Chapter 4

4. RESULTS

he increasing devastation caused by the new invasive insect species in India, *Spodoptera frugiperda* Smith, necessitates the search for reliable control methods in Vadodara's agricultural fields. Such a task can be done only after observing and knowing about the pest in its natural habitat. This was accomplished by going into fields where fall armyworm is a problem. Further, their natural behaviours in the field, like feeding, excreting, and crawling, were seen on the plants in the agricultural fields. After that, I collected the insects from the locations and brought them into the lab. The effective rearing method needs to be standardized to have a supply of the test insect constantly, for conducting various experiments to determine the control. Temperature, humidity, and diet must be optimal for insect growth and reproduction to have enough for testing. While abiotic factors such as temperature and humidity remained constant, diet evaluation was required. For that purpose, some diets were tested, and a good one from them was taken for further rearing and testing. A diet incorporation assay was used to test various concentrations of the two insecticides in the lab, and observations were taken at 24 and 72 hours. The testing was repeated until observations revealed a significant decrease in the expected mortality of the insect pest.

Meanwhile, the increased use of Emamectin Benzoate in the fields has raised concerns about pest resistance shortly. To that end, we attempted to identify the source of the resistance at the molecular level. The RNA sequencing was conducted by taking the midgut tissue of a control insect and a lab-tested Emamectin Benzoate-resistant insect. Differential gene expression was done to compare the two. The genes playing roles in this process of creating resistance can be used for further designing methods that target the culprits of the resistance mechanism.

4.1. RESULTS FROM THE FIELD SURVEY

Crop fields of Vadodara district were explored. Many crops of importance are grown in the around Vadodara's agricultural fields. The fields with crops grown there are mentioned (**Table 4.1**). Fields in various directions from the city were tried to be explored. Important pests included insect pests from various orders like Lepidoptera, Hemiptera, Coleoptera, and Orthoptera. The primary focus was, however, to find the damage by the pest *Spodoptera frugiperda* in the field. Damage was observed in the field. The field surveyed is shown (**Figure 4.1**).

Study sites	Location	Type of crops
Chhani	11 km North of Vadodara	Maize, Cotton, Castor, Brinjal, Pigeon pea, Sorghum, Ladyfinger, Potato, Brinjal, Radish & Cauliflower
Sherkhi	13 km in the North West of Vadodara	Maize, Cotton, Castor, Pigeon pea, Sugarcane, Cauliflower
Waghodia	10 km East of Vadodara	Maize, Cotton, Castor, Sugarcane & Brinjal
Padra	17 kms. South West of Vadodara	Maize, Cotton, Castor, Pigeon pea, Cabbage, Paddy
Savli	30 km North of Vadodara	Maize, Cotton, Castor, Rice, Banana, Cauliflower
Chapad	11 km South of Vadodara	Maize, Cotton, Castor
Dandiapura	80 km East of Vadodara	Maize, Chickpea, Cotton, Castor

Table 4.1: Agriculture fields of Vadodara with location and crops are grown there

Figure 4.1: *S. frugiperda* infestation in maize fields (creating windows), Damage by FAW in Maize (complete holes), Excreta deposition and FAW on maize

The caterpillars from the agricultural fields were checked for their complete life cycle. Different stages and their duration were noted. Photography of different stages was done (**Figure 4.2**). This was done to elicit information on the insect and check for its rearing inside lab conditions. The eggs were laid in masses multiple times, with each egg mass covered by scales in the early stage (**Figure 4.3**) and not in the later stage (**Figure 4.4**). Immediately after hatching out of the egg, the neonate was fed on a diet where it grew till the last instar (**Figure 4.5**), and then the larva converted into pupa and adult, as shown (**Figure 4.6**).

Figure 4.2: Life cycle of Fall Armyworm (Spodoptera frugiperda)

Figure 4.3: Egg mass with scales of *Spodoptera frugiperda* S. (4X)

Results

Figure 4.4: Egg mass of *Spodoptera frugiperda* S (4X)

Figure 4.5: Magnified neonate/first instar (4X) and fully grown caterpillar (normal view) *Results*

Figure 4.6: Pupa and Adult of *S. frugiperda* (male)

Although various pests were found in the maize fields, the major damage caused in the maize fields was mainly by the fall armyworms. It was creating holes in the leaves during the early instar stage and making holes in the later stage. There was a deposition of excreta on the plant, mainly on the leaves and in the whorl. As the plant grows, the excreta deposition comes on the outer side. The excreta and the hole are the initial damage symptoms that can be used to identify fall armyworm infestation. The morphological features of the insect are the second stage of identification in the field; only after which can we confirm the presence of the pest. White colour Y-shaped front at the anterior end and four dots forming a square and a crescent shape at the posterior end are features unique to FAW caterpillars.

The life cycle of the fall armyworm inside the laboratory at maintained temperature and humidity lasted between 30 to 40 days, depending on the season. Around 100-200 eggs are present in an egg mass with scales. The neonate emerges from the egg in 3-5 days, initiating a larval period of six instars and every instar lasting about 2-3 days. The larva then converts into a pupa which remains in that stage for a week or so. Pupa converts into an adult, which can be male or female. Gender can be easily identified with the males having a prominent design of dark brown-black colour while females being plain greyish-brown.

Cannibalism: A major issue in the rearing and culturing of the *Spodoptera frugiperda*, is the cannibalistic behaviour of the pest. The behaviour is present in the larval stage of the insects. In the life cycle study, cannibalism was observed by the early larva on the eggs. Also, late larvae instars were observed eating smaller larvae when kept together.

Prevention from cannibalism: The cannibalistic behaviour hinders the experiment and affects the observation negatively. So, to prevent it, some measures were taken. Trays were ordered to be manufactured where different cells are present in each cell so that every cell can be used to inhabit a single larva. Stickers were made to cover the tray, which prevented the insect from escaping. Diet was also changed regularly.

4.2. RESULTS FROM THE DIET STUDIES

The per cent pupation of the two diets is shown in **Table 4.2**. The larval growth index is shown in **Table 4.3**. The **Table 4.4** shows descriptive statistics of diets that reveal average number of days the insect retains its different life stages. (ND=Natural Diet, AD=Artificial Diet, 1 & 2 show the replicates). The maize-based artificial diet & chickpea-based diet were found to be successful and economical for easy laboratory rearing of the pest inside the lab.

The table displays the observations for different diets on *Spodoptera frugiperda* survival. (**Table 4.5**). The larval growth index was calculated (**Table 4.6**). A graphical comparison between survival and completion of the life cycle between natural (red bars) and artificial diets (yellow bars) with various life stage duration (**Graph 4.1**) and various artificial diets has been made (**Graph 4.2**)

 Table 4.2: Pupal percentage emerged from natural and artificial diet

Diet	Larvae/ tray	No. of trays	Total Larvae released	No. of Pupa formed	% Pupation
Diet 1 (Natural)	10	2	20	17	85%
Diet 2 (Artificial)	10	2	20	19	95%

Table 4.3: Larval Growth Index from natural and artificial diet

Diet	Per cent Pupation	Larval period	Larval Growth Index
1 (Natural)	85%	19.6	4.34
2 (Artificial)	95%	17.85	5.32

Larval Growth Index was calculated using the following formula: Percent pupation/ Larval period (days)

Variable	Stage	Ν	N*	Mean	St Dev
ND(A)Days	Adult	9	1	5.667	0.500
Natural diet:	Egg	10	0	3.800	0.632
Set A	Larva	10	0	19.200	0.789
	Pupa	10	0	8.400	2.989
ND(B)Days	Adult	8	2	5.875	0.354
Natural diet:	Egg	10	0	3.900	0.568
Set B	Larva	10	0	19.300	0.675
	Pupa	10	0	7.60	4.06
AD(A)Days	Adult	10	0	6.600	0.516
Artificial diet:	Egg	10	0	2.900	0.568
Set A	Larva	10	0	17.900	0.568
	Pupa	10	0	7.800	0.422
AD(B)Days	Adult	9	1	6.667	0.866
Artificial diet:	Egg	10	0	3.700	0.483
Set B	Larva	10	0	17.800	0.632
	Pupa	10	0	6.800	2.486

