Chapter 3

Non-linear Ciric Contractions via
C'p-Simulation Functions

3.1 Introduction

Various generalizations of contraction mappings have been proposed in the liter-
ature, each introducing a broader class of mappings with contraction-like prop-
erties. The importance of these generalizations lies in their ability to extend the
applicability of fixed point theorems and provide tools for studying fixed points in
a wider range of spaces and under more relaxed conditions than traditional con-
tractions. They find applications in diverse areas, including functional analysis,
dynamic systems, optimization, and solving equations.

A quasi-contraction map by Ciri¢ [14] is a type of mapping that exhibits a
contraction-like property, although it may not strictly satisfy the conditions of a
contraction mapping. Specifically, a self mapping f on a metric space (X, d), is
said to be a quasi-contraction if there exists a nonnegative number ¢ < 1 such
that

d(fz, fy) < qmax{d(z,y),d(z, fz),d(y, fy),d(x, fy),d(y, fz)}, for all z,y € X.

The Ciri¢ fixed point theorem is given by the following.

Theorem B. [1/] Let (X,d) be a metric space and f : X — X be a quasi-
contraction mapping with the contractive constant ¢ < 1. Then f has a unique
fized point. Moreover, the sequence {x,} in X, which is defined by x,, = fx, 1
for alln € N such that xy € X is an initial point, converges to a fized point of f.
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Afterwards, the Banach contraction principle and many available results in
the literature were extended by replacing the contractive conditions, using some
control functions. In this direction, Khojasteh et al. [38] introduced the notion of
simulation functions, Z-contractions and presented fixed point theorems for such
contractions in complete metric spaces. Later, Roldan et al. [18] modified the
notion of simulation functions [38] by removing the symmetry of variables and
proved coincidence and common fixed point results.

Further, Roldan et al. [17] investigated the existence and uniqueness of
coincidence points via simulation functions in the setting of quasi-metric spaces
and deduced corresponding results in the framework of G-metric spaces. Liu et
al. [41] extended the class of simulation functions by using C-class functions of
Ansari [6] and introduced Cp-simulation functions which reasonably enlarge the
collection obtained by Khojasteh et al. [38]. Further, they proved existence and

uniqueness of coincidence and common fixed point for two operators.

Definition 3.1.1. [41, p.1104] A function F : [0,00)* — R has the property Cr,
if there exists Cr > 0 such that

(F}) F(s,t) > Cp implies s > t, for all s, > 0;
(Fy) F(t,t) < Cp, for all t > 0.

Definition 3.1.2. [41, p.1105] A Cp-simulation function is a function ( : [0, 00)* —

R satisfying the following conditions:
(i) ¢(t,s) < F(s,t) forall t,s > 0, where F' € C with property Cp ;

(ii) if {t,} and {s,} are sequences in (0,00) such that lim ¢, = lim s, > 0

n— oo n—oo

and t,, < s,, then limsup ((t,, s,) < CF.

n—oo
The family of all Cp-simulation functions is denoted by Zg.
On the other hand, Samet et al. [55] introduced the notion of admissible
mappings, a — 1) contractive type mappings and extended existing fixed point
results in the literature. Shahi et al. [56] generalized this concept for pair of

mappings and proved coincidence and common fixed point result in metric spaces.

Definition 3.1.3. [56, p.302] Let 7,9 : X — X and a : X x X — [0,00) be
mappings. We say that T" is a-admissible for g if

a(gr,gy) 21 = a(Tw,Ty) 21, for all z,y € X.
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For g =iy (identity mapping on X), T is an a-admissible mapping.

Definition 3.1.4. [49, p.75] Let T,g : X — X and a : X x X — [0,00) be
mappings. We say that 7' is triangular a-admissible for g if T" is a-admissible for

g and
a(gr,gy) > 1 and a(gy,g92) > 1 = a(gz,gz) > 1, for all z,y,z € X.

This Chapter consists of 3 sections. First section contains preliminaries.
In the second section, Ciri¢ type contraction via simulation functions and a-
admissible mappings is introduced. Further, we investigate sufficient conditions
for the existence and uniqueness of coincidence point and common fixed point
for such contraction in quasi-metric spaces. The obtained results give solution to
the open problem posed by Radenovic and Chandok [50]. In the third section,
Ciri¢ type Zp-contraction using C'p-simulation functions is introduced and proved
coincidence and common fixed point results for such contractions in quasi-metric

spaces. Finally, its consequences to G-metric spaces are discussed.

3.2 Preliminaries

Here, we take account of some basic definitions and results that are prerequisites

for this chapter.

Definition 3.2.1. [29, p.2] Let (X, d) be a quasi-metric space, {z, } be a sequence

in X and x € X. The sequence {z,} converges to x if and only if

nh_>n§0 d(x,, ) = n11_>n§0 d(z,x,) = 0.

The limit of a sequence in quasi-metric space is unique.
As d is not necessarily symmetric, authors defined left convergent, right con-

vergent, left Cauchy, right Cauchy sequences and completeness as follows.

