
 

ℎ2 )

          … (3.18) 
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The Equation (3.18) represents a function of weight or influence between the constituents 𝑥𝑖 

and 𝑥𝑗.  𝑥𝑖 and 𝑥𝑗 are variables that denote set or space elements or coordinates. The functions 

𝑛(𝐼)𝑗 and 𝑛(𝐼)𝑗 assign a value to each element 𝑥𝑖 and 𝑥𝑗, respectively. The subscript "I" 

indicates that these functions are set or context-dependent I. ‖𝑛(𝐼)𝑖 − 𝑛(𝐼)𝑗‖
2, 𝑎

2
is the 

Euclidean distance or norm between vectors 𝑛(𝐼)𝑖and 𝑛(𝐼)𝑗. The subscript "2" indicates the 

Euclidean norm, and "a" represents a distance calculation parameter. h is a parameter that 

affects the influence function's spread or breadth or filtration level that regulates the 

degradation of the logarithmic value and hence the degradation of the values as a measure of 

Euclidean ranges.  It determines how much neighbouring elements influence one another. e 

represents the natural logarithm base, which is approximately equal to 2.7182. 𝑍𝑖 is a unique 

normalization factor for 𝑥𝑖. It assures that the sum of the weights for a fixed 𝑥𝑖is 1. The 

Equation (3.18) computes the weight and influence between elements 𝑥𝑖 and 𝑥𝑗 based on their 

Euclidean distance in the 𝑛(𝐼) space. The influence is modelled using a Gaussian distribution 

in which the distance is multiplied by ℎ2 and then divided by its exponent. This assures that 

elements that are closest to xi have a greater weight than those that are further away. The 

normalization factor Zi assures that the sum of the weights for a constant 𝑥𝑖 is 1. The precise 

interpretation and significance of this equation depend on its application context. It is 

frequently encountered in disciplines such as machine learning, where it is utilized for tasks 

such as density estimation, clustering, and defining similarity measures between data points. 

The choice of parameters and the exact form of 𝑛(𝐼)  would be unique to the problem at hand. 

The value of the filtering parameter writes h = k σ. The value of k decreases as the size of the 

patch increases. For larger sizes, the distance of two pure noise patches concentrates more 

around 2σ2 and therefore a smaller value of k can be used for filtering. 

3.4 SEGMENTATION USING HYBRID METHOD 

In the Segmentation Stage, Multi-thresholding Cuckoo Search Algorithm using different 

objective functions; like, Otsu, Kapur Entropy, Tsallis Etropy and Proposed method are 

described. Brain tumor localization and segmentation from MRI are hard and important tasks 

for several applications in the field of medical analysis. As each brain imaging modality gives 

unique and key details related to each part of the tumor, many recent approaches used four 

modalities T1, T2, and FLAIR. Although many of them obtained a promising segmentation 

result on the BRATS 2018 dataset, they suffer from a complex structure that needs more time 

to train and test. The manual segmentation and analysis of structural MRI images of brain 
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tumors is an arduous and time-consuming task which, thus far, can only be accomplished by 

professional neuroradiologists. Therefore, an automatic and robust brain tumor segmentation 

will have a significant impact on brain tumor diagnosis and treatment. 

3.4.1 CUCKOO SEARCH ALGORITHM 

The Cuckoo Search Algorithm is a metaheuristic optimization algorithm that imitates the 

behaviour of cuckoo birds in laying their eggs in other birds' nests. It is used to solve various 

optimization problems by searching for the best solution through a process of generating new 

solutions and eliminating poor ones. The algorithm uses a combination of randomization and 

local search to efficiently explore the search space and converge towards the optimal solution. 

The key feature of the algorithm is the use of a random walk called the Levy Flight, which 

helps the algorithm to efficiently explore the search space. 

The CS optimization algorithm is generally based on the following three principles[113]:  

1. Each cuckoo bird lays one egg at a time and randomly places its egg in a host bird’s 

nest. 

2. The best nests containing high-quality eggs are carried over to the next generations. 

3. The number of available host nests is fixed. The host bird discovers foreign eggs with 

a probability pα, and the range of pα is from 0 to 1. Note that the best nests are selected 

for further calculations.  

The host bird can either throw the egg away or abandon the nest, and build a completely new 

nest. For simplicity, this last assumption can be approximated by the fraction pa of the n nests 

are replaced by new nests (with new random solutions). For a maximization problem, the 

quality or fitness of a solution can simply be proportional to the value of the objective function. 

Other forms of fitness can be defined in a similar way to the fitness function in genetic 

algorithms. For simplicity, we can use the following simple representations that each egg in a 

nest represents a solution, and a cuckoo egg represent a new solution, the aim is to use the new 

and potentially better solutions (cuckoos) to replace a not-so-good solution in the nests. Of 

course, this algorithm can be extended to the more complicated case where each nest has 

multiple eggs representing a set of solutions. For this present work, we will use the simplest 

approach where each nest has only a single egg 

Based on these three principles, the CS process can be summarized as follows: While 

generating new solution 𝑥𝑖
𝑡+1 for cuckoo i, a Lévy light is performed[21]: 
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𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 +  𝛼0 (𝑥𝑖
𝑡 −  𝑥𝑏𝑒𝑠𝑡) ⊕ 𝐿𝑒𝑣𝑦 (𝜆)            … (3.19) 

Where 𝛼0  is the step scaling factor, 𝛼0  > 0, and 𝑥𝑏𝑒𝑠𝑡 represents the current optimal solution 

(Objective Function), ⊕ Element-wise multiplication. The above equation is essentially the 

stochastic equation for random walk. In general, a random walk is a Markov chain whose next 

status/location only depends on the current location (the first term in the above equation) and 

the transition probability (the second term). The product ⊕ means entry wise multiplications. 