Table 4.4: Statistical analysis showing survival rate of different stages on two diets:

natural & artificial

N= Number of individuals survived; N*= Number of individuals died

|--|

Diets	2 nd instar larvae/	Total larvae	Total pupa	Per cent survival
	cell	released	formed	
1	1	30	29	96.66%
2	1	30	26	86.66%
3	1	30	29	96.66%
4	1	30	24	80.00%

Diet	Larval period	Per cent survival	Larval Growth Index
1	14.61	96.66%	6.61
2	15.67	86.66%	5.53
3	14.52	96.66%	6.65
4	16.15	80.00%	4.95

Table 4.6: Assessment of larval growth index (in FAW) using four artificial diets

Graph 4.1: Survival on natural & artificial diet

Graph 4.2: Survival percentage of larva on different artificial diets

Natural and artificial diets help in insect growth and life cycle completion. It is easy to rear plants on the natural diet (here, maize leaves/ plants) while doing field assays. However, it becomes difficult to have a natural diet in lab studies. A continuous natural food supply (here, fresh maize leaves are difficult). Also, keeping the insect on the natural diet would require changing and adding the diet multiple times daily. Even after that, the biggest challenge is ensuring a chemical-free natural diet, as most agricultural fields are spraying pesticides to prevent the crop from pests. Using the maize leaves coming directly from the field can give deceitful results as we cannot know the specific result of our test insecticides. Therefore, we tested artificial diets for the rearing of fall armyworms.

The criteria for the comparison of the diets were:

- 1. Percentage survival of larvae and pupae
- 2. Larval Growth Index

The per cent survival on the natural and artificial diet was close to being 85% and 95%, respectively. The larval growth index depends on persistence of larvae and the number of days it continued as larval instar. It came out to be 4.34 and 5.32 for natural and artificial diets, respectively. A higher value of LGI depicts an artificial diet suitable for rearing fall armyworm larvae.

A comparison of the four different artificial diets was made- 1, 2, 3, and 4 containing maize flour, soya flour, chickpea flour and jowar (sorghum) flour, respectively. The per cent survival was 96.66%, 86.66%, 96.66%, and 80.00% for diets 1, 2, 3, and 4. The LGI for diets 1, 2, 3, and 4 was 6.61, 5.53, 6.65, and 4.95, respectively. This suggests diets 1 and 3 give equal survival of the insects on them, whereas the LGI is similar or slightly more in the case of diet 3, followed by diet 1. Both diets 1 and 3 can be used for the rearing of the fall armyworm in the lab. However, having a supply of maize flour throughout the year is more convenient. A chickpea flour-based diet also acts as a good medium for rearing other Lepidoptera species, as done in the past. Throughout the study, from then on was done rearing the insect pest on a chickpea-based artificial diet.

4.3. **RESULTS FROM THE INSECTICIDE EFFICACY**

The bioassays performed on the pest Spodoptera frugiperda indicated efficacy in both the insecticides to control fall armyworm. The insecticides selected were Chlorantraniliprole and Emamectin Benzoate. Both insecticides were individually checked to assess mortality values for this pest. The mother culture was simultaneously maintained to have a susceptible population. After 72 hours of insects being fed artificial diets containing different ppm of the two insecticides, the test trays were checked. At 72 hours, the observation was taken using forceps that had been pre-sterilized. The observations of mortality from the insecticides are mentioned. In order to prevent contamination, different instruments were utilised for treated and untreated insects. Any bacterial or fungal infections were examined in them. If a larva didn't move after coming into touch with the brush, it was thought to be dead. If a larva moved less erratically than an untreated larva, it was deemed to be moribund. A larva was deemed to be alive if, following exposure to a stimulus from the brush, it moved normally in comparison to an untreated larva (or any physical stimulus). To get the real data without outside interference, the appropriate temperature and humidity levels maintained. were Data evaluation: LD₅₀ was the concentration value where 50% of the population died. LD₅₀ value for Chlorantraniliprole and Emamectin Benzoate was checked over generation and calculated with Probit analysis of SPSS software.

Insecticide Chlorantraniliprole (First generation):

The pest *Spodoptera frugiperda* was treated with Chlorantraniliprole at different concentrations. The concentrations, i.e., 10, 5, 1, 0.5, 0.1, 0.05, 0.02 and 0.01 ppm, gave % mortalities as 100.00, 100.00, 93.33, 60.00, 53.33, 46.66, and 20.00, respectively. No mortality in control was observed (**Table 4.7**).

Insecticide Emamectin Benzoate (First generation):

The pest *Spodoptera frugiperda* was treated with Emamectin Benzoate at different concentrations. The concentrations, i.e., 10, 5, 1, 0.5, 0.1, 0.05, 0.02 and 0.01 ppm, gave % mortalities as 100.00, 100.00, 93.33, 60.00, 46.66, 40.00, 10.00, and 0.00. No mortality in control was observed **(Table 4.8)**.

The surviving insects from the various dose ranges were taken to further generations and treated repeatedly on the third instar larvae until a prominent decline in expected mortality was observed. The statistics used was statistical software IBM SPSS software Version: 28.0.1.1(15)- Probit analysis, regression.

The surviving insects from the exposure to insecticide were cultured from further generations with testing and exposure to various doses on the third-fourth instar in every generation, similar to the first generation.

Insecticide Chlorantraniliprole (Second to Fourth generations):

The concentrations 10, 5, 1, 0.5, 0.1, 0.05, 0.02 and 0.01 ppm gave % mortalities of 100, 100, 100, 93.33, 60.00, 50.00, 46.66, 16.67 in the second generation, 100.00, 93.33, 86.66, 60.00, 50.00, 46.66, 20.00, 10.00 in the third generation, and 100.00, 90.00, 60.00, 50.00, 46.66, 20.00, 0.00, 0.00 in the fourth generation.

Insecticide Emamectin Benzoate (Second to Fourth generations):

The concentrations 10, 5, 1, 0.5, 0.1, 0.05, 0.02 and 0.01 ppm gave % mortalities of 100.00, 100.00, 90.00, 56.66, 50.00, 46.66, 33.33, 0.00 in the second generation, 100.00, 100.00, 86.00, 53.33, 43.33, 33.33, 20.00, 0.00 in the third generation, and 100.00, 86.00, 56.66, 46.66, 30.00, 16.66, 0.00, 0.00 in the fourth generation.

(Table 4.9-4.14).

Probit analysis using SPSS was done, with mortality values over the generations found. In the case of Chlorantraniliprole, mortality values over the generation for 0.05 ppm concentration changed from 53.33% in G-1, 50.00% In G-2, 46.66% in G-3, to 20.00% in G-4 (**Table 4.15**). In the case of Emamectin Benzoate, mortality values over the generation for 0.1 ppm changed from 46.66% in G-1, 50.00% in G-2, 43.33% in G-3, to 30.00% in G-4 (**Table 4.16**). The various results came from SPPS regression probit analysis.

generation)							
Sets of conc.	Dose (ppm)	No. of larvae treated	No. of larvae succumbed to the dose	Defunct larvae	Total (Succumbed+ Defunct)	Larval percent mortality	
1	10	30	30	0	30	100.00	
2	5	30	30	0	30	100.00	
3	1	30	30	0	30	100.00	
4	0.5	30	26	2	28	93.33	
5	0.1	30	15	3	18	60.00	
6	0.05	30	14	2	16	53.33	
7	0.02	30	13	1	14	46.66	
8	0.01	30	4	2	6	20.00	
9	Control	30	0	0	0	0.00	

Table 4.7: Larval (%) mortality obtained in *S. frugiperda* against Chlorantraniliprole (1st