Definition 3.2.2. [29, p.2] Let (X,d) be a quasi-metric space and {z,} be a
sequence in X. We say that {z,} is

e left-Cauchy if and only if for every ¢ > 0, there exists a positive integer
N = N(e) such that d(z,,x,) < ¢, for all n > m > N.
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e right-Cauchy if and only if for every £ > 0, there exists a positive integer
N = N(e) such that d(z,,z,) < e, for all m >n > N.

A sequence {x,} in a quasi-metric space is Cauchy if and only if it is left-
Cauchy and right-Cauchy.
The following lemma is sufficient condition to prove Cauchyness of the given

sequemnce.

Lemma 3.2.3. [30, p.3] Let {x,} be a sequence in a quasi-metric space (X, d)
such that

(i) d(@ps1, Tpya) < Ad(Tp, Trsa),n = 0,
(“) d(xn—ﬁ—Z: :En-i-l) < )\d(mn+17 In)vn > Oa
for some X € (0,1). Then {x,} is a Cauchy sequence in X.

Definition 3.2.4. [29, p.2] Let (X,d) be a quasi-metric space. We say that

(X, d) is complete if and only if each Cauchy sequence in X is convergent.

Roldan et al. [20] introduced precompleteness for metric spaces which is

weaker than completeness of the space.

Definition 3.2.5. [20, p.7] A subset E of a metric space (X,d) is said to be

precomplete if every Cauchy sequence in E' converges to a point of X.
Remark 1. (1) The empty subset is precomplete.

(2) Every complete subset of X is precomplete.

(3) Every subset of a complete metric space is also precomplete.

Example 3.2.1. Although X = (0, 3), endowed with the Euclidean metric, is

not complete, and A = (1,2) is not complete, the set A is precomplete.

Proposition 3.2.6. [20, Prop.23, p.7] If A C B C X and B is precomplete, then

A is also precomplete.

Remark 2. If T(X) C ¢g(X) and one of X or T(X) or g(X) is complete, then
T(X) is precomplete.
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Definition 3.2.7. [17, p.3] Let (X, d) be a quasi-metric space and T : X — X
be a given mapping. Suppose that T is continuous at u € X. Then for each

sequence {x,} in X such that z,, — u, we have T'x,, — Tu, that is,

lim d(Tx,, Tu) = lim d(Tu,Tx,) = 0.

n—o0 n—oo

Now, 1" is continuous if it is continuous at every point of X.
Roldan et al. [17] defined compatible mappings for quasi-metric spaces as

follows.

Definition 3.2.8. [17, p.4] Let T,g : X — X be mappings on a quasi-metric
space (X, d). We say that T and g are compatible if and only if

n— oo n— oo

for all sequences {x,} C X such that the sequences {gz,} and {Tx,} are con-

vergent and have the same limit.

Every quasi-metric induces a metric, that is, if (X, d) is a quasi-metric space,
then the function § : X x X — [0, 00), defined by

6(z,y) = max{d(z, y),d(y, )}

is a metric on X (see [29]).

The following result follows from the above definition.

Theorem C. [29, Theorem 2.3, p.3] Let (X,d) be a quasi-metric space. Let
d: X% —10,00) be the function defined by 6(z,y) = max{d(z,y),d(y, z)}. Then

(1) (X,0) is a metric space;

(2) {x,} C X is convergent to x in (X,d) if and only if {z,} is convergent to
xin (X, 0);

(3) {xzn} C X is Cauchy in (X,d) if and only if {x,} is Cauchy in (X,0);
(4) (X,d) is complete if and only if (X, ) is complete.

The following theorem shows the relationship between G-metrics and quasi-

metrics.
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Theorem D. [29, Theeorem 2.2, p.3] Let (X,G) be a G—metric space and
dg: X? = [0,00) be the function defined by dg(x,y) = G(z,y,y). Then,

(1) (X,dg) is a quasi-metric space;

(2) {z,} C X is G-convergent to x € X if and only if {x,} is convergent to x
m (X, dg),'

(3) {zn} C X is G-Cauchy if and only if {x,} is Cauchy in (X,dg);

(4) (X, G) is G-complete if and only if (X, dg) is complete.

3.3 Results for Cirié type simulation functions
using a-admissible mappings in quasi-metric
spaces

This section deals with the common fixed point results related to a-admissible
self mappings involving a Ciri¢ type contraction using Cp-simulation functions.

We need the following result as a prerequisite.

Lemma 3.3.1. Let (X, d) be a quasi-metric space and S, T are self mappings on
X. Let{z,} be a Picard-Jungck sequence of (S,T). If S is triangular c-admissible
for T with a(T'xqg, Sxo) > 1 and a(Sxg, Txg) > 1, then a(Txy,, Txy) > 1, n # m.