This entry wise product is similar to those used in PSO, but here the random walk via L´evy 

flight is more efficient in exploring the search space as its step length is much longer in the 

long run. Levy flights are drawn from a Levy distribution, which can be defined by: 

𝐿𝑒𝑣𝑦 (𝜆) ~ 𝑢 =  𝑡−𝜆, (1 <  𝜆 ≤ 3)        … (3.20) 

which has an infinite variance with an infinite mean. Here the steps essentially form a random 

walk process with a power law step-length distribution with a heavy tail. Some of the new 

solutions should be generated by L´evy walk around the best solution obtained so far, this will 

speed up the local search. However, a substantial fraction of the new solutions should be 

generated by far field randomization and whose locations should be far enough from the current 

best solution, this will make sure the system will not be trapped in a local optimum. From a 

quick look, it seems that there is some similarity between CS and hill-climbing in combination 

with some large scale randomization. But there are some significant differences. Firstly, CS is 

a population-based algorithm, in a way similar to GA and PSO, but it uses some sort of elitism 

and/or selection similar to that used in harmony search. Secondly, the randomization is more 

efficient as the step length is heavy tailed, and any large step is possible. Thirdly, the number 

of parameters to be tuned is less than GA and PSO, and thus it is potentially more generic to 

adapt to a wider class of optimization problems. In addition, each nest can represent a set of 

solutions, CS can thus be extended to the type of meta-population algorithm. 

3.4.2 LÉVY FLIGHT MODELLING 

Lévy flight modelling is a mathematical framework used to describe a specific type of 

random motion or behavior known as Lévy flights[21]. Lévy flights are characterized by 

long jumps or displacements between consecutive positions, with the distances of these 

jumps following a heavy-tailed probability distribution. There are two steps in the 

implementation of random numbers with Levy flight. The first stage is choosing the random 

flying direction, and the second stage considers creating the steps that will follow the 
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selected Levy distribution. A uniform distribution is used to choose the random direction. 

The following is a definition of the Levy step size: 𝐿𝑒𝑣𝑦(𝛽) =   𝑢/|𝑣|
1

𝛽 represents the 

probability density function known as the Lévy distribution. Let's break the equation down 

into its component parts: The shape of the distribution is determined by the parameter. 

Typically, the value is positive. The distribution is scaled by the constant u. |v| signifies v's 

absolute value, which is a random variable. The Lévy distribution characterizes the 

probability distribution of random variables with heavy tails, in which the tails diminish 

more slowly than in a Gaussian (normal) distribution. The Lévy distribution is characterized 

by the parameter, which regulates the decay rate of the tails. When is less than 1, the 

distribution has a heavier tail, which indicates a greater likelihood of large values. As 

approaches 0, the distribution's tails become heavier and it becomes more prone to extreme 

values. As approaches positive infinity, the distribution approaches a Gaussian distribution. 

𝐿𝑒𝑣𝑦(𝛽) =  
𝑢

|𝑣|
1
𝛽

               where, λ -1 = β           … (3.21) 

where u and v are drawn from normal distributions. This implies that: The equation 

describes the presumed normal distributions of the random variables u and v. u is a random 

variable whose distribution is normal with mean 0 and variance 𝜎𝑢
2. v is a random variable 

with a normal distribution that has a mean of 0 and a variance of 𝜎𝑣
2, which is equal to 1. 

𝑢 ~ 𝑁(0, 𝜎𝑢
2), 𝑣 ~ 𝑁(0, 𝜎𝑣

2), 𝜎𝑢 =  {
Γ(1+𝛽) sin (

𝜋𝛽

2
)

Γ( 
1+𝛽

2
)𝛽 2

(𝛽−1)
2

}

1

2

, 𝜎𝑣 = 1         … (3.22) 

Where Γ correspond standard gamma function. The gamma function extends the factorial 

function to values that are not integers. The gamma function is applied to (1+ 𝛽) and ((1+ 𝛽 

)/2) in this equation. u's variance is computed using the sine function and various other 

mathematical operations. 
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3.4.3 FLOW CHART OF THE CUCKOO SEARCH ALGORITHM   

 

Figure 3.3: Flowchart of Cuckoo Search Algorithm [21] 

The supplied description describes "Cuckoo Search," a metaheuristic optimisation algorithm 

inspired by cuckoo avian behaviour. Figure 3.3 shows the flowchart of the CSA. The objective 

of the algorithm is to locate the optimal solution for a given objective function, denoted by f(x). 

The procedure begins with the generation of an initial population of host nests, denoted by xi 

(i = 1, 2,...,n), where n is the number of nests. These structures serve as prospective optimisation 

problem solutions. The algorithm then enters a loop that proceeds until a specified condition, 

denoted by t Max, is satisfied. A cuckoo (m) is chosen at random within each iteration using 

Levy flights, which simulate the flying behaviour of cuckoos. The objective function is used 

to evaluate the fitness of the selected cuckoo, Fi. 

Next, a nursery (j) from the population is selected at random. If the fitness of the selected 

cuckoo (Fi) is greater than the fitness of the selected nest (Fj), a superior solution has been 
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identified. In this instance, a portion (pa) of the worst nests are abandoned and new nests are 

constructed in their place. The goal of the algorithm is to enhance the quality of the colonies 

over time. Throughout the iterations, the algorithm maintains a record of the finest solution 

discovered to date. If a new solution replaces one of the nests (j), the algorithm updates the 

population by substituting the new solution for the old solution. This procedure is repeated 

until the loop condition is met, at which point the algorithm terminates. The ultimate objective 

of this method is to discover the optimal solution for the objective function by iteratively 

enhancing the quality of the nests through cuckoo selection, nest replacement, and 

abandonment of poorer nests. 

The description of the CSA flowchart is: Define the objective function that measures the quality 

or suitability of a solution, f(x). This function evaluates the performance of a solution in 

tackling an optimization problem. Create an initial population of n nests xi (i=1,2,......n): Create 

a nest-representative initial population of potential solutions. Each nest is designated with the 

value 'xi', where 'n' represents the number of nesting. t < Max Establish a termination condition 

to regulate the utmost number of iterations or the algorithm's halting criteria. 't' represents the 

current iteration, whereas 'Max' represents the utmost number of permitted iterations. Receive 

a random cuckoo (m) on Levy flights: Randomly select a cuckoo using the Levy flight 

technique. Levy flights are a form of random walk that imitates the behavior of cuckoo birds 

when foraging. Evaluate its Fitness Fi: Evaluate the fitness (quality) of the cuckoo solution 

using the objective function. This phase evaluates the performance of the cuckoo in tackling 

the optimization problem. Choose a brood at random from n (let's say j): Select at random one 

brood (answer) from the initial population. Compare the fitness of the cuckoo solution (Fi) to 

that of the randomly selected nest (Fj). If the fitness of the cuckoo is greater than that of the 

brood, proceed to the next step. Otherwise, a percentage (pa) of poorer colonies are abandoned 

and replaced with new ones. Find the prevailing finest. Substitute the new solution for j: If the 

fitness of the cuckoo is greater than that of the nest, a portion (pa) of the worst nests are 

abandoned, or discarded. The abandoned colonies are then replaced with new ones. In addition, 

the present optimal solution is identified and substituted for the arbitrarily selected nest (j). 