Sets of conc.	Dose (ppm)	No. of larvae treated	No. of larvae succumbed to the dose	Defunct larvae	Total (Succumbed+ Defunct)	Larval percent mortality
1	10	30	30	0	30	100.00
2	5	30	30	0	30	100.00
3	1	30	26	2	28	93.33
4	0.5	30	16	2	18	60.00
5	0.1	30	11	3	14	46.66
6	0.05	30	11	1	12	40.00
7	0.02	30	2	1	3	10.00
8	0.01	30	0	0	0	0.00
9	Control	30	0	0	0	0.00

Table 4.8: Larval (%) mortality obtained in *S. frugiperda* against Emamectin Benzoate (1st gen)

Table 4.9: Larval (%) mortality obtained in *S. frugiperda* against Chlorantraniliprole (2nd gen)

Sets of conc.	Dose (ppm)	No. of larvae treated	No. of larvae succumbed to the dose	Defunct larvae	Total (Succumbed+ Defunct)	Larval percent mortality
1	10	30	30	0	30	100
2	5	30	30	0	30	100
3	1	30	28	2	30	100
4	0.5	30	24	4	28	93.33
5	0.1	30	16	2	18	60.00
6	0.05	30	14	1	15	50.00
7	0.02	30	13	1	14	46.66
8	0.01	30	3	2	5	16.67
9	Control	30	0	0	0	0.00

Sets of	Dose (ppm)	No. of larvae	No. of larvae succumbed to	Defunct larvae	Total (Succumbed+	Larval percent
conc.		treated	the dose		Defunct)	mortality
1	10	30	30	0	30	100.00
2	5	30	28	2	30	100.00
3	1	30	23	4	27	90.00
4	0.5	30	14	3	17	56.66
5	0.1	30	14	1	15	50.00
6	0.05	30	9	1	10	46.66
7	0.02	30	4	2	6	33.33
8	0.01	30	0	0	0	0.00
9	Control	30	0	0	0	0.00

Table 4.10: Larval (%) mortality obtained in *S. frugiperda* against Emamectin B. (2nd gen)

Table 4.11: Larval (%) mortality obtained in S. frugiperda against Chlorantraniliprole (3rd gen)

Sets of	Dose (ppm)	No. of larvae	No. of larvae succumbed to	Defunct larvae	Total (Succumbed+	Larval percent
conc.		treated	the dose		Defunct)	mortality
1	10	30	30	0	30	100.00
2	5	30	27	1	28	93.33
3	1	30	23	2	25	86.66
4	0.5	30	14	4	18	60.00
5	0.1	30	14	1	15	50.00
6	0.05	30	13	1	14	46.66
7	0.02	30	5	1	6	20.00
8	0.01	30	2	1	3	10.00
9	Control	30	0	0	0	0.00

Sets of conc.	Dose (ppm)	No. of larvae treated	No. ofNo. of larvaeDeflarvaesuccumbed tolartreatedthe dose		Total (Succumbed+ Defunct)	Larval percent mortality
1	10	30	30	0	30	100.00
2	5	30	28	2	30	100.00
3	1	30	22	1	23	86.00
4	0.5	30	14	2	16	53.33
5	0.1	30	11	2	13	43.33
6	0.05	30	10	0	10	33.33
7	0.02	30	4	2	6	20.00
8	0.01	30	0	0	0	0.00
9	Control	30	0	0	0	0.00

Table 4.12: Larval (%) mortality obtained in S. frugiperda against Emamectin B. (3rd gen)

Table 4.13: Larval (%) mortality obtained in S. frugiperda against Chlorantraniliprole (4th gen)

Sets of conc.	Dose (ppm)	No. of larvae treated	No. of larvae succumbed to the dose	Defunct larvae	Total (Succumbed+ Defunct)	Larval percent mortality
1	10	30	30	0	30	100.00
2	5	30	23	4	27	90.00
3	1	30	15	3	18	60.00
4	0.5	30	13	2	15	50.00
5	0.1	30	13	1	14	46.66
6	0.05	30	4	2	6	20.00
7	0.02	30	0	0	0	0.00
8	0.01	30	0	0	0	0.00
9	Control	30	0	0	0	0.00

Sets of conc.	Dose (ppm)	No. of larvae treated	No. of larvae succumbed to the dose	Defunct larvae	Total (Succumbed+ Defunct)	Larval percent mortality
1	10	30	30	0	30	100.00
2	5	30	22	4	26	86.00
3	1	30	15	2	17	56.66
4	0.5	30	13	1	14	46.66
5	0.1	30	7	2	9	30.00
6	0.05	30	4	1	5	16.66
7	0.02	30	0	0	0	0.00
8	0.01	30	0	0	0	0.00
9	Control	30	0	0	0	0.00

 Table 4. 14: Larval (%) mortality obtained in S. frugiperda against Emamectin B. (4th gen)

Table 4.15: Mortality	of S. frugiperda	larvae against Chlor	antraniliprole over	generations ((G 1	1-4)
-----------------------	------------------	----------------------	---------------------	---------------	------	------

Concentration (ppm)	G-1	G-2	G-3	G-4
10	100.00	100	100.00	100.00
5	100.00	100	93.33	90.00
1	100.00	100	86.66	60.00
0.5	93.33	93.33	60.00	50.00
0.1	60.00	60.00	50.00	46.66
0.05	53.33	50.00	46.66	20.00
0.02	46.66	46.66	20.00	0.00
0.01	20.00	16.67	10.00	0.00
Control (or Untreated)	0.00	0.00	0.00	0.00

Concentration (ppm)	G-1	G-2	G-3	G-4
10	100.00	100.00	100.00	100.00
5	100.00	100.00	100.00	86.00
1	93.33	90.00	86.00	56.66
0.5	60.00	56.66	53.33	46.66
0.1	46.66	50.00	43.33	30.00
0.05	40.00	46.66	33.33	16.66
0.02	10.00	33.33	20.00	0.00
0.01	0.00	0.00	0.00	0.00
Control (or Untreated)	0.00	0.00	0.00	0.00

Table 4.16: Mortality values of S. frugiperda larvae against Emamectin Benzoate over
generations (G1-4)

Parameter estimates and probit-transformed responses were noted. Estimates for Chlorantraniliprole generation 1st (C G-1) to Chlorantraniliprole generation 4th (C G-4) and Emamectin Benzoate generation 1st (EM G-1) to Emamectin Benzoate generation 4th (EM G-4) is shown (**Table 4.17-4.24**). Probit-transformed responses in every generation for both insecticide is depicted graphically (**Graph 4.3-4.10**).

Table 4.17: Probit analysis using software SPSS for chlorantraniliprole-generation 1

Parameter Estimate			Std.	Z	Sig.	95% Con Interval	fidence
			Error			Lower Bound	Upper Bound
PROBIT	Concentration	1.340	.182	7.370	<.001	.984	1.696
TRODIT	Intercept	1.900	.256	7.422	<.001	1.644	2.156

Graph 4.3: Probit response for Chlorantraniliprole (1st gen)

Table	4.18:	Probit	analysis	using	software	SPSS	for c	chlorantran	iliprole-	generation	2
I UDIC		110010	anaryono	aoning	Solution	0100	101 0	linoi anti an	mprore	Seneration	-

-	Parameter Estimate		Std.	Z	Sig.	95% Confidence Interval	
			Error			Lower Bound	Upper Bound
PROBIT	Concentration	1.384	.185	7.479	<.001	1.022	1.747
TRODIT	Intercept	1.916	.259	7.386	<.001	1.656	2.175

,

Graph 4.4: Probit response for Chlorantraniliprole (2nd gen)

Table 4	4.19:	Probit	analysis	using	software	SPSS	for	chlorantra	nilipro	le-gene	ration	3
1 4010		110010	anaryono	asing	Solution	0100	101	emorandia	mpro	ie gene	ration	~

	Parameter	'arameter Estimate Std.		Z	Sig.	95% Confidence Interval	
			Error			Lower Bound	Upper Bound
	Concentration	1.088	.121	9.030	<.001	.852	1.324
TRODIT	Intercept	.929	.139	6.700	<.001	.790	1.068

Graph 4.5: Probit response for Chlorantraniliprole (3rd gen)