Proof. Let {z,} be a Picard sequence of (S,7") based at zy, that is,
Sxp, =Tx,q, for all n > 0.
Since S is a-admissible for T', we have
a(Txy, Stg) = a(Txog, Tx1) > 1 = a(Sxg, Sx1) = a(Tz1,Tr) > 1.
By induction, we get
a(Tx,, Tr,p) > 1, for all n > 0.
Since S is triangular a-admissible for 7', we have

a(Txg, Txy) > 1 and a(Tzy,Try) > 1 = a(Txg, Txs) > 1.
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Continuing this way, we get

a(lTz,, Tx,y,) > 1, for all m > n.
Analogously, for a(Szg, T'rg) > 1, we get

a(Tz,, Tx,,) > 1, for all m < n.

Hence a(Tz,, Txy,) > 1, for n # m. O

Now, by using a-admissible mappings of Shahi et al. [56], (Z(q,r). T)-quasi-

contraction of Ciri¢ type is introduced as follows.

Definition 3.3.2. Let (X, d) be a metric space, a : X x X — [0,00) and S, T
be self mappings on X. A mapping S is called a (Z (4 r), T')-quasi-contraction of
Ciri¢ type if there exist ( € Zp,Cr > 0 and A € (0, 1) such that

((a(Tz,Ty)d(Sz, Sy), \M(Tz,Ty)) > Cr (3.1)

for all x,y € X, where
M(Tz, Ty) = max {d(Tm, Ty),d(Tx, Sx),d(Ty, Sy),d(Tx, Sy),d(Ty, ST)}

Remark 3. (i) For a(z,y) = 1, inequality (3.1) becomes a (Zr,T) -quasi-
contraction of Cirié-Das-Naik type contraction [50].

(i) For afz,y) = 1, T = ix and Cp = 0, we get a Z-quasi-contraction of Cirié
type.

(iii) For a(z,y) = 1 and ((t,s) < F(s,t) = s — t, inequality (3.1) becomes a
Das-Naik type quasi-contraction [16].

The following is the main result of this section.

Theorem 3.3.3. Let (X, d) be a quasi-metric space, S, T : X — X be mappings
with S(X) C T(X). If S is a (Z(a,r), 1')-quasi-contraction of Cirié type satisfying

the following conditions:
(1) S is triangular a-admissible for T';
(i1) there exists xg € X such that a(Txo, Szo) > 1 and a(Sxg, Tz) > 1;
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(11i) at least, one of the following conditions hold:

(a) S(X) is precomplete in T'(X).

(b) (X,d) is a complete quasi-metric space, S and T are continuous and

compatible.

Then, S and T have a point of coincidence.

Proof. For any zy € X, since S(X) C T'(X), we get a sequence {x,} in X with

Sty =Tx,q forall n > 0. If Tx,, = Tx, 1 for some n, then Sz, = Tx,, that is,

T, is a coincidence point of S and T. Thus, we assume that d(Tz,1,Tx,) > 0

and d(Tx,, Tx,1) > 0, for all n > 0.

In view of condition (i), by Lemma 3.3.1, we get
a(Txy, Tx,y,) > 1, for all n # m.
Now,

d(Tz,, Txyq) = d(Sxy_1, STy)
< a(Txp 1, Tr,)d(STy_1, ST4).

Since S is a (Z(q,r), 1')-quasi-contraction of Ciri¢ type,

Cr < ((a(Txp_1,Tx,)d(Sxp_1,S20), \M(T2) 1, TT0,))
< FOAM(Tx, 1, Tx,),a(Tx, 1, Tx,)d(ST)H 1, S1)).

Since F € C, by (F1), we get

a(Txy_ 1, Tx,)d(STy_1,S7,) < AM(Txp_1,Tx,), for all n € N.

From (3.2) and (3.3), we have
A(Txp, Txp) < AM(Txy, Txy),
where

M(TZCn_l, Tfl’)n)

= max{d(Tx,_1,Tx,), d(Txy_1,5T, 1), d(Txpn, Sxy),d(TT,_1,Sx,),
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d(Txp, Stp_1)}
= max{d(Tx, 1,Tz,),d(Tx,, Txpi1),d(Txy 1, Txs:1)}
< d(Txp1,Tr,) + d(Txn, Trpyq).

Hence,

d(Txp, Tap) < MNd(Txp_q, Tay) +d(Tx,, Trny)),
A
d(T[L’n, Txn+l) S md(Txn—la Txn)a
d(Tzp, Trp) < kd(Tx,1,Tzy),

D
Wherek—m<1.

Similarly, we get
ATz, Tx,) < kd(Tx,, Tx,_1), for k < 1.

By Lemma 3.2.3, the sequence {T'z,} is a Cauchy sequence.
Now, consider independently cases (a)-(b) and prove that S and 7" have a coin-

cidence point.