Determine if the termination condition has been met. End the algorithm if the utmost number 

of iterations is reached or if the halting criteria are met. Otherwise, advance to the next iteration 

by incrementing 't' and return to choose a brood at random from n (let's say j). 
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3.4.4 ADVANTAGES OF  THE CUCKOO SEARCH ALGORITHM 

The Cuckoo Search Algorithm is a metaheuristic optimization algorithm inspired by the 

behavior of cuckoo birds in laying eggs. While CSA has shown promise in solving various 

optimization problems, it has several advantages. 

Convergence Speed: One of the main challenges of CSA is its convergence speed. In some 

cases, the algorithm may require a large number of iterations to converge to an optimal 

solution. This slow convergence can be problematic, especially when dealing with time-

critical applications or problems with a large search space. 

Exploration and Exploitation Balance: CSA needs to strike a balance between exploration 

and exploitation of the search space. Exploration involves exploring new regions to avoid 

getting trapped in local optima, while exploitation focuses on exploiting promising regions 

to refine the solutions. Finding the right balance between these two aspects can be 

challenging, as an excessive focus on exploration may lead to slow convergence, while an 

excessive focus on exploitation may result in premature convergence to suboptimal 

solutions. 

Parameter Selection: CSA relies on various parameters that influence its behavior, such as 

the number of cuckoos, the probability of egg laying, and the random walk step size. 

Selecting appropriate parameter values for a given problem can be non-trivial and often 

requires extensive experimentation and tuning. Inadequate parameter selection may lead to 

poor performance or even failure of the algorithm to find optimal solutions. 

Handling Constraints: Many real-world optimization problems involve constraints that 

need to be satisfied. Incorporating constraints into CSA can be challenging, as the 

algorithm's natural behavior may not guarantee constraint satisfaction. Ensuring that the 

generated solutions adhere to the problem constraints adds complexity to the algorithm and 

may require additional modifications or penalty functions. 

Scalability: The scalability of CSA is another challenge, particularly when dealing with 

large-scale optimization problems. As the problem size increases, the algorithm's 

performance can deteriorate due to increased computational complexity and a higher risk of 
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getting trapped in local optima. Efficient strategies and techniques need to be developed to 

enhance the scalability of CSA for complex real-world problems. 

3.4.5 OBJECTIVE FUNCTIONS 

Objective functions, also known as fitness functions or cost functions, play a crucial role in 

optimization problems. They define the goal or objective that an optimization algorithm seeks 

to achieve. The objective function quantifies the quality or desirability of a potential solution 

in relation to the problem at hand.  

3.4.5.1 OTSU 

Otsu's method is a popular multi-thresholding optimization method that aims to minimize the 

intra-class variance between pixels within the same class (i.e., brain tissue). The method 

calculates the optimal thresholds by iteratively selecting the threshold that maximizes the 

between-class variance. The threshold values are chosen such that they minimize the sum of 

the intra-class variances of the segmented regions. Otsu's method is simple, fast, and does not 

require prior knowledge of the image statistics. The Otsu algorithm's main goal is to optimise 

between-class variance by choosing an appropriate threshold value, pi is the probability of the 

pixel intensity value to be i where i ranges from 0 to 255 and L is the total number of distinct 

intensity levels in the gray scale image.  

𝑥𝑏𝑒𝑠𝑡 = 𝐴𝑟𝑔 𝑚𝑎𝑥{𝜎𝐵
2(𝑡)}            … (3.23) 

𝜎𝐵
2 =  𝜎0

2 + 𝜎1
2 + 𝜎2

2 + ⋯ 𝜎𝑟
2       … (3.24) 

𝜎0
2 = 𝜔0(µ0 − µ𝑇)2                    … (3.25) 

𝜎1
2 = 𝜔1(µ1 − µ𝑇)2                     … (3.26) 

𝜎𝑟
2 = 𝜔𝑟(µ𝑟 − µ𝑇)2                     … (3.27) 

𝜔0 = weight =  
∑ 𝑝𝑖

𝑡1−1
𝑖=0

∑ 𝑝𝑖
𝐿−1
𝑖=0

       … (3.28) 

𝜔1 = weight =  
∑ 𝑝𝑖

𝑡2−1
𝑖=𝑡1

∑ 𝑝𝑖
𝐿−1
𝑖=0

       … (3.29) 

𝜔𝑟 = weight =  
∑ 𝑝𝑖

𝐿−1
𝑖=𝑡𝑟

∑ 𝑝𝑖
𝐿−1
𝑖=0

       … (3.30) 
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µ0 = mean =  
∑ 𝑖.𝑝𝑖

𝑡1−1
𝑖=0

∑ 𝑝𝑖
𝑡1−1
𝑖=0

       … (3.31) 

µ1 = mean =  
∑ 𝑖.𝑝𝑖

𝑡2−1
𝑖=𝑡1

∑ 𝑝𝑖
𝑡2−1
𝑖=𝑡1

       … (3.32) 

µ𝑟 = mean =  
∑ 𝑖.𝑝𝑖

𝐿−1
𝑖=𝑡𝑟

∑ 𝑝𝑖
𝐿−1
𝑖=𝑡𝑟

        … (3.33) 

µ𝑇 = mean =  
∑ 𝑖.𝑝𝑖

𝐿−1
𝑖=0

∑ 𝑝𝑖
𝐿−1
𝑖=0

       … (3.34) 

3.4.5.2 KAPUR ENTROPY  

Kapur's method is another multithresholding optimization method that is based on the principle 

of maximizing the entropy of the segmented image. The method calculates the optimal 

thresholds by minimizing the conditional entropy of the segmented regions, given the gray-

level intensities of the pixels. The method is computationally efficient and can be used to 

segment images with a large number of intensity levels. The primary objective of Kapur's 

entropy method is to identify the probability distribution that maximizes entropy (uncertainty) 

while satisfying a given set of constraints or information. When the available data are 

insufficient to determine the exact probability distribution, but can provide certain constraints 

or partial information about the distribution, the method is frequently employed. 