Table 4	4.20:	Probit	analysis	using	software	SPSS	for	chloranti	raniliprole	-generation	4
I abit	T.2U .	11001	unary 515	using	Soluvale	01.00	101	emoranti	ampione	Seneration	

Parameter		Estimate	Std.	Z	Sig.	95% Con Interval	fidence
			Error			Lower Bound	Upper Bound
PROBIT	Concentration	1.209	.127	9.527	<.001	.960	1.457
TRODIT	Intercept	.545	.123	4.428	<.001	.422	.668

Log of Concentration

Graph 4.6: Probit response for Chlorantraniliprole (4th gen)

Fable 4.21: Probit ana	lysis using software	SPSS for emamectin	benzoate-generation 1
------------------------	----------------------	--------------------	-----------------------

-	Parameter Estimate		Std.	Z	Sig.	95% Con Interval	fidence
			Error			Lower Bound	Upper Bound
PROBIT ^a	Concentration	1.634	.175	9.346	<.001	1.291	1.976
TRODIT	Intercept	1.104	.178	6.198	<.001	.925	1.282

Graph 4.7: Probit response for Emamectin Benzoate (1st gen)

Table 4.22:]	Probit analysis	using software	SPSS for emamect	in benzoate-generation 2
	<i>.</i>	0		0

-	Parameter Estim	Estimate	Std.	Z	Sig.	95% Con Interval	fidence
			Error			Lower Bound	Upper Bound
PROBIT	Concentration	1.262	.141	8.968	<.001	.987	1.538
TRODIT	Intercept	1.164	.165	7.055	<.001	.999	1.329

Graph 4.8: Probit response for Emamectin Benzoate (2nd gen)

Table 4.23: Probit analysis using software SPSS for emamectin benzoate-generation 3

	Parameter Estimate		Std.	Z	Sig.	95% Con Interval	fidence
			Error			Lower Bound	Upper Bound
PROBIT	Concentration	1.218	.139	8.790	<.001	.946	1.489
TRODIT	Intercept	1.207	.165	7.302	<.001	1.042	1.373

Graph 4.9: Probit response for Emamectin Benzoate (3rd gen)

Fable 4.24: Probit analysis using software	SPSS for emamectin	benzoate-generation 4
--	--------------------	-----------------------

-	Parameter Estimate	Std.	Z	Sig.	95% Con Interval	fidence	
		Error			Lower Bound	Upper Bound	
PROBIT	Concentration	1.178	.124	9.527	<.001	.936	1.421
TRODIT	Intercept	.611	.124	4.939	<.001	.487	.734

Log of Concentration

Graph 4.10: Probit response for Emamectin Benzoate (4th gen)

Behavioural Changes

The following change was observed in the case of a treated insect as compared to the control:

- There was observed repellence of the insect from the food/diet containing insecticides
- Feeding decreased or even stopped in case of diet constituting higher concentrations of insecticides
- > Shrinking of the body was observed, and size decreased
- > Insects exposed to insecticides also turned blackish
- On providing any stimulus, there was lethargy and no movement as compared to control, where a sharp response was seen on providing stimulus

We observed that a low quantity of both insecticides is sufficient to cause death to the insects. It shows the effectiveness of the chemicals in controlling the pest. A very low dose of 0.05 ppm of Chlorantraniliprole caused the death of nearly fifty Percent of the test insect in the first generation. A dose as low as 0.1 ppm of Emamectin Benzoate caused mortality of about fifty Percent of test insects.

Although a lesser concentration of Chlorantraniliprole than Emamectin Benzoate was sufficient to kill the insect pest, Emamectin Benzoate was selected for the detailed resistance analysis. The reason behind the same is the enormous increment observed in the usage of Emamectin Benzoate in the field in recent years for controlling fall armyworm. This can have repercussions shortly as the pest might develop resistance against it.

4.4. RESULTS FROM THE HISTOLOGY

The histology of *Spodoptera frugiperda* midgut was observed in a brightfield microscope- DM 750, Leica. Photography was done for all three types of midguts- control (susceptible), treated/tested (dosing and observing after 72 hrs.) and resistant (Emamectin-resistant insect). Observations were taken at three magnifications, namely, 10X, 20X and 100X as 1, 2, and 3.

Control: *S. frugiperda*'s midgut had an epithelial layer, and the digestive cells' cytoplasm had uniform, well-developed nuclei. These cell surfaces were well-striated, and the peritrophic matrix in the midgut lumen was well-developed. It had muscular layers lining its basal surface (Figure 4.7 A, B, C).

Resistant: The midgut region had fewer deformities observed than the treated ones. The structure seemed largely intact. The longer and more regular exposure to the insecticide might have played a role in keeping the structure more stable than the initial exposure. However, little vacuolization was observed with a slight deformation in shape (Figure 4.7 D, E, F).

As the high visibility of various parts of the three types was seen at 100X magnification, these were analyzed and compared at this magnification. The images have been labelled as L for lumen, Ep for epithelium, P for peritrophic matrix, B for basal membrane, C for cytoplasm, N for nucleus, V for vacuole, L for loss of l

larva of susceptible/control population which were reared for more than three generation inside the lab without any exposure to insecticides); C: Control midgut sample at 100X (4th instar larva of susceptible/control population which were reared for more than three generation inside the lab without any exposure to insecticides); D: Resistant slide at 10X. Midgut section of 4th instar larva exposed to Figure 4.7: Histological slides of A: Control slide at 10X. Midgut section of 4th instar larva of susceptible/control population which were reared for more than three generation inside the lab without any exposure to insecticides); B: Control midgut sample at 20X. (4th instar 0.1 ppm concentration for four generations (Table 14); E: Resistant midgut sample at 20X (4th instar larva exposed to 0.1 ppm concentration for four generations); F: Resistant at 100X (4th instar larva exposed to 0.1 ppm concentration for four generations); L=lumen, GC= goblet cell, RC= regenerative cell, Ep=epithelium, P=peritrophic matrix, B=basal membrane, C=cytoplasm, N=nucleus, [=vacuole]

4.5. **RESULTS FROM THE TRANSCRIPTOME STUDIES**

Midgut

There have been many studies from the past wherein midgut has been extracted from the caterpillars for conducting studies related to histology and transcriptomics.

A study on another noctuidae pest, *Spodoptera litura*, used midgut and fat bodies for RNA sequencing. They found that genes from these sites provide resistance against tomatine (Li et al., 2019). Midgut from *Spodoptera litura* has also been checked for detoxification genes against xenobiotic compounds and bacteria (Huang et al., 2011). The midgut site is thus known to be important for providing resistance as containing supporting genes for providing resistance.

Transcriptome Analysis

We must clearly understand the transcriptome to elucidate the working components of the genetic data, expose the minute components of cells and tissues. The total set of transcripts present in a cell for a particular developmental stage or physiological condition is known as the transcriptome **(Wang et al., 2010)**.

Sequencing of RNA transcripts is a useful method for RNA profiling because-

- Differential gene expression (DGE) analysis compares control and treatment groups by sensitively quantifying transcriptional activity and gene expression levels. Wide-ranging analysis identification of more differentially expressed genes with a larger fold change
- It may also reveal some uncharacterized, unidentified genes. Finding both well-known and new transcripts
- Almost any organism's RNA transcripts can be profiled. A comprehensive representation of the transcriptome, or every gene
- A complete set of genes working inside can be known at once

This study assembled the transcriptome using approximately 20-25 million paired-end reads. Sequencing of cDNA libraries in the Illumina Novaseq 6000. The process started with RNA isolation from the extracted tissue, which was done by the trizol method.

RNA was extracted, and its quality checked and its quality checked (**Table 4.25**). The difference between the gene expression patterns of the two samples was noted. One sample was from the susceptible population, made through several generations of rearing inside laboratories without insecticide exposure. Another sample was the fourth generation of Emamectin Benzoate, surviving even after insecticide exposure.