Case (a): Assume S(X) is precomplete in T'(X). The precompleteness of S(X) in

T(X) ensures the existence of some v € X with

lim T2, =Tv = lim Sx,_;. (3.4)

n—oo n—oo

We claim that v is a coincidence point of S and T. On contrary, assume
that d(T'v, Sv) > 0 and d(Sv, Tv) > 0.
We have

lim M(Tz,,Tv)

n—oo
= lim max{d(Tx,,Tv),d(Tx,, Sz,),d(Tv, Sv),d(Tx,, Sv),d(Tv, Sz,)}
=d(Tv, Sv) > 0. (3.5)

Using (3.1), we get

Cr < {(a(Txp, Tv)d(Sx,, Sv), \M(Tx,, Tv))
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Case (b):

< FOAM(Tx,, Tv), a(Tz,, Tv)d(Sx,, Sv)).

By (F}) , we have
a(Tz,, Tv)d(Sz,, Sv) < AM (T'z,,,Tv), for all n € N.
Letting n — oo in above inequality and using (3.5), we get

lim a(Tx,, Tv)d(Tx,, Sv) < Xd(Tv, Sv).

n—oo

Hence, d(Twv, Sv) < Ad(Tv, Sv), a contradiction. Therefore, d(Tv, Sv) = 0.

So, v is a coincidence point of S and T

Assume that (X, d) is complete, S and T are continuous and compatible. In
this case, the sequence {T'z,} is a Cauchy sequence in the complete quasi-
metric space (X, d), hence there exists u € X such that lim 7'z, = u.
That is, A

lim d(Txy,u) = lim d(u,Tz,) = 0.

n—o0 n—oo

Since Sw, = Tx,,1, for all n > 0, we have

lim d(Sx,,u) = lim d(u, Sz,) = 0.

n—oo n—oo

The continuity of S yields that

lim d(ST'z,, Su) = lim d(Su, STx,) = 0.

n—oo n—oo

The continuity of T" yields that

lim d(T'Sx,,Tu) = lim d(Tu,TSx,) = 0.

n— oo n—oo

Moreover, as S and T are compatible and the sequences {Sz,} and {Tz,}

have the same limit, we deduce that

lim d(STx,,TSz,) =0or lim d(1Sx,,STx,)=0.

n—oo n— oo
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Now,
d(Su, Tu) < d(Su, STx,) + d(STx,, TSz,) + d(T Sz, Tu).

By taking limit n — oo in above inequality, we get d(Su, Tu) = 0.

Similarly, we can show that d(7Tu, Su) = 0.

In any case, Su = Twu and we conclude that u is a coincidence point of S and
T. O

For the uniqueness of a coincidence point and existence and uniqueness of a
fixed point of a (Z(q,r), T')-quasi-contraction of Ciri¢ type, we propose the follow-

ing hypothesis.

Theorem 3.3.4. In addition to the hypotheses of Theorem 3.3.3, suppose that for
all u,v € C(S,T), there exists w € X such that a(Tu, Tw) > 1, a(Tw,Tu) > 1,
a(Tw,Tv) > 1 and a(Tv,Tw) > 1. Also S,T commute at their coincidence

points. Then, S and T have a unique common fixed point.

Proof. We claim that if u,v € C(S,T), then Tu = T.
By hypotheses, there exists w € X such that

a(Tw, Tu) > 1 and a(Tw, Tv) > 1.

Let us define the Picard sequence {w,} in X by Tw, 1 = Sw,, for all n > 0 and
wy = w. Reasoning as in the proof of Theorem 3.3.3, we obtain that the sequence
{Tw,} converges to Tz.

By condition (i) in Theorem 3.3.3, we have
a(Tw,, Tu) > 1 and o(Tw,, Tv) > 1, for all n > 1. (3.6)
Using (3.1), we have

Cr < {(a(Twy, Tu)d(Swy, Su), \M (Tw,, Tu))
< FOAM (Twy, Tw), a(Tw,, Tu)d(Sw,, Su))
FOAM (Twy, Tu), o(Twy, Tu)d(Twyi1, Tw)). (3.7)
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By (F1) and (3.6), we have

d(Twpi1, Tu) < a(Twy,, Tw)d(T w1, Tw)
< AM(Twy, Tu), for alln > 1, (3.8)

where

M(Tw,, Tu)
= max{d(Twy,, Tu), d(Tw,, Swy,), d(Tu, Su), d(Tw,, Su), d(Tu, Sw,)}
= max{d(Twy, Tu), d(Twy, Twy41), d(Tu, Tw,11) }.

Letting limit n — oo, we get

lim M(Tw,, Tu) = max{d(Tz,Tu),d(Tu,Tz)}.

n—oo

Similarly, we get
d(Tu, Twyy1) < AM(Tu, Tw,), for all > 1, (3.9)
where
M(Tu, Tw,) = max{d(Tu, Tw,), d(Tw,, Tw,11), d(Tw,, Tu)}.
Letting n — oo, we obtain

lim M(Tw,, Tu) = max{d(Tu,Tz),d(Tz,Tu)}.

n—oo

If Tu # Tz and we take the limit n — oo in (3.8) and (3.9), we get

d(Tz,Tu) < Amax{d(Tz,Tu),d(Tu,Tz)},
d(Tu,Tz) < Amax{d(Tz,Tu),d(Tu,Tz)}.