𝐻𝑘 = − ∑ 𝑝𝑖  𝐿−1
𝑖=0 𝑙𝑛 𝑝𝑖        … (3.35) 

In the Equation (3.35), 𝐻𝑘  represents the k-th entropy, which is a measure of the uncertainty 

or information content of a probability distribution. Entropy quantifies the average quantity 

of information necessary to describe or foretell a random event. Depending on the 

formulation or requirements, multiple entropy metrics, such as Shannon entropy (k=1) may 

be used. This is the probability of the i-th event or outcome in a probability distribution. The 

probability 𝑝𝑖 should be nonnegative and add up to 1. i = 0 to L-1, where L is the total 

number of potential outcomes or events. This symbol represents the natural logarithm 

function, which is used to compute the logarithm of the probability 𝑝𝑖. Typically, the natural 

logarithm is represented as ln(x) or loge(x), where e is the natural logarithm's base, which is 

approximately equal to 2.71828. ∑  𝐿−1
𝑖=0  represents the summation operator, which adds the 
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individual elements for i between 0 and L-1. The sum of all conceivable events or outcomes 

in the probability distribution is computed. 

Let 𝑝𝑖 is the probability of the pixel intensity value to be i where i ranges from 0 to 255 and 

L is the total number of distinct intensity levels in the gray scale image. 

𝑥𝑏𝑒𝑠𝑡 = 𝐴𝑟𝑔 𝑚𝑎𝑥{𝐻𝑇(𝑡)}      … (3.36) 

The Equation (3.36) represents the selection of the optimal solution   𝑥𝑏𝑒𝑠𝑡based on the 

function's maximal value. Let's break down the equation's components: 𝑥𝑏𝑒𝑠𝑡 : This is the 

variable that will contain the optimal solution. It is the optimal or most desirable candidate 

among a group of alternatives. This abbreviation stands for "argument of the maximum." It 

indicates the argument or input value that maximizes the performance of a given function. 

𝐻𝑇(𝑡) : This represents the set of solutions from which the optimal solution is chosen. The 

function 𝐻𝑇(𝑡) is a performance metric or objective function that evaluates the quality or 

suitability of each solution t. The precise definition and calculation of 𝐻𝑇(𝑡) are context- and 

problem-dependent. The related entropies are as follows when the histogram is divided into 

different sections (𝐻0, 𝐻1,…. 𝐻𝑟) by the threshold t. 𝐻0, 𝐻1,…. 𝐻𝑟  added together form the 

objective function 𝐻𝑇(𝑡), 

𝐻𝑇 =  𝐻0 + 𝐻1 + 𝐻2 … + 𝐻𝑟            … (3.37) 

𝐻0 = − ∑
𝑝𝑖

𝑤(0)

𝑡1−1
𝑖=0 𝑙𝑛

𝑝𝑖

𝑤(0)
       … (3.38)     𝑤(0) = ∑ 𝑝𝑖

𝑡1−1
𝑖=0         … (3.39) 

𝐻1 = − ∑
𝑝𝑖

𝑤(1)

𝑡2−1
𝑖=𝑡1

𝑙𝑛
𝑝𝑖

𝑤(1)
       … (3.40)      𝑤(1) = ∑ 𝑝𝑖

𝑡2−1
𝑖=𝑡1

     … (3.41) 

𝐻2 = − ∑
𝑝𝑖

𝑤(1)

𝑡3−1
𝑖=𝑡2

𝑙𝑛
𝑝𝑖

𝑤(2)
        … (3.42)        𝑤(2) = ∑ 𝑝𝑖

𝑡3−1
𝑖=𝑡2

    … (3.43) 

𝐻𝑟 = − ∑
𝑝𝑖

𝑤(𝑟)

𝐿−1
𝑖=𝑡𝑟

𝑙𝑛
𝑝𝑖

𝑤(𝑟)
                … (3.44)       𝑤(𝑟) = ∑ 𝑝𝑖

𝐿−1
𝑖=𝑡𝑚

     … (3.45) 

 

3.4.5.3 TSALLIS ENTROPY  

The Tsallis entropy-based method is a multi-thresholding optimization method that is based 

on the principle of maximizing the generalized entropy of the segmented image. The method 

uses a non-extensive entropy measure known as the Tsallis entropy to calculate the optimal 



68 
 

thresholds. The method is robust to noise and can be used to segment images with non-

Gaussian intensity distributions. In image processing, Shannon entropy exhibits the property 

of extensivity and is additive. Entropy was first introduced in thermodynamics to 

characterise physical systems with a great deal of microstate diversity. Furthermore, it is 

assumed that the system's microstates are independent of one another for entropy's 

extensibility. The extensibility, however, might no longer be valid for some systems with 

long-distance interactions, long-term memory, and fractal-like structures. To explain these 

systems, Tsallis introduces a non-extensive entropy[92] that is represented as: Multifractal 

concepts and structures are quickly acquiring importance in many active areas (e.g.,non-

linear dynamical sys terns, growth models, commensurate /incommensurate structures). 

This is due to their utility as well as to their elegance. Within this framework, the quantity 

which is normally scaled is 𝑝𝑖
𝑞
, where 𝑝𝑖 is the probability associated to an event and q any 

real number. We postulate for the entropy 

                               𝑆𝑇𝑆 =  
1−∑ 𝑝𝑖

𝑞
 𝐿

𝑖=1  

𝑞−1
          … (3.46) 

In equation (3.46), q is a real value that indicates the system's nonextensivity. Shannon 

entropy replaces Tsallis entropy in the q  1 limit, restoring the system's extensibility. The 

information theory was additionally clarified by the non-extensive generalisation of entropy. 