Quality check: The RNA after extraction was checked for its quality. A quality check (QC) was done (Table 4.25). Ratio A260/280 as well as the RIN values. The absorbance ratio of 260 by 280 was used to check the purity of RNA. All the samples gave 260/280 values around 2 which is satisfactory for RNA purity. A higher RIN value (score between 1 and 10) indicates higher RNA integrity. All the values of our samples were between 9 and 10 indicating an excellent-quality RNA sample. The samples were considered to be optimum for taking further for analysis.

There were two types of RNA samples (**Table 4.26**). One being the midgut-control and the other being the midgut-treated (Emamectin Benzoate). These were taken for RNA-seq Analysis. The RNA is converted into cDNA by reverse transcription. Sample QC raw and trimmed data statistics were conducted (**Table 4.27**). Alignment Statistics of Hisat2 gave a good quality alignment rate above 90% (**Table 4.28**). Following that, libraries were prepared. Gene expression profiling by RNA-Seq was done. The upregulated and downregulated genes in the resistant population compared to the susceptible population were observed (**Table 4.29**).

Sr. No.	Sample Name	Nanodrop (ng/ul)	A260/280	A260/230	Qubit (ng/ul)	RIN Value	QC Remarks
1	MG C 1	530.6	1.97	2.03	752	9.4	Pass
2	MG C 2	365.5	2.04	2	524	9.3	Pass
3	MG T 1	811.6	2.06	2.44	918	9.3	Pass
4	MG T 2	709.5	2.03	2.44	1026	9.2	Pass

Table 4.25: RNA Quality check for the samples

 Table 4.26: Sample Overview

Sample Name	Library type	Number of samples	Approach used
MGC (Mid Gut Control)	Paired-end	2	RNA-Seq
MGT (Mid Gut Treated)			Analysis

 Table 4.27: Sample QC Statistics of raw and trimmed data

			Raw Data			Trimmed Reads			
Sample Name	Read Orientation	Average GC (%)	Length (bp)	Total Sequences (Millions)	Average GC (%)	Length (bp)	Total Sequences (Millions)		
MGC	R1	52	159	20.23	52	152	10.16		
	R2	50	159	20.23	52	154	10.16		
MGT	R1	49	159	24.22	49	152	11.80		
	R2	48	159	24.22	49	152	11.80		

 Table 4.28: Hisat2 Alignment Statistics against Spodoptera frugiperda

Samples	Aligned concordantly ex	Overall	
		Alignment Rate	
	Count	%	%
MGC	2835994	27.91	91.42
MGT	3577117 30.32		90.25

Table 4.29: Upregul	ated and downregulated of	count based on p	-value (unadjusted v	value),
	FDR (adjusted p-value) a	and Log2FoldCh	ange	

Filter Parameters	Treated	vs Control
	Up	Down
$P Value \le 0.05 \& \log 2FC \mp 1.5$	464	607

464 genes were upregulated and 607 were downregulated in treated (Emamectin) compared to control (susceptible) insects. It includes various categories of genes performing important functions inside the insect's body. This difference in the profile between the control and treated sample serves as a basis for comparison of the two. It helps to find out the reasons helping the insect to increase its tolerance to the lethal chemical. Further, these upregulated and downregulated genes are analyzed and discussed.

Some plots were made to analyze the differential gene expression. One such is the MA plot. MAplot shows the distribution of the gene expression between the groups' MGT (treated) and MGC (control). The Y axis shows the Log2fold change (M) and the X axis represents the log of the mean of normalized expression counts (A) of the samples. Red dots correspond to genes upregulated (>+1.5) and blue dots correspond to the down-regulated genes (<- 1.5) based on the p-value `0.05`. The grey dot corresponds to the non-significant genes where the p-value > 0.05. (Graph 4.11)

Another plot is the volcano plot. Volcano plot of MGT (treatment) and MC expressed genes (control). The x-axis represents a log 2-fold change in gene expression between the treated and control groups, and the y-axis displays log 10 p values. Significant genes are represented by the red points (p value 0.05). (Graph 4.12)

A heat map was also made. The top 50 most variable genes are shown in the heatmap across samples. Heatmap is showing the top 50 genes with the highest variance across samples between the group of the 2 samples (Graph 4.13)

Graph 4.11: MA Plot of Treated vs Control

Graph 4.12: Volcano Plot of Treated vs Control

Graph 4.13: Top 50 most variable genes heatmap across samples Heatmap showing the top 50 genes with the highest variance across samples between the group of the 2 samples.

The names of various genes mentioned in the plots are written below as tables. The name of genes with gene ids of the MA plot is mentioned (**Table 4.30**). The name of genes with gene ids of the Volcano plot is mentioned (**Table 4.31**). The function of various genes must be known to determine their role in the insect in general. Other than the function, whether it has gone upregulated or downregulated should be known. The genes of MA plot with their regulation (up/down) and functions are mentioned (**Table 4.32**). Also, the genes of the Volcano plot with their regulation (up/down) and functions are mentioned (**Table 4.32**).

Sr no.	Gene id	Name of the gene					
1	LOC118267764	uncharacterized LOC118267764					
2	LOC118267523	collagenase					
3	LOC118263178	cholinesterase 1-like					
4	LOC118267874	brachyurin-like					
5	LOC118273173	pancreatic triacylglycerol lipase-like					
6	LOC118273853	15-hydroxyprostaglandin dehydrogenase [NAD(+)]-like					
7	LOC118263019	high choriolytic enzyme 2					
8	LOC118272014	basic juvenile hormone-suppressible protein 2					
9	LOC118278260	keratin, type I cytoskeletal 9-like					
10	LOC118272270	basic juvenile hormone-suppressible protein 2					
11	LOC118278953	hemolin					
12	LOC118276436	basic juvenile hormone-suppressible protein 1					

Table 4.30: Naming of gene ids of MA plot

Sr no.	Gene id	Name of the gene
1	LOC118267764	uncharacterized LOC118267764
2	LOC118267523	collagenase
3	LOC118263178	cholinesterase 1-like
4	LOC118267874	brachyurin-like
5	LOC118273173	pancreatic triacylglycerol lipase-like
6	LOC118273853	15-hydroxyprostaglandin dehydrogenase [NAD(+)]-like
7	LOC118263019	high choriolytic enzyme 2
8	LOC118275549	cholinesterase 2-like
9	LOC118274200	pancreatic triacylglycerol lipase-like
10	LOC118267328	uncharacterized LOC118267328
11	LOC126913069	peritrophin-1-like
12	LOC118277184	uncharacterized LOC118277184
13	LOC118272014	basic juvenile hormone-suppressible protein 2
14	LOC118278260	keratin, type I cytoskeletal 9-like
15	LOC118272270	basic juvenile hormone-suppressible protein 2
16	LOC118278953	hemolin
17	LOC118276436	basic juvenile hormone-suppressible protein 1
18	LOC118276130	neuropeptide-like protein 29
19	LOC126911316	uncharacterized LOC126911316
20	LOC126911315	uncharacterized LOC126911315
21	LOC118279165	uncharacterized LOC118279165
22	LOC118276076	arp2/3 complex-activating protein rickA-like
23	LOC118270054	uncharacterized LOC118270054

 Table 4.31: Naming gene ids of Volcano plot

Sr.	Gene id	Up/	Name of the gene	Go function
N0.		Down		
1	LOC118267764	UP	uncharacterized	Peroxisome, FAD binding, 2
			LOC118267764	iron, 2 sulfur cluster binding,
				iron ion binding, oxidoreductase
				activity
2	LOC118267523	UP	collagenase	Serine type, endopeptidase
				activity, proteolysis
3	LOC118263178	UP	cholinesterase 1-like	Carboxylic ester hydrolase
				activity
4	LOC118267874	UP	brachyurin-like	Serine type, endopeptidase
				activity, proteolysis
5	LOC118273173	UP	pancreatic	Lipase activity, extracellular
			triacylglycerol lipase-	region, lipid metabolic
			like	processes, carboxyl ester
				hydrolase activity
6	LOC118273853	UP	15-	Metalloendopeptidase activity,
			hydroxyprostaglandin	proteolysis, nucleus, zinc ion
			dehydrogenase	binding, intraceelular receptor
			[NAD(+)]-like	signalling pathway, nuclear
				receptor activity, DNA binding
7	LOC118263019	UP	high choriolytic	Extracellular region, nutrient
			enzyme 2	reservoir activity,
				transmembrane receptor protein
				serine/threonine kinase
				signalling pathway, innate
				immune response, modulation of
				process of other organism,
				proteolysis