If d(Tz,Tu) < Md(T'z,Tu), we get a contradiction.

If d(Tz,Tu) < Md(Tu,Tz) < \d(Tz2,Tu), a contradiction.

Thus, d(Tz,Tu) = 0. Therefore, Tu = T'z.

Similarly, we can prove Tw = Tz. This implies T'u = Twv. Hence, u is a unique

coincidence point of S and 7.
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Existence of a common fixed point: Let u € C(S,T), that is, Su = Tu. Due

to commutativity of S and T at their coincidence points, we get
TTu=TS5u=STu.

Let us denote T'u = z*, then Tz* = Sz*. Thus z* is a coincidence point of S and
T'. By uniqueness of coincidence point, we have z* = T'u = T2* = S§z*. Then, z*
is a common fixed point of S and T.

Uniqueness: Assume that w* is another common fixed point of S and 7.
Then, w* € C(S,T). Thus, we have w* = Tw* = T'z* = z*. This completes the
proof. O

If S(X) C T'(X), then there exists a Picard-Jungck sequence of (S,7") based
on any point o € X. Hence, from Theorem C, the above result is also valid for

metric spaces.

Corollary 3.3.5. Let (X, d) be a metric space, S,T : X — X be mappings and
let {x,} be a Picard-Jungck sequence of (S,T). Assume that S is a (Z(a,m),T)-

quasi-contraction of Ciri¢ type satisfying the following conditions:
(i) S is triangular c-admissible for T';
(i1) there exists xg € X such that a(T'xo, Sxo) > 1;

(i1i) for all u,v € C(S,T), there exists w € X such that a(Tu,Tw) > 1,

a(Tv, Tw) > 1, S,T commute at their coincidence points.
(iv) at least, one of the following conditions hold:

(a) S(X) is precomplete in T'(X).

(b) (X,d) is a complete metric space and S and T are continuous and

compatible.
Then, S and T have a unique common fized point.

The following result is a solution to an open problem posed by Radenovic
and Chandok [50].

Corollary 3.3.6. [50, p.147] Let (X,d) be a metric space, S,T be self map-
pings on X and let {x,} be a Picard-Jungck sequence of (S,T). Let S be a
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(Zp, T')-quasi-contraction of Cirié-Das-Naik type. Assume that, at least, one of

the following conditions hold:
(a) (T(X),d) is complete.
(b) (X,d) is a complete metric space, S and T are continuous and compatible.

Then, S and T have a unique point of coincidence. Moreover, if S andT" commute

at their coincidence point, then they have a unique common fixed point in X.
Proof. The result follows from Theorem 3.3.4, for a(z,y) = 1. O

Corollary 3.3.7. Let (X,d) be a metric space, o : X x X — [0,00) and S, T be
self mappings on X. Let {x,} be a Picard-Jungck sequence of (S,T) and A € (0,1)
such that

a(Tx, Ty)d(Sz, Sy) < AM(T'z, Ty), for all xz,y € X.

Assume that
(i) S is triangular a-admissible for T';
(ii) there exists xg € X such that o(Txg, Sxo) > 1;

(i1i) for all u,v € C(S,T), there exists w € X such that a(Tu,Tw) > 1,

a(Tv, Tw) > 1 and S,T commute at their coincidence points;
(iv) at least, one of the following conditions hold:

(a) (T(X),d) is complete.
(b) (X,d) is a complete metric space, S and T are continuous and com-

patible.
Then, S and T have a unique common fized point.

Proof. The result follows from Corollary 3.3.6, for a(z,y) = 1, F(s,t) = s — t,
Cr =0. O
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3.4 Results for Cirié type contraction using C'p-

simulation functions in quasi-metric spaces

This section introduces the generalized Ciri¢ type Zp-contraction for pair of map-
pings. Subsequently, the results of Debnath et al. [21] are extended by proving
common fixed point result in the frame work of quasi-metric spaces. Here, it is
not necessary for mappings to be continuous to obtain the common fixed point

result.

Definition 3.4.1. Let (X, d) be a quasi-metric space and S, T be self mappings
on X. The pair (S,7) is called a generalized Ciri¢ type Zp-contractive pair of
mappings if there exist ( € Zp,Cr > 0 and A € (0,1) such that

¢(d(Sz, Ty), \M(x,y)) > Cr, (3.10)
where M (z,y) = max {d(:r, y),d(y, Sx),d(x, Ty),d(x, Sz),d(y, Ty)};

¢(d(Ty, Sz), AM(y, z)) > Cp, (3.11)
where M (y, ) = max {d(y, z),d(Sz,y),d(Ty, x),d(Sz. z),d(Ty, y)},

for all z,y € X.

Remark 4. (i) Due to the absence of symmetry in quasi-metric spaces, we

required two inequalities in Definition 3.4.1.

(ii) By setting S = T in (3.10)-(3.11), the mapping S becomes a Zp-quasi-

contraction of the Ciri¢ type.
Now, we furnish our main result as follows.