Tsallis entropy in image segmentation exhibits potential superiority and adaptability in a 

broader scope of image class[120]. Concavity: Let us extend here a property already 

mentioned, namely that q > 0 (q < 0) implies that the extremum of S is a maximum 

(minimum). The ideal threshold 𝑥𝑏𝑒𝑠𝑡 is produced by maximizing 𝑆𝑇, and it is denoted by: 

𝑥𝑏𝑒𝑠𝑡 = 𝐴𝑟𝑔 𝑚𝑎𝑥{𝑆𝑇(𝑡)}      … (3.47) 

In the Equation (3.47), 𝑥𝑏𝑒𝑠𝑡 denotes the variable we wish to determine, which will be the 

argument that maximizes the expression enclosed by curly brackets. Within the brackets, 

𝑆𝑇(𝑡) represents a function that is evaluated at time T and is dependent on the variable t. 

This function 𝑆𝑇(𝑡) returns a score or quantity corresponding to the input value t at time T. 

To determine 𝑥𝑏𝑒𝑠𝑡, we evaluate the function 𝑆𝑇(𝑡) for various values of t and determine the 

t value that produces the highest score. The 𝐴𝑟𝑔 𝑚𝑎𝑥 notation identifies the argument that 
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maximizes the expression contained within the curly brackets. The total entropy of the 

image is written as follows: 

𝑆𝑇 =  𝑆0 + 𝑆1 + 𝑆2 … + 𝑆𝑟 + (1 − 𝑞). (𝑆0. 𝑆1. 𝑆2 … . 𝑆𝑟)         … (3.48) 

Equation (3.48) is a mathematical expression that calculates the value of 𝑆𝑇, which is the sum 

of multiple terms. (𝑆0. 𝑆1. 𝑆2 … . 𝑆𝑟) represent individual variables in the expression. Each term 

contributes to the 𝑆𝑇 total. The terms (𝑆0. 𝑆1. 𝑆2 … . 𝑆𝑟)  are added together, signifying their 

addition. The ellipsis (...) indicates that the series may continue beyond 𝑆𝑟. Multiply (1-q) by 

the sum of all terms (𝑆0. 𝑆1. 𝑆2 … . 𝑆𝑟). The symbol (.) represents multiplication, and the 

expression 𝑆0 is the product of zero. (𝑆0. 𝑆1. 𝑆2 … . 𝑆𝑟) represents the sum of these elements. 

Lastly, the complete expression (1-q). The expression (𝑆0. 𝑆1. 𝑆2 … . 𝑆𝑟) is added to the sum of 

the terms (𝑆0. 𝑆1. 𝑆2 … . 𝑆𝑟) . To calculate S_T, one must first determine the value of each 

individual term (𝑆0. 𝑆1. 𝑆2 … . 𝑆𝑟). Then, you would determine 𝑆0, the product of these 

variables. (𝑆1. 𝑆2 … . 𝑆𝑟). Multiply the product by (1-q) next. Finally, the value of 𝑆𝑇 is obtained 

by adding the sum of the individual terms to the product of the multiplication. In the Equation 

(3.48) third part on the right side displays the pseudo-additivity of Tsallis entropy. 

𝑆0 =  
1−∑ (

𝑝𝑖
𝑤(0)

)
𝑞𝑡1−1

𝑖=0

𝑞−1
   … (3.49) 𝑤(0) = ∑ 𝑝𝑖

𝑡1−1
𝑖=0       … (3.50) 

𝑆1 =  
1−∑ (

𝑝𝑖
𝑤(1)

)
𝑞𝑡2−1

𝑖=𝑡1

𝑞−1
    … (3.51) 𝑤(1) = ∑ 𝑝𝑖

𝑡2−1
𝑖=𝑡1

     … (3.52) 

𝑆𝑟 =  
1−∑ (

𝑝𝑖
𝑤(𝑟)

)
𝑞

𝐿−1
𝑖=𝑡𝑟

𝑞−1
      … (3.53)   𝑤(𝑟) = ∑ 𝑝𝑖

𝐿−1
𝑖=𝑡𝑚

       … (3.54) 

Where, 𝑤(0), 𝑤(1), … . , 𝑤(𝑟) are the cumulative probability of the different class in the 

Tsallis entropy algorithm. 𝑆0, 𝑆1, … . . 𝑆𝑟 are the entropy of the different class. The optimal 

result of Equation (3.47) depends on the nonextensive parameter q, which describes the 

strength of internal correlation of the image. In other words, for an arbitrary two pixels in 

the image, their gray-level values may have long-range correlations. More specifically, for 

an image containing several objects, the pixels of objects will exhibit similar gray-level 

values, even though they are not adjacent to each other. It is possible to measure this kind 

of long-range correlation by nonextensive entropy[120] and this idea inspired a new 

algorithm that is discussed below. Since the parameter q is an additional index that can tune 
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the optimal threshold, it is of great importance to determine the exact value of q for a given 

image. Recently, Abdiel and coauthors introduce a methodology to evaluate the 

nonextensive parameter q of an image. Based on the information theory, the generalized 

redundancy of an image that presents nonextensive properties can be expressed as[115]. 

3.4.5.4 PROPOSED METHOD  

The biggest limitation with Otsu is its assumption of binary classes: It partitions the grayscale 

histogram to two classes. However, in real-world segmentation problems we most generally 

deal with images having more than two class of segments. As per the literature survey CS using 

Kapur’s entropy gives higher PSNR values than using Otsu technique. Tsallis entropy is non-

extensive, which means that if two identical systems combine, the entropy of combined system 

is not equal to summation of entropy of its subsystems. Compare to CS using Kapur’s entropy 

method Tsallis entropy gives higher PSNR values and other parameters. The non-extensive 

entropy algorithm is suitable for describing the long-range correlations within an image. 

However, like other entropy-based algorithms, it is still very sensitive to the perturbation of 

signals, so the scope of its application is limited. By comparison, the Otsu algorithm is stable 

but not accurate for small target extraction. Therefore, it is possible to combine the advantages 

of the two and develop a new algorithm with a more general scope of application. We proposed 

new method, combined Otsu and Tsallis entropy as an objective function to find the 𝑥𝑏𝑒𝑠𝑡[12]. 

The nonextensive entropy algorithm is suitable for describing the long-range correlations 

within an image. However, like other entropy-based algorithms, it is still very sensitive to the 

perturbation of signals, so the scope of its application is limited. By comparison, the Otsu 

algorithm is stable but not accurate for small target extraction. Therefore, it is possible to 

combine the advantages of the two and develop a new algorithm with a more general scope of 

application. It is worth mentioning that the nonextensive parameter q in Tsallis entropy is now 

determined by information redundancy and cannot be tuned arbitrarily. 