 Table 4.32: Status and function of MA plot genes

8	LOC118272014	DOWN	hasic juvenile	Nutrient reservoir activity
0				i vuirient reservoir activity,
			hormone-	transmembrane receptor protein/
			suppressible protein 2	threonine kinase signalling
				pathway, membrane
9	LOC118278260	DOWN	keratin, type I	Defense to gram negative
			cytoskeletal 9-like	bacterium, extracellular region,
				toxin activity, serine peptidase
				activity, innate immune
				response, modulation of process
				of other organism, proteolysis
10	LOC118272270	DOWN	basic juvenile	Extracellular region, nutrient
			hormone-	reservoir activity,
			suppressible protein 2	transmembrane receptor
				serine/threonine kinase
				signalling pathway, membrane
11	LOC118278953	DOWN	Hemolin	Defense to gram negative
				bacterium, extracellular region,
				toxin activity, serine peptidase
				activity, innate immune
				response, modulation of process
				of other organism, proteolysis
12	LOC118276436	DOWN	basic juvenile	Extracellular region, nutrient
			hormone-	reservoir activity,
			suppressible protein 1	transmembrane receptor
				serine/threonine kinase
				signalling pathway, membrane

Sr. No.	Gene id	Up/down	Name of the gene	Function
1	LOC118267764	UP	uncharacterized LOC118267764	Peroxisome, FAD binding, 2 iron, 2 sulfur cluster binding, iron ion binding, oxidoreductase activity
2	LOC118267523	UP	Collagenase	Serine type, endopeptidase activity, proteolysis
3	LOC118263178	UP	cholinesterase 1-like	Carboxylic ester hydrolase activity
4	LOC118267874	UP	brachyurin-like	Serine type, endopeptidase activity, proteolysis
5	LOC118273173	UP	pancreatic triacylglycerol lipase- like	Lipase activity, extracellular region, lipid metabolic processes, carboxyl ester hydrolase activity
6	LOC118273853	UP	15- hydroxyprostaglandin dehydrogenase [NAD(+)]-like	Metalloendopeptidase activity, proteolysis, nucleus, zinc ion binding, intraceelular receptor signalling pathway, nuclear receptor activity, DNA binding
7	LOC118263019	UP	high choriolytic enzyme 2	Extracellular region, nutrient reservoir activity, transmembrane receptor protein serine/threonine kinase signalling pathway, innate immune response, modulation of process of other organism, proteolysis
8	LOC118275549	UP	cholinesterase 2-like	Carboxylic ester hydrolase activity, neurotransmitter catabolic process, synpase
9	LOC118274200	UP	pancreatic triacylglycerol lipase- like	Lipase activity, extracellular region, metabolic process, carboxylic ester hydrolase activity
10	LOC118267328	UP	uncharacterized LOC118267328	_
11	LOC126913069	UP	peritrophin-1-like	Chitin binding, extracellular region
12	LOC118277184	UP	uncharacterized LOC118277184	-
13	LOC118272014	DOWN	basic juvenile hormone- suppressible protein 2	Nutrient reservoir activity, transmembrane receptor protein/ threonine kinase signalling pathway, membrane

 Table 4.33: Status and function of MA plot genes

14	LOC118278260	DOWN	keratin, type I	Defense to gram negative
			cytoskeletal 9-like	bacterium, extracellular
				region, toxin activity, serine
				peptidase activity, innate
				immune response modulation
				of process of other organism
				proteolysis
15	LOC118272270	DOWN	basic iuvenile	Extracellular region nutrient
10	2001102/22/0	Domit	hormone-	reservoir activity
			suppressible protein 2	transmembrane recentor
				serine/threonine kinase
				signalling nathway
				membrane
16	LOC118278953	DOWN	Hemolin	Defense to gram negative
10	LUC110270755	DOWIN		bacterium extracellular
				region toxin activity serine
				pentidase activity inpate
				immune response modulation
				of process of other organism
				protoolygig
17	LOC119276426	DOWNI	hagia juwanila	Extracellular region sutrient
1/	LUC118270430	DOWN	hormono	Extracentular region, nutrient
			normone-	transmomhrana recentor
			suppressible protein i	aring/threaning tringge
				signalling nathway
				signaning pathway,
10	LOC11927(120	DOWNI	n anna a anti da l'ilra	Inemorane Neuropantida gignalling
18	LUC118276130	DOWN	neuropeptide-like	Neuropeptide signalling
			protein 29	pathway, ribonucleoprotein
10	1.0012(01121(DOWNI		complex
19	LUC126911316	DOWN	uncharacterized	-
- 20	1.0012(011215	DOUNI	LOC126911316	
20	LOC126911315	DOWN	uncharacterized	-
1	100110050165	DOUDI	LOC126911315	
21	LOC118279165	DOWN	uncharacterized	-
		DOWNI	LOCI18279165	
22	LOC118276076	DOWN	arp2/3 complex-	-
			activating protein	
			rickA-like	
23	LOC118270054	DOWN	uncharacterized	-

A heat map is a type of data visualization that displays aggregated information visually appealingly. Here, the heat map showed the top fifty differentially expressed genes between the control and treatment or resistant samples (MGC and MGT). The name of genes with gene ids of the heat map is mentioned. The top 25 upregulated and the top 25 downregulated genes have been identified and mentioned **(Table 4.34)**.

Sr no.	Transc	Start	End	Strand	Gene	Produc	Gene	Protei	Pvalue	
	ript_id					t	id	n_id		
Upregulated										
1	XM_05 070622 9.1	385212 5	386569 7	+	LOC11 826845 9	synapti c vesicle glycopr otein 2B	118268 459	XP_05 056218 6.1	0.0497 63277	
2	XM_03 559348 1.2	732717 8	733615 5	+	LOC11 827549 5	unchar acterize d LOC11 827549 5	118275 495	XP_03 544937 4.2	0.0496 18178	
3	XM_03 559351 8.2	623803 9	626938 0	-	LOC11 827552 5	zinc transpo rter ZIP1	118275 525	XP_03 544941 1.1	0.0495 39603	
4	XM_03 558942 1.2	461695 0	462374 8	+	LOC11 827275 8	pyrimi dodiaze pine synthas e	118272 758	XP_03 544531 4.2	0.0494 54694	
5	XM_03 558375 1.2	899109 6	899399 6	-	LOC11 826890 8	keratin, type I cytoske letal 10	118268 908	XP_03 543964 4.1	0.0494 39689	
6	XM_03 559749 8.2	623551 7	623637 0	+	LOC11 827827 8	coiled- coil domain - contain ing protein 115	118278 278	XP_03 545339 1.1	0.0492 71322	
7	XM_03 559305 8.2	884525 6	885046 9	+	LOC11 827518 8	fatty acid- binding protein 1-like	118275 188	XP_03 544895 1.1	0.0491 15466	