Theorem 3.4.2. Let (X, d) be a complete quasi-metric space and S, T be self
mappings on X. Assume that (S,T) is a generalized Ciri¢ type Zp-contractive

pair of mappings. Then, S and T have a unique common fixed point.

Proof. Let zo € X and define a sequence {x,} such that

Topt1 = STap, Tonto = 1'Topq1, forall n > 0.
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If there is ny € N such that xg,, = xo,,41, then xy,, is a fixed point of S.
To show that o, is a common fixed point of S and T

Since d(Zony+1, Tong+2) > 0, using (3.10), we get

CF < C(d(SxQn(), T172n0+1)7 /\M<x2no’ $2n0+1))
< F()\M(ZEQno? x2n0+l)» d(S:EQn()a T':["Zno-i-l)) .

By (F}), we obtain

d($2n0+179:2n0+2) = d(szanSEQnOH)

S AA/[(:EQn()::EQn()-Fl)) (312)
where

M(T2ng, Tong+1) = max{d(X2ng; T2ng+1)s AT2ng+1, ST2ng)s A(Tang, TT2ne+1),
d(ang, STang ), A(T2n11, T20011) }
= max{d(22n,, Tang+1), AT2ng+1; T2ne+1)s A(T2ng, T2ng+2),
d(@2n0, Tang+1), A(T2ng+1: Tane+2) }

< d(Tangs Tang+1) + A(Tang+15 Tang+2)-

From (3.12), we get

d(Tang+1s Tong+2) < Ad(Z2ngs Tang+1) + d(T2ng+1, T2ng+2)]

< Ad(Zong+1; Tong+2), & contradiction.

Thus, Top,11 = Tongt+2- Hence, Ta,, = Topy+1 = Tan,+2 1S a common fixed point of
S and T.

Now, we assume that d(x,,z,+1) > 0 and d(z,+1,7,) > 0, for all n > 0.

Claim: {z,} is a Cauchy sequence.

From (3.10), we have

Cr < C(d(5$2m T$2n+1)7 AM (220, Top41))
< F(/\]W(@m Tont1), A(Toni1, 932n+2)),

where M (Zon, Ton+1) < d(Ton, Tont1) + d(Tang1, Tony2).
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Now, by using (F}), we get

d(Tant1, Tanta) < A[d(Tan. Tont1) + d(T2n+1, Tant2)]

A
< md(@m Tont1)

=k d(xopn, Tani1), for alln >0, (3.13)

where k = 1% < 1.
Also, from (3.11), we have

Cr < C(d(T@n—h St9n), AM (T2n1, 332n))
< F()\]W(L@n—h Ton), d(Ton, $2n+1))7

where

]\4(33271—17 LUzn) = max{d<x2n—17x2n>«, Ton—1, S:I:Qn)’ d(lfzmTl’zn—l)a

d(
d(fzm SﬂUQn), d($2n—1; TﬂﬁQn—l)}
d(

:max{d(IZn—hIZn)a $2n—17$2n+1)7d($2n7x2n)7

d(l‘zm 1L'2n+1), d(iL'Qn—l, lQn)}

< d(xop-1, Tan) + d(Tan, Toni1)-
Now, by using (F}), we get
d(xon, Tony1) < k d(x9,_1,%2,), for all n € N, (3.14)

where k = ﬁ < 1.
From (3.13) and (3.14), we have

d(zp, Tpi1) < k d(xp_1,7,), for all n € N. (3.15)
Similarly, we can show that
d(Tpy1,2n) < k d(zy, x,—1), for all n € N. (3.16)

Thus, from Lemma 3.2.3, we conclude that {z,} is a Cauchy sequence in X.
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Since (X, d) is complete, there exists u € X such that

n11_>:r1[01o d(zy,,u) =0= nh_}:n[olo d(u, x,).

To prove that Su = Tu = u.
From (3.10), we obtain

Cr < C(d(SU, T$2n+1), )\M(U, $2n+l)) < F()\M(U, $2n+1), d(SU, T$2n+1)) .

By (F}), we obtain

d(SU, I2n+2) S )\A[(LL, LE2n+1), (317)
where
M(Ua $2n+1) = max{d(u, 33277,-‘,-1)7 d($2n+1, SU), d(% T$2n+1),
d(u, Su), d(zans1, TTon11) }-
Also,
d(fl?gn+2, SU) S )\M(flign+1, ’lL), (318)
where

M (zap41,u) = max{d(z2n+1,w), d(SU, Topi1), d(TT2m11,0),

d(SUa U): d(T$2n+1, 332n+1)}-
Taking limit as n — oo on both sides of (3.17) and (3.18), we get
d(Su,u) < X\ d(u, Su) and d(u, Su) < X\ d(Su,u).

Hence, d(Su,u) = d(u, Su) = 0. Implies, Su = u.
Similarly, we can show that Tuw = u. Thus, u is a common fixed point of S and
T.