Based on Equations (3.24) and (3.48), a new objective function can be written as: 

                          𝜇(𝑡) = 𝑆𝑇 − (𝜎𝑊
2 )1−𝑞   … (3.55) 

In order to retain the concavity of Tsallis entropy, q > 0 should be satisfied[112]. Alternatively, 

q < 1 is called superextensivity, which will increase the total entropy of the system in 

comparison with the extensive case (q = 1) [121]. In practice, almost all categories of images 

exhibit the property of superextensivity[14]. Therefore, the proper range of the no extensive 
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parameter can be 0 < q < 1. From Equations (3.23) and (3.47), we can see that both of the two 

algorithms are aimed to maximize the objective functions. The aim of Equation (3.55) is to 

maximize the objective function, i.e., 

                       𝑡∗ = 𝐴𝑟𝑔 𝑚𝑎𝑥{𝜇(𝑡)}                     … (3.56) 

The optimal threshold is obtained from Equation (3.56) with the above mentioned range of q. 

For a synthetic image having a bimodal histogram distribution, as shown in Figure 3.4, the 

profile of each peak is the normalized q-Gaussian distribution function[119]. From Equations 

(3.23) and (3.47), we can see that both the Otsu algorithm and the Tsallis entropy algorithm 

indicate the valley gray-level between the two peaks as the optimal threshold, which exactly 

coincides with the result of Equation (3.56). For other natural pictures that have an arbitrary 

histogram distribution, there is no evidence that the result of Equation (3.23) coincides with 

that of Equation (3.47), whereas Equation (3.55) shows a trade-off between them and Equation 

(3.56) may yield a proper suggestion. For the histogram of Figure 3.4, it should be noted that 

the magnitude difference between 𝑆𝑇 and 𝜎𝑊
2  is very large. As shown in Figure 3.5, both of 

them are functions of threshold t. However, the values of the Tsallis entropy algorithm are 

totally suppressed by those of the Otsu algorithm for any possible threshold t. Therefore, it is 

unsuitable to combine 𝑆𝑇 and 𝜎𝑊
2  directly. 

 

 

Figure 3.4: Normalized histogram distribution     
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Figure 3.5: Objective functions of the Otsu and Tsallis algorithms  

In order to avoid the impact of the magnitude difference, the q-exponential function[112] can 

be adopted to revise the magnitude of 𝜎𝑊
2 . By definition, Tsallis entropy with a continuous 

probability distribution function can be expressed as:  

                     𝑆𝑇𝑆 =  
1− ∫ 𝑝(𝑥)𝑞 𝑑𝑥

1

0

𝑞−1
   … (3.57) 

where p(x) represents the probability density of the normalized gray-level value. For a system 

presenting nonextensive q-entropy, the corresponding probability distribution can be written 

as the q-Gaussian function[119], 

              𝑝(𝑥) =  
1

𝑍𝑞
[1 − (1 − 𝑞)

𝑥2

𝜎2
]

1

1−𝑞
  … (3.58) 

The equation itself comprises of a mathematical expression circumscribed by square brackets, 

multiplied by 1/𝑍𝑞 and raised to the power of  1/(1 − 𝑞). The expression enclosed by square 

brackets, 1 − (1 − 𝑞)
𝑥2

𝜎2 , represents the distribution's kernel. It consists of the variable x, 

parameter q, and standard deviation. It describes the variation in probability density as a 

function of x.The entire expression, 1 − (1 − 𝑞)
𝑥2

𝜎2, is elevated to the fractional exponent 

power of 1/(1 − 𝑞). This exponentiation modifies the structure of the kernel function, affecting 

the distribution's tails and overall shape. The complete expression is finally divided by 𝑍𝑞the 

normalization constant. This division assures that the integral of the PDF over its entire domain 
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equals 1, thereby validating it as a probability distribution. σ2 is the variance of x and 𝑍𝑞 is the 

partition function to keep the probability normalization condition, i.e.,  

          𝑍𝑞 =  ∫ [1 − (1 − 𝑞)
𝑥2

𝜎2
]

1

1−𝑞
𝑑𝑥 =  

𝜎√𝜋

2√1−𝑞

1

0

Γ(1+ 
1

1−𝑞
)

Γ(
3

2
+ 

1

1−𝑞
)
   … (3.59) 

The specified equation determines the value of the normalization constant 𝑍𝑞. Let's deconstruct 

the equation: 𝑍𝑞 represents the constant of normalization. The expression ∫ [1 −
1

0

(1 − 𝑞)
𝑥2

𝜎2
]

1

1−𝑞
𝑑𝑥 is the integral of the function [1 − (1 − 𝑞)

𝑥2

𝜎2
]

1

1−𝑞
within the range [0, 1]. The 

integrand is 1/(1 − 𝑞), which represents a function dependent on the variable x and involving 

the parameters q and q modifies the form or behaviour of the integrand. The parameter 

represents the distribution's standard deviation. It quantifies the variability or distribution of 

the integrand. The integral is computed over the interval [0, 1], which signifies that the 

integration is conducted from x=0 to x=1. The expression for 𝑍𝑞 is located on the right side of 

the equation and represents the result of the integral. The expression 2√1 − 𝑞 represents a 

fraction that includes the parameters and q. The gamma functions evaluated at 1 + 1/(1 − 𝑞) 

and 3/2 + 1/(1 − 𝑞) respectively. Γ(k) is the Gamma function and will reduce to factorial (k – 

1)! If k is an integer. Substituting p(x) into Equation (3.57) yields: 

 

𝑆𝑇𝐵 =  
1−∫

1

𝑧𝑞
𝑞[1−(1−𝑞)

𝑥2

𝜎2]

𝑞
1−𝑞

𝑑𝑥
1

0
 

𝑞−1
=  

1− 𝜉(𝜎2)
1−𝑞

2

𝑞−1
  … (3.60) 

where: 

                 𝜉 =  [
𝜋

4(1−𝑞)
]

1−𝑞

2
[

Γ(
3

2
+ 

1

1−𝑞
)

