Chapter 6

Non-linear Contractions via
Generalized [' — Cp-simulation
Functions

6.1 Introduction

Simulation functions have huge applications in non-linear functional analysis.
The simplicity and usefulness of these functions have inspired many researchers to
diversify it further. Motivated by this dynamic concept, Golshan [25] introduced
the notion of generalized simulation functions by modifying the condition ((,)
of simulation function of Khojasteh et al. [38]. Further, Golshan introduced
the notion of weak (-contraction as a generalization of contraction mapping in
context of metric spaces and demonstrated fixed point result with a new proof of

the main result of Khojasteh et al. [38], under weaker conditions.

Definition 6.1.1. [25, p.2] A function £ : [0,00) x [0,00) — R is a (generalized)

simulation function of type I if

(&1) There exists function ¢ : [0, 00) — R such that

if £(t,s) > 0 then &(t, s) < @(s) — ¢(t), for all s,¢ > 0.

(&) If {t,} and {s,} are non increasing sequences in (0, co) such that lim ¢, =

n—oo
lim s, > 0, then limsup &(t,, s,) < 0.

n—oo n—oo

We say that £ is a (generalized) simulation function of type II if it satisfies (&)

and the following (&)* condition.
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(&)* If {t,} and {s,} are non increasing sequences in (0, 00) and {(t,, s,) > 0
then
lim £(t,,s,) — 0 implies s, — 0.

n— oo

In this chapter, we introduce (generalized) I' — Cp-simulation functions us-
ing I' — C'-class functions, which generalize and extend the notion of generalized
simulation functions [25]. Subsequently, weak (ng, T')-contraction for pair of map-
pings is introduced to establish common fixed point result via such functions in
the framework of G-metric spaces. Further, this result is extended to quasi-metric
spaces and metric spaces by using the methods of Jleli and Samet [29] and Samet
et al. [54].

6.2 Results for weak contraction in G-metric spaces

In this section, firstly, (generalized) I" — C'p-simulation function is defined. Sub-
sequently, weak (ng, T')-contraction is defined for pair of mappings in a G-metric
spaces. Further, common fixed point result is established for such contraction in

G-metric spaces.

Definition 6.2.1. A function 7 : [0,00) x [0,00) — R is a (generalized) I' — Cp-

simulation function of type I if

(m1) There exists Cr > 0 such that

if n(t,s) > Cp then n(t,s) < F(s,t), for all s,t >0,

where F' € Cr with property I' — Cp.

(n2) If {t,} and {s,} are non increasing sequences in (0, c0) such that lim ¢, =
n—oo

lim s, > 0, then limsupn(t,, s,) < Cg.

n—oo n—o00

We say that 7 is a (generalized) I' — Cp-simulation function of type II if it satisfies
(1) and the following (72)* condition.

(me)* If {t,} and {s,} are non increasing sequences in (0, c0) and 7(t,, s,) > Cr
then
lim n(t,,s,) — Cr implies s, — 0.

n—oo
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Remark 5. Every (generalized) simulation function of type I and type II are

(generalized) I' — C'p-simulation function of type I and type II respectively.

Proof. Results follows from definition 6.2.1, by considering F'(s,t) = v(s) — v(¢),
where v € I'([0, 00)) and Cr = 0. O

Definition 6.2.2. Let (X, G) be a G-metric space and S, T be self mappings on
X. For a function 7 : [0,00) x [0,00) — R, S is called

(i) an (ng,T)-contraction if

n(G(Sz, Ty, Ty), G(z,y,y)) = CF, forall z,y € X, (6.1)
n(G(Tx, Sy, Sy), G(x,y,y)) > Cp, for all z,y € X; (6.2)

(ii) a weak (ng,T)-contraction if

n(G(Sz, T'Sx, TSx), G(x,Sx,Sx)) > Cp, for all z € X, (6.3)
n(G(Tx, STz, STx),G(z,Tz,Tz)) > Cp, for all z € X; (6.4)

(iii) a generalize weak non-expansive map if

G(Sz, TSz, TSx) < G(x, Sz, Sz), for all z € X, (6.5)
G(Tz,STx,STx) < G(x,Tx,Tx), for all z € X. (6.6)

If we take "= S in (6.1)-(6.6), we get the following contractions.
A mapping S is called

(a) an nmp-contraction if

n(G(Sz, Sy, Sy),G(x,y,y)) > Cp, for all 2,y € X; (6.7)

(b) a weak ng-contraction if

n(G(Sz, S*x, S?z), G(x, Sz, Sx)) > CF, for all v € X; (6.8)

(c) a weak non-expansive map if
G(Sx, S*x, S%x) < G(x, S, Sz), for all v € X. (6.9)
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In definition 6.2.2, for dg(x,y) = G(z,vy,y), an (ng,T)-contraction for G-
metric spaces reduced to (ng, T)-contraction for quasi-metric spaces (X, dg).

Main result of this chapter is stated here.