Uniqueness: Let « is another common fixed point of S and T'. Then

Cr < C(d(Su, Tu'), A\M (u, u’))
< F(AM (u,u), d(Su, Tu'))
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where

M (u,u'") = max{d(u,u),d(u’, Su), d(u, Tu'), d(u, Su),d(u', Tu')}
= max{d(u,u),d(u',u)}.

From (F}), we get

d(u,u') < X max{d(u,u),d(u,u)}.
Similarly, we get

d(u',u) < X max{d(u,u),d(u,u)},

a contradiction. Hence, d(u,«’) = 0. Thus, u is a unique common fixed point
of S and 7. O

Corollary 3.4.3. Let (X,d) be a complete metric space and S,T: X — X be
self mappings. Suppose there exists X\ € (0,1) such that

d(Sz, Ty) < AM(z,y), for all z,y € X. (3.19)

Then, S and T have a unique common fized point.

Proof. If we take ((t,s) = ks —t,k € (0,1),Cp = 0 in (3.10), we get (3.19). Due
to symmetry of d the result follows from Theorem 3.4.2. |

In (3.19), if we restrict the value of A to 0 < A < % and omit d(z,y), d(Sz,y)
and d(Ty,z). This gives us the Kannan type contraction. Similarly, by omitting
d(z,y), d(Sz,z) and d(Ty,y) in (3.19), we get the Chatterjea type contraction.
From Theorem 3.4.2, we obtain the following result of Debnath et al. [21].

Theorem E. [21, Theorem 2.3, Theorem 2.5, p.386] Let (X,d) be a complete
metric space and S, T be self mappings on X. Suppose there exists A € (0, %) such
that

d(Sz,Ty) < Nd(Sz,z) + d(Ty,y)], (Kannan type)

or
d(Sz,Ty) < Nd(Sz,y) +d(Ty,x)], (Chattarjea type)

forall x,y € X. Then, S and T have a unique common fixed point.
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The contractive condition in (3.19) can be modified to obtain the following,
by restricting the value of A to 0 < A < % and omitting the terms d(y, Sx) and
d(xz,Ty). This result corresponds to the Reich type common fixed point result
for a pair of self-mappings in metric spaces, as established by Debnath et al. [21].

Theorem F. [21, Theorem 2.6, p.389] Let (X, d) be a complete metric space and

S, T be self mappings on X . Suppose there exists A € (0, %) such that

d(Sz,Ty) < Nd(z,y) + d(Sz,x) + d(Ty,y)], (Reich type)

for all x,y € X. Then, S and T have a unique common fized point.

3.5 Consequences: Common fixed point results

in G-metric spaces

In this section, Theorem 3.3.3, Theorem 3.3.4 and Theorem 3.4.2 are extended
in G-metric spaces.

The following results are consequences of Theorem 3.3.3 and Theorem 3.3.4.

Corollary 3.5.1. Let (X,G) be a G-metric space, v, : X x X x X — [0,00)
and S,T : X — X be mappings with S(X) C T(X). Let ( € Zp,Cr > 0 and
A € (0,1) such that

C(v(Tx, Ty, Ty)G(Sxz, Sy, Sy), \M(Tz, Ty, Ty)) > Ck, (3.20)
for all x,y € X, where

M(Tx, Ty, Ty) = max{G(Tx, Ty, Ty), G(Tz, Sz, Sx), G(Ty, Sy, Sy),
G(Tz, Sy, Sy),G(Ty, Sz, z)}.
Suppose that
(1) S is weak cu,-admissible for T';
(1) a,(Tz, Ty, Ty) > 1 and a,(Ty, T2, T2) > 1 = ,(Tx,T2,Tz) > 1;

(11i) there exists xo € X such that o, (Txo, Sxg, Sxo) > 1 and
(Xw(SIL'(),TZL‘(),TLL'(J) Z 1,'
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(iv) for all u,v € C(S,T), there exists w € X such that a,(Tu, Tw, Tw) > 1,
Qo (Tw, Tu, Tu) > 1, a,(To, Tw, Tw) > 1, a,(Tw,Tv,Tv) > 1 and S,T

commute at their coincidence points;
(v) at least, one of the following conditions hold:

(a) S(X) is precomplete in T'(X).

(b) (X,G) is a complete G-metric space, S and T are continuous and

compatible.
Then, S and T have a unique common fixed point.

Proof. 1t suffices to take dg(z,y) = G(z,y,y) and a(z,y) = a,(z,y,y). From
(3.1), we get (3.20). Since (X, G) is complete, by Theorem D, (X, ds) is a com-
plete quasi-metric space. Hence, the result follows from Theorem 3.3.3 and The-
orem 3.3.4. O

If S(X) C T'(X), then there exists a Picard-Jungck sequence of (S,7") based
on any point o € X. The following result is obtained from Corollary 3.5.1.