Γ(1+ 
1

1−𝑞
)
]

𝑞
Γ( 

1

1−𝑞
)

Γ(
3−𝑞

2(1−𝑞)
)
  … (3.61) 

 

is the integration constant for a given value of q. If pa and pb are two identical q-Gaussian 

distribution functions, according to the nonextensivity of Tsallis entropy, the total entropy can 

be written as:     

𝑆𝑇 =  𝑆0 + 𝑆1 + 𝑆2 … + 𝑆𝑟 + (1 − 𝑞). (𝑆0. 𝑆1. 𝑆2 … . 𝑆𝑟)       … (3.62) 
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𝑆𝑇 =  
1 −  𝜉0(𝜎0

2)
1−𝑞

2

𝑞 − 1
 +   

1 −  𝜉1(𝜎1
2)

1−𝑞
2

𝑞 − 1
 +  … … . + 

1 −  𝜉𝑟(𝜎𝑟
2)

1−𝑞
2

𝑞 − 1
 + 

(1 − 𝑞) [
1− 𝜉0(𝜎0

2)
1−𝑞

2

𝑞−1

1− 𝜉1(𝜎1
2)

1−𝑞
2

𝑞−1
…

1− 𝜉𝑟(𝜎𝑟
2)

1−𝑞
2

𝑞−1
]                … (3.63) 

 

The equation you supplied describes the relationship between the values of 𝑆𝑇 when 𝑆0 + 𝑆1 +

𝑆2 … + 𝑆𝑟 is given as an argument to the function versus when 0, 1, 2, … and r are passed 

separately. Let's deconstruct the equation: 𝑆0   returns the value of 𝑆𝑇when the argument 0 is 

provided as its argument, 𝑆1 returns the value of 𝑆𝑇  when the argument 1 is provided as its 

argument, similarly for 𝑆𝑟. 𝑆𝑇 is equal to the sum of 𝑆0 + 𝑆1 + 𝑆2 … + 𝑆𝑟, as well as the product 

of (1-q) and 𝑆0 + 𝑆1 + 𝑆2 … + 𝑆𝑟. (1-q) is a parameter that modifies the relationship among the 

𝑆𝑇  values. 𝜎0
2, 𝜎1

2, …, 𝜎𝑟
2.represent the respective standard deviations associated with the values 

0, 1, ….,r. (𝜎0
2)

1−𝑞

2  denotes the standard deviation of 0 to the power of ((1-q)/2). (𝜎1
2)

1−𝑞

2  denotes 

the standard deviation of 1 to the power of ((1-q)/2). Similarly, (𝜎𝑟
2)

1−𝑞

2  denotes the standard 

deviation of r to the power of ((1-q)/2). Each term's denominators (q-1) assure the correct 

scaling of the equation. 

Substituting 𝜎0
2 = 𝜎1

2 =……=𝜎𝑟
2 =  𝜎𝑊

2  into Equation (3.63) yields: 

𝑆𝑇 =
𝜉0𝜉1…..𝜉𝑟(σW

2 )
1−𝑞

−1

1−𝑞
  … (3.64) 

Therefore, the magnitude of (σW
2 )1−q is comparable with ST at the proper range of q, and the 

rationality of Equation (3.55) is shown. 

3.5 FEATURE EXTRACTION USING DISCRETE WAVELET TRANSFORM 

In the Feature Extraction of the Brain MRI Image, Discrete Wavelet Transform is used. The 

DWT is an efficient and useful tool for signal and image processing applications. The growing 

“success” is due to the achievements reached in the field of mathematics, to its multiresolution 

processing capabilities, and also to the wide range of filters that can be provided. These features 

allow the DWT to be tailored to suit a wide range of applications. The DWT is a mathematical 

technique used to decompose a signal or image into a set of sub-bands, each representing a 

different frequency range. It is widely used in signal and image processing, compression, and 

feature extraction. DWT works by applying a series of filters to the input signal or image, which 

separate it into low-frequency and high-frequency components. These components can then be 
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further decomposed into sub-bands, creating a tree-like structure known as a wavelet 

decomposition. In image processing, DWT is often used in conjunction with the Gray-Level 

Co-occurrence Matrix technique. GLCM is a statistical method used to extract texture features 

from an image. By analysing the spatial relationships between pixels with similar gray levels, 

GLCM can extract information about the texture, such as roughness or smoothness. DWT can 

be used to pre-process an image before applying GLCM, which can enhance the texture 

features and improve their accuracy. DWT can also be used to extract texture features directly, 

without the need for GLCM. 

 

Figure 3.6: Two level Discrete Wavelet Transform [12] 

The DWT is a mathematical algorithm used to decompose a signal into wavelet coefficients. 

The equation for the DWT can be expressed as follows: Let x[n] be a discrete-time signal of 

length N, and h[n] and g[n] be two finite-length filter coefficients of length L. Then, the DWT 

of x[n] can be expressed as: 

For the first level decomposition: 

𝑐1,𝑘 =  ∑ ℎ[𝑛] 𝑥[2𝑘 − 𝑛]

𝑁−1

𝑛=0

,  𝑑1,𝑘 =  ∑ 𝑔[𝑛] 𝑥[2𝑘 − 𝑛]

𝑁−1

𝑛=0

         

 𝑤ℎ𝑒𝑟𝑒 𝑘 = 0, 1, … ,
𝑁

2
− 1       … (3.65) 

𝑐1,𝑘  and 𝑑1,𝑘 are the wavelet coefficients of the first level decomposition. 

For the second level decomposition 

https://www.google.com/url?sa=i&url=https://www.researchgate.net/figure/The-one-level-decomposition-of-DWT-using-filter-The-LL-band-has-significant-information_fig1_291328552&psig=AOvVaw1ZVQ4bylacvq6c_qomQKEI&ust=1678620041955000&source=images&cd=vfe&ved=0CBAQjRxqFwoTCOjV2Izh0_0CFQAAAAAdAAAAABAE
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𝑐2,𝑘 =  ∑ ℎ[𝑛] 𝑐1,2𝑘−𝑛

𝑁−1

𝑛=0

,  𝑑2,𝑘 =  ∑ 𝑔[𝑛] 𝑐1,2𝑘−𝑛

𝑁−1

𝑛=0

  

𝑤ℎ𝑒𝑟𝑒 𝑘 = 0, 1, … ,
𝑁

4
− 1                  … (3.66) 

and 𝑐2,𝑘  and 𝑑2,𝑘 are the wavelet coefficients of the second level decomposition. 