 Table 4.34:
 Top fifty differentially expressed genes

8	XM_03 558537 5.2	12219 8 71	122354 15	-	LOC11 826997 1	putativ e carboni c anhydr ase 3	118269 971	XP_03 544126 8.1	0.0480 36813
9	XM_05 069436 8.1	343035 7	343323 7	+	LOC12 691076 6	unchar acterize d LOC12 691076 6, transcri pt variant X3	126910 766	XP_05 055032 5.1	0.0475 81525
10	XM_03 557523 2.2	776474 4	777124 3	+	LOC11 826331 7	ethanol amine kinase	118263 317	XP_03 543112 5.1	0.0473 87679
11	XM_05 069655 1.1	826674 2	828369 0	-	LOC11 827731 6	ethanol aminep hospho transfer ase 1	118277 316	XP_05 055250 8.1	0.0467 04903
12	XM_05 069801 2.1	551502 3	568813 3	+	LOC11 827033 9	5- hydrox ytrypta mine recepto r 1	118270 339	XP_05 055396 9.1	0.0467 04285
13	XM_03 557563 9.2	464607 1	465207 7	-	LOC11 826356 7	ubiquiti n- conjug ating enzyme E2 G2	118263 567	XP_03 543153 2.1	0.0464 30242
14	XM_03 557649 0.2	361596 7	361715 3	-	LOC11 826410 1	prostag landin reducta se 1- like	118264 101	XP_03 543238 3.2	0.0464 15465
15	XM_05 070778 8.1	44 <u>59</u> 84 0	44 <u>80</u> 24 9	+	LOC11 827440 8	mucin- 2-like	11 <u>82</u> 74 408	XP_05 056374 5.1	0.0457 49055
16	XM_03 559549 1.2	107226 01	107285 88	-	LOC11 827688 5	UPF04 89 protein C5orf2 2	118276 885	XP_03 545138 4.2	0.0448 41285
17	XR_00 770689 7.1	173726 4	187528 8	+	LOC12 691227 7	unchar acterize d LOC12	126912 277		0.0447 917

						691227			
18	XM_03 560269 7.2	612337 8	612451 6	-	LOC11 828190 4	/ mitoch ondrial import inner membr ane translo case subunit Tim9	118281 904	XP_03 545859 0.1	0.0441 78093
19	XM_03 557316 3.2	636436 8	636518 4	_	LOC11 826205 8	39S riboso mal protein L20, mitoch ondrial	118262 058	XP_03 542905 6.1	0.0436 13955
20	XM_03 558978 4.2	370418	379004	-	LOC11 827303 6	CKLF- like MARV EL transm embran e domain - contain ing protein 7	118273 036	XP_03 544567 7.1	0.0436 13955
21	XM_03 558052 3.2	864073 9	864273 2	-	LOC11 826690 1	39S riboso mal protein L16, mitoch ondrial	118266 901	XP_03 543641 6.1	0.0433 67409
22	XM_03 558768 9.2	108931 59	108942 95	+	LOC11 827159 9	fumary lacetoa cetate hydrola se domain - contain ing protein 2-like	118271 599	XP_03 544358 2.2	0.0427 27823
23	XM_05 070246 3.1	388766 2	389306 5	+	LOC11 827954 4	unchar acterize d LOC11	11 8 279 544	XP_05 055842 0.1	0.0426 99475

						827954 4			
24	XR_00 770680 7.1	126552 58	126570 23	+	LOC11 826692 4	MICO S comple x subunit Mic10, transcri pt variant X2	118266 924		0.0422 50704
25	XM_05 070661 1.1	118215 69	118338 59	+	LOC11 827391 5	cytochr ome P450 6B7, transcri pt variant X15	118273 915	XP_05 056256 8.1	0.0418 37243

Sr no.	Transc	Start	End	Strand	Gene	Produc	Gene	Protei	Pvalue
	ript_id					t	id	n_id	
				Downre	egulated				
26	XM_05	667366	671672	-	LOC11	anocta	118279	XP_05	0.0497
	069847	9	8		827925	min-8-	255	055443	0526
	6.1				5	like		3.1	
27	XM_05	458869	468571	+	LOC11	hemice	118275	XP_05	0.0496
	069538	3	1		827557	ntin-1-	576	055134	31622
	3.1				6	like		0.1	
28	XR_00	772478	772680	-	LOC12	unchar	126911		0.0496
	770583	8	3		691132	acterize	321		12969
	8.1				1	d			
						LOC12			
						691132			
						1			
29	XM_03	497109	497477	-	LOC11	unchar	118277	XP_03	0.0491
	559588	3	3		827717	acterize	170	545177	0684
	4.2				0	d		7.2	
						LOC11			
						827717			
						0			
30	XM_03	504844	505281	+	LOC11	piggyB	118271	XP_03	0.0487
	558699	8	5		827110	ac	102	544289	70873
	9.2				2	transpo		2.2	
						sable			
						elemen			
						t-			
						derived			
						protein			
						4-like			

31	XM_03 559105 6.2	671221	673654	+	LOC11 827387 9	dnaJ protein homolo g 1	118273 879	XP_03 544694 9.1	0.0481 72076
32	XM_03 557815 7.2	471384 8	471954 5	+	LOC11 826533 3	plasmi nogen activat or inhibito r 1	118265 333	XP_03 543405 0.2	0.0465 59831
33	XM_03 558350 3.2	322059 8	322853 0	+	LOC11 826882 1	protein henna	118268 821	XP_03 543939 6.1	0.0463 13622
34	XM_03 557639 2.2	388490 1	389501 2	-	LOC11 826405 2	mitoch ondrial glycine transpo rter, transcri pt variant X3	118264 052	XP_03 543228 5.1	0.0462 89229
35	XM_05 070361 8.1	517620 4	51 8866 5	-	LOC11 827884 9	UDP- glucosy ltransfe rase 2- like	118278 849	XP_05 055957 5.1	0.0457 8509
36	XM_05 070692 7.1	125252 77	125825 43	-	LOC11 826996 0	cadheri n-87A	118269 960	XP_05 056288 4.1	0.0457 8509
37	XM_03 558017 9.2	740609 5	740881 3	-	LOC11 826669 3	unchar acterize d LOC11 826669 3	118266 693	XP_03 543607 2.2	0.0456 51874
38	XM_03 558181 9.2	126157 01	126215 98	+	LOC11 826769 3	unchar acterize d LOC11 826769 3	118267 693	XP_03 543771 2.1	0.0456 51874
39	XM_03 559608 2.2	385354	388111 7	-	LOC11 827733 3	transm embran e protein 68, transcri pt variant X1	118277 333	XP_03 545197 5.2	0.0456 51874
40	XM_05 069837 9.1	830040 6	832664 9	+	LOC11 827906 8	riboso mal protein	118279 068	XP_05 055433 6.1	0.0456 51874

						S6 kinase delta-1, transcri pt variant X1			
41	XM_03 559770 8.2	911508 2	911589 8	-	LOC11 827849 2	nuclear protein 1	118278 492	XP_03 545360 1.1	0.0455 23716
42	XM_03 558590 4.2	897072 3	900812 2	+	LOC11 827034 3	homeot ic protein empty spiracle s	118270 343	XP_03 544179 7.1	0.0452 54176
43	XM_03 558655 4.2	103269 12	103386 32	-	LOC11 827078 0	protein Skeleto r, isoform s D/E	118270 780	XP_03 544244 7.2	0.0452 54176
44	XM_05 069700 7.1	274869 7	276774 2	+	LOC11 826512 2	fatty acid synthas e-like	118265 122	XP_05 055296 4.1	0.0451 37961
45	XM_03 558310 8.2	143247 1	143463 7	-	LOC11 826857 1	carcini ne transpo rter- like	118268 571	XP_03 543900 1.2	0.0451 27361
46	XM_05 069565 7.1	587179 6	587568 0	-	LOC12 691097 6	unchar acterize d LOC12 691097 6	126910 976	XP_05 055161 4.1	0.0448 8643
47	XM_03 558016 4.2	779812 4	780111 7	+	LOC11 826668 3	arginin osuccin ate lyase	118266 683	XP_03 543605 7.2	0.0444 97416
48	XM_03 559316 8.2	920658 9	922570 3	-	LOC11 827526 8	unchar acterize d LOC11 827526 8	118275 268	XP_03 544906 1.2	0.0444 72514
49	XM_03 557495 7.2	360778 2	362803 1	+	LOC11 826314 4	phytan oyl- CoA dioxyg enase domain - contain	118263 144	XP_03 543085 0.1	0.0441 76692

						ing protein 1 homolo g			
50	XM_03 559196 5.2	429330 4	430252 1	+	LOC11 827447 6	peptido glycan- recogni tion protein LB	118274 476	XP_03 544785 8.2	0.0441 67711

Cytochrome P450: The cytochrome P450-dependent monooxygenases are a very important metabolic pathway involved in the catabolism and anabolism of xenobiotics and endogenous compounds. It is clear from the numerous insect species and pesticides involved that monooxygenase-mediated metabolism is a typical method by which insects acquire resistance to insecticides (Scott, 1999). In our study, around 78 cytochromes have been upregulated and 66 are downregulated. Some of the up and downregulated cytochromes are mentioned (Table 4.35). The cytochrome P450 along with other genes are known to help in providing resistance in insects against insecticides or any other xenobiotic components. Here, we observed differential expression of various genes in treatment compared to the control insects. Hence, we can say that these genes showing upregulation or downregulation are responsible for providing resistance.