Corollary 3.5.2. Let (X,G) be a G-metric space, v, : X x X x X — [0,00)
and S, T : X — X be mappings. Let {x,} be a Picard-Jungck sequence of (S,T),
C€ Zp,Cpr>0and X € (0,1) such that (3.20) is satisfied. Suppose that

(i) S is weak cv,-admissible for T';
(1) a,(Tz, Ty, Ty) > 1 and a,(Ty, T2, T2) > 1 = ,(Tx,T2,Tz) > 1;

(11i) there exists xy € X such that a,,(Txy, Sxo, Sto) > 1 and
(S0, T, Tw0) > 15

() for all u,v € C(S,T), there exists w € X such that cv,(Tu, Tw,Tw) > 1,
ay(Tw, Tu, Tu) > 1, a,(Tv, Tw,Tw) > 1, ap(Tw,Tv,Tv) > 1 and S,T

commute at their coincidence points;
(v) at least, one of the following conditions hold:

(a) S(X) is precomplete in T(X).

(b) (X,G) is a complete G-metric space, S and T are continuous and

compatible.
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Then, S and T have a unique common fixed point.

Corollary 3.5.3. Let (X,G) be a G-metric space, v, : X x X x X — [0,00)
and S,T : X — X be mappings. Let {x,} be a Picard-Jungck sequence of (S,T')
and X € (0,1) such that

a(Tx, Ty, Ty)G(Sz, Sy, Sy) < \M(Tx, Ty, Ty), for all z,y € X.

Suppose that
(1) S is weak ov,-admissible for T';
(1) cv(Tx, Ty, Ty) > 1 and a,(Ty, Tz,Tz) > 1 = a,(Tz,Tz,Tz) > 1,

(11i) there exists xy € X such that o, (Txg, Sxo, Sto) > 1 and
ay(Sxo, Txg, Txg) > 1;

() for all u,v € C(S,T), there exists w € X such that o, (Tu, Tw,Tw) > 1,
Q@ (Tw, Tu, Tu) > 1, ap(Tv, Tw, Tw) > 1, a,(Tw,Tv,Tv) > 1 and S,T

commute at their coincidence points;
(v) at least, one of the following conditions hold:
(a) S(X) is precomplete in T'(X).

(b) (X,G) is a complete G-metric space, S and T are continuous and

compatible.
Then, S and T have a unique common fized point.

Proof. The result follows from Corollary 3.5.2, if we consider a(x,y) = 1, F(s,t) =
S — t, CF =0. ]

Corollary 3.5.4. Let (X, Q) be a G-metric space and S, T : X — X be mappings.
Let {x,} be a Picard-Jungck sequence of (S,T), ¢ € Zr,Cr > 0 and XA € (0,1)
such that

C(G(Sx, Sy, Sy), \M(Tz, Ty, Ty)) > Cp, forall z,y € X. (3.21)

Also assume that at least, one of the following conditions hold:
(a) S(X) is precomplete in T'(X).

59



Chapter3

(b) (X,G) is a complete G-metric space, S and T are continuous and compat-
wble.

Then, S and T have unique point of coincidence. Moreover, if S, T commute at

their coincidence points, then S and T have a unique common fized point in X .

Proof. In (3.20), if we take a,,(z,y,y) = 1, we get (3.21). Then the result follows
from Corollary 3.5.2. O

The following results are obtained from Theorem 3.4.2.

Corollary 3.5.5. Let (X, G) be a complete G-metric space and S, T: X — X be
self mappings. Suppose there ezist ( € Zp, Cr > 0 and X € (0,1) such that

C(G(Sz, Ty, Ty), \M'(z,y)) > Cr; (3.22)

¢(G(Ty, Sz, Sx), AM'(y, z)) = Ct, (3.23)

where
M'(x,y) = max{G(z,y,y),G(y, Sz, Sx), G(x,Ty. Ty),G(x, Sz, Sx), G(y, Ty, Ty) };

M'(y, z) = max{G(y, z, z), G(Sz,vy,vy), G(Ty, z, z), G(Sz,z,z), G(Ty,vy,y)},

for all x,y € X. Then, S and T have a unique common fized point.

Proof. It suffices to take dg(z,y) = G(z,y,y), from (3.10) and (3.11) we get (3.22)
and (3.23) respectively. Since (X, () is complete, then by Theorem D, (X, dg) is

a complete quasi-metric space. Then, from Theorem 3.4.2 proof follows. O

Corollary 3.5.6. Let (X, G) be a complete G-metric space and S,T: X — X be
self mappings. Suppose there exists X € (0,1) such that

G(Sz,Ty,Ty) < AM'(z.y); (3.24)

G(Ty, Sx,Sx), < AM'(y, x), (3.25)
forall x,y € X. Then, S and T have a unique common fixed point.

Proof. If we take ((t,s) = ks —t,k € (0,1),Cr = 0 in (3.22) and (3.23), we get
(3.24) and (3.25) respectively, then result follows from Corollary 3.5.5. O
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For S =T in Corollary 3.5.6, obtained result is a generalization of Theorem
4.2.1 in [2].
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