The process can be repeated for higher level of decomposition. Second level of decomposition 

is used in this research. In the Equation (3.66), c and d represent the approximation and detail 

coefficients, respectively. The h and g filters are typically chosen as the Daubechies wavelet 

filters, but other wavelet filters can also be used. In the DWT, LL, LH, HL, and HH refer to 

the approximation, horizontal detail, vertical detail, and diagonal detail coefficients, 

respectively, that are obtained after applying the wavelet transform to an image or signal. These 

coefficients can be computed using filter banks, where the LL coefficients represent the low-

frequency approximation and the remaining coefficients represent the high-frequency details 

in different directions. 

Let x(n) be the input signal or image, and h(n) and g(n) be the low-pass and high-pass filter 

coefficients, respectively, used in the wavelet transform. The DWT equations for obtaining the 

LL, LH, HL, and HH coefficients can be written as follows: 

𝐿𝐿(𝑛) = 𝑥 ∗ ℎ ∗ ℎ (𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑏𝑦 2)      … (3.67) 

𝐿𝐻(𝑛) = 𝑥 ∗ ℎ ∗ 𝑔 (𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑏𝑦 2)      … (3.68) 

𝐻𝐿(𝑛) = 𝑥 ∗ 𝑔 ∗ ℎ (𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑏𝑦 2)      … (3.69) 

𝐻𝐻(𝑛) = 𝑥 ∗ 𝑔 ∗ 𝑔 (𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑏𝑦 2)      … (3.70) 

where "*" denotes convolution and down sampling by 2 reduces the size of the coefficients by 

half. For Equations (3.67) to (3.70) assume periodic boundary conditions, where the input 

signal is periodically extended to avoid boundary effects. Different boundary conditions or 

extension modes can be used in practice, depending on the application and the properties of the 

signal or image. 

3.6 FEATURE CLASSIFICATION USING SUPPORT VECTOR MACHINE 
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In the Feature Classification of the Brain MRI Image, Support Vector Machine is described. 

Support Vector Machine is one of best machine learning algorithms, which was proposed in 

1990’s and used mostly for pattern recognition. This has also been applied to many pattern 

classification problems such as image recognition, speech recognition, text categorization, face 

detection and faulty card detection, etc. Pattern recognition aims to classify data based on either 

a priori knowledge or statistical information extracted from raw data, which is a powerful tool 

in data separation in many disciplines. SVM is a supervised type of machine learning. 

algorithm in which, given a set of training examples, each marked as belonging to one of the 

many categories, an SVM training algorithm builds a model that predicts the category of the 

new example. SVM has the greater ability to generalize the problem, which is the goal in 

statistical learning. The statistical learning theory provides an outline for studying the problem 

of gaining knowledge, making predictions, making decisions from a set of data[30]. 

SVM is a powerful and widely-used machine learning algorithm for classification and 

regression analysis. SVM is particularly useful when dealing with complex and high-

dimensional data because it can find the best possible decision boundary that separates the data 

points into different classes. SVM was first introduced in the 1990s by Vapnik and his 

colleagues and has since then become a popular choice for various applications in the fields of 

computer vision, natural language processing, and bioinformatics, among others. The basic 

idea behind SVM is to transform the input data into a higher-dimensional space, where it 

becomes easier to find a linear or nonlinear decision boundary that separates the different 

classes. This decision boundary is defined by a hyperplane that maximizes the margin between 

the two closest points from different classes. The points that lie on the margin are called support 

vectors, hence the name Support Vector Machines. One of the advantages of SVM is that it can 

handle both linear and nonlinear data by using different types of kernels. SVM can also be used 

for binary classification and multiclass classification problems and can even handle imbalanced 

datasets. Another advantage of SVM is that it is less prone to overfitting compared to other 

algorithms like decision trees and neural networks. 
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Figure 3.7:  Support Vector Machine[87] 

The equation for a Support Vector Machine depends on the type of problem it is solving. There 

are two main types of SVM: linear SVM and non-linear SVM. 

For Linear SVM: 

In the case of linearly separable data, the equation for a linear SVM can be written as: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏)       … (3.71) 

where w is the weight vector perpendicular to the hyperplane, b is the bias term, x is the input 

vector, and sign is the sign function that returns -1 for negative values and 1 for positive values. 

The goal of the SVM is to find the weight vector w and the bias term b that maximize the 

margin between the two classes of data while correctly classifying all the training examples. 

For Non-linear SVM: 

For non-linearly separable data, a kernel function is used to map the input vectors into a higher-

dimensional space where the classes can be separated by a hyperplane. The equation for a non-

linear SVM is then: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖 𝑦𝑖  𝐾(𝑥𝑖 , 𝑥) + 𝑏)       … (3.72) 

where ∑ 𝛼𝑖 𝑦𝑖  𝐾(𝑥𝑖, 𝑥) is the dot product of the weight vector (which is now a linear 

combination of the support vectors) and the kernel function evaluated at the training examples 

and the input vector x, and b is the bias term. The values 𝛼𝑖 and 𝑦𝑖 represent the Lagrange 
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multipliers and the class labels of the support vectors, respectively. The kernel function K(xi, 

x) can be any function that measures the similarity between two vectors, such as the radial basis 

function kernel or the polynomial kernel. The goal of the SVM is again to find the values of αi 

and b that maximize the margin while correctly classifying all the training examples. 

3.7 CONCLUSION 

Different processing stages with Filtering techniques, Segmentation, Feature Extraction and 

Classification are developed using mathematical model for proposed method. For image 

dataset Magnetic Resonance Imaging Brain Images is used for the research work. In Pre-

processing of the Brain Images stage, different filters Wiener filter, Anisotropic filter, Median 

filter, Non-Local Means filter and Combined filters are described. In Segmentation of the MRI 

Brain Image stage, Multi-thresholding Cuckoo Search Algorithm using different objective 

functions are used. In Feature extraction of the Brain Images stage, Discrete Wavelet 

Transform is described. In Feature Classification of the Brain Images stage, Support Vector 

Machine is described. 
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