Sr. No.	Upregulated	Downregulated
1	cytochrome c oxidase subunit 3-like	cytochrome P450 4C1
2	cytochrome P450 4C1-like	cytochrome P450 4c3-like
3	cytochrome P450 6B2	cytochrome P450 4d2-like
4	cytochrome P450 6B6-like	cytochrome P450 4g15
5	cytochrome P450 6B7, transcript	cytochrome P450 6B2, transcript
	variant X11	variant X2
6	cytochrome P450 6B7, transcript	cytochrome P450 6B4
	variant X2	
7	cytochrome P450 9e2-like	cytochrome P450 6k1

Table 4.35: Top differentially expressed cytochromes

Apart from cytochromes, various other genes also participate in the metabolic detoxification processes in the insect pest. The other top upregulated detoxification genes are mentioned. Other than them, cuticle protein genes and DNA binding genes which were found to be upregulated in the resistant midgut sample as listed (Table 4.36).

Sr. No.	Gene	Function
1	glutathione S-transferase 1	metabolic processes
2	acetylcholinesterase	catabolic processes
3	cuticle protein 3	structural constituent of cuticle
4	skin secretory protein xP2	structural constituent of chitin-based cuticle
5	alpha-amylase 2	carbohydrate metabolic processes
6	oxidoreductase TM_0325-like	steroid metabolic processes
7	glyoxylate/hydroxypyruvate reductase	glyoxylate metabolic processes
8	lipase 3-like	lipid metabolic processes
9	lipase member H	extracellular regions
10	pancreatic triacylglycerol lipase-like	extracellular regions
11	lipase member H-like	extracellular regions
12	pancreatic lipase-related protein 2-like	extracellular regions
13	myrosinase 1-like	carbohydrate metabolic processes
14	pancreatic triacylglycerol lipase-like	lipid metabolic processes
15	uricase	urate metabolic processes
16	pancreatic lipase-related protein 2-like	lipid metabolic processes
17	juvenile hormone esterase	neurotransmitter catabolic processes
18	esterase FE4-like	neurotransmitter catabolic processes
19	apyrase-like, transcript variant X1	nucleotide catabolic processes
20	tubulin beta chain	structural constituent of cuticle
21	beta-1,4-galactosyltransferase 4	carbohydrate metabolic processes
22	alpha-amylase 4N	carbohydrate metabolic processes
23	venom carboxylesterase-6-like, transcript variant X1	neurotransmitter metabolic processes
24	venom carboxylesterase-6-like, transcript variant X3	neurotransmitter metabolic processes
25	prostaglandin reductase 1-like, transcript variant X2	metabolic processes
26	homeobox protein araucan, transcript variant X2	DNA-binding genes
27	lipase 3-like	DNA-binding genes

Table 4.36: Top upregulated detoxification and cuticle genes

28	3-oxoacyl-[acyl-carrier-protein]	DNA-binding genes
	reductase FabG-like	
29	peptidyl-prolyl cis-trans isomerase,	DNA-binding genes
	transcript variant X3	
30	high choriolytic enzyme 2	DNA-binding genes

The continual exposure of a population to the selective pressure indicated by the careless use of insecticides which results in the evolution of insect resistance. Since insect resistance is biologically complicated phenomena linked to adaptive mechanisms like mutations and metabolic processes essential for organism maintenance, this information is extremely important (**Perry et al., 2011**). Pesticide target site mutations, detoxification enzymes' mediation of insecticide metabolism, and tegumental alterations that reduce insecticide penetration are now the key processes linked to resistance development (**Georghiou, 1972**).

NGS technology has made significant advancements in genomic research in non-model organisms. These methods offer a lot of data at a low cost, increasing the likelihood that crucial biological facts can be gleaned from transcriptomes (**Zhao et al., 2011**).

Some studies have claimed that resistance could result from increased chitin processing enzyme activity, and alterations in the expression of chitin synthases, which are engaged in either chitin production or chitin breakdown (chitinases). Others have suggested that cuticle protein synthesis may be influenced by resistance (Merzendorfer et al., 2012). In our results, endocuticle proteins were upregulated by several chitin proteins and larval cuticle proteins. These form the structural constituent of the cuticle and were found differentially expressed between the two types.

All the genes in our study which got differentially expressed, including 607 downregulated and 464 upregulated ones. Each of them plays a different role in the physiology of the insect. Among the various upregulated genes some such as collagenase, cholinesterase 1-like, and brachyurin-like have proteolysis and hydrolyze activity. Among the various downregulated genes some such as basic juvenile hormone-suppressible proteins 1 and 2 have nutrient reservoir activity. Several differentially expressed genes are well known for their role in metabolism and metabolic detoxification. Upregulated genes included glutathione S-transferase 1, acetylcholinesterase, cytochromes, esterases, and transporters. This suggests their role in providing resistance against Emamectin Benzoate treatment as well.

According to (**Brun-barale et al., 2010**), (**Carvalho et al., 2013**) and others, P450 monooxygenases are one of the key groups of enzymes connected to lepidopteran resistance to the pesticides like pyrethroids, and organophosphates. Also, it is similar in case of diamides (Lin et al., 2013).

Our findings revealed that a significant subset of DEGs was associated with detoxification, including genes encoding cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), UDP glucosyltransferases (UGTs), carboxylesterases (COEs), and ATP-binding cassette transporters (ABCs). The other important group of DEGs included cuticle proteins (CPs), which are crucial structural components of insect tissues and influence how efficiently pesticides penetrate insect bodies. According to our findings, the pathways that were most significantly enriched in whole larval body and midgut samples were "Metabolism of xenobiotics", "Structural component" and "DNA-binding". The focus was on the P450 superfamily and the CPs family, both related to insecticide metabolic resistance. P450-encoding genes are present in the reference FAW genome used in this work. Cuticle proteins provide structural and mechanical support. Biological roles in DNA replication, repair, storage, and modification, such as methylation, are played by DNA-binding domains with DNA structure-related functions.

4.4. RESULTS FROM THE HISTOLOGY

The histology of *Spodoptera frugiperda* midgut was observed in a brightfield microscope- DM 750, Leica. Photography was done for all three types of midguts- control (susceptible), treated/tested (dosing and observing after 72 hrs.) and resistant (Emamectin-resistant insect). Observations were taken at three magnifications, namely, 10X, 20X and 100X as 1, 2, and 3.

Control: *S. frugiperda*'s midgut had an epithelial layer, and the digestive cells' cytoplasm had uniform, well-developed nuclei. These cell surfaces were well-striated, and the peritrophic matrix in the midgut lumen was well-developed. It had muscular layers lining its basal surface (Figure 4.7 A, B, C).

Resistant: The midgut region had fewer deformities observed than the treated ones. The structure seemed largely intact. The longer and more regular exposure to the insecticide might have played a role in keeping the structure more stable than the initial exposure. However, little vacuolization was observed with a slight deformation in shape (Figure 4.7 D, E, F).

As the high visibility of various parts of the three types was seen at 100X magnification, these were analyzed and compared at this magnification. The images have been labelled as L for lumen, Ep for epithelium, P for peritrophic matrix, B for basal membrane, C for cytoplasm, N for nucleus, V for vacuole.