Theorem 6.2.3. Let (X, G) be a complete G-metric space, S and T be self map-
pings on X and 1 : [0,00) x [0,00) = R be a function.

(i) Let S be an (np,T)-contraction. If n satisfies (n1), then S and T have at
most one common fized point.
Also, if v € I'([0, 00)) then

G(Sz, Ty, Ty) < G(x,y,y), for all x #y.

(i1) Let n be a T' — Cp-simulation function of type II, if S(T'S)™ and (T'S)"™,
ng € N be a weak (np,T)-contraction then S is T-asymptotically reqular.
The same result holds true if n be a I' — C'r-simulation function of type I

and S be a generalized weak non-expansive map.

(i1i) Let S be an (ng,T)-contraction with S or T is continuous andn be a I'—Cp-
simulation function of type II (or type I and S be generalized weak non-

expansive map) then S and T have a unique common fixed point.

Proof. (i) Suppose that Tz = Sz = z, Ty = Sy = y and =z # y, then
G(z,y,y) = G(Sx, Ty, Ty) = t(say) > 0.
From (n;) and (F3), we get

n(t,t) > Cp = n(t,t) < F(t,t) < Cp,

which is a contradiction. Hence common fixed point of S and T is unique
if exists.

Suppose that 0 < s = G(x,y,y) <t = G(Sxz, Ty, Ty), where x # y.

From (6.1) and (7,), we have

Cr <n(G(Sz.Ty,Ty),G(x,y,y)) < F(G(z,y,y), G(Sz, Ty, Ty)).
From (F;), we get

Y(G(Sz, Ty, Ty)) < v(G(z,9,v)).
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Since v is non-decreasing, G(Sxz, Ty, Ty) < G(x,y,y), which is a contradic-
tion. Hence G(Sx, Ty, Ty) < G(x,y.y).

(ii) For any fixed zo in X construct a sequence {z,} with
Top = (1'S)"(x0), Tans1 = S(xay), for all n > 0.

Let t; = G(x;, 2441, x41), for all ¢ > 0. Suppose t;, = 0, for some k € N.
If xop = Topy1, then zo, is a fixed point of S.

If xop11 = Tokyo, then zopyq is a fixed point of 7T'.

Thus, at least one of S or T" has a fixed point.

Now, assume that ¢, # 0, for all £ > 0.

Put x = xonron = (1'S)*(24), k =0,1,--- in (6.3), we get

Cr < H(G(S$2no+2k7TSLU2n0+2k,TS$2nO+2k)7
G($2n0+2k7 STong 2k S$2n0+2k))
= U(G($2n0+2k+1, Lono+2k+25 x2n0+2k+2)7

G($2no+2k, L2no+2k+15 l‘2no+2k+1))

= 1(t2ng+2k+1, t2ng+2k)
< F(tong+2k, tong+2k+1)- (6.10)

Put © = Topgront1 = S(TS)"0*(20), k= 0,1,--- in (6.4), we get

Cr < n(G(Txang 42641, ST Tong 2641, ST Tong12641),
G(Dong+2k41: T Tong 2541, T Tong42k41))
= U(G($2no+2k+27 Tono+2k+35 $2n0+2k+3),
G($2no+2k+lv L2ong+2k+25 332n0+2k+2))

= N(tong+2k+2, t2ng+2k+1)

< F(tangt2k+15 tongr2k+2)- (6.11)
From (6.10) and (6.11), we get
CF < T](f2+1,fz> < F(tz‘,tz‘+1>, for all 4 > ny. (612)

From (F7), we get v(t;11) < ~(t;). Since, 7 is non decreasing t; 1 < t;, that is
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(i)

G(.CEH_l, Tit2, IL'H_Q) < G(.’L‘Z, Lit1, $i+1>, for all ¢ Z ng. Hence {G(fL‘Z, Tit1, .TZ‘+1>}
is monotonically decreasing sequence of non negative real numbers. Thus

there exists r > 0 such that lim G(x;, 441, Tis1) =71
71— 00

To prove r = 0, suppose that r > 0.
Taking limit as i — oo in (6.12) and using (F2), we get

OF S hm n(ti+l7ti) S F(hm ti, hm ti+1) = F(T, T) S CF-
1—00 1—00 1—00
Hence,
1—00

Type II: From (17)*, we get r = lim ¢; = 0, a contradiction.

1— 00
Type I: From (6.5) and (6.6), we have ¢;,1 < t;, for all i« > 0. Using (1), we
get lim sup n(tis1,t;) < Cr, a contradiction to (6.13). Hence, 7 = 0. Hence

11— 00

lim G(I‘Z, LTit1, Ii-i—l) =0. (614)

11— 00

Since G(x;, 2, xiv1) < 2G (x4, 01, Tiy1), We get

1—»00

We shall show that {z,} is a G-Cauchy sequence. It is sufficient to show
that {2,} is a G-Cauchy sequence. Assume that {xs,} is not a G-Cauchy
sequence. Then from Lemma 1.3.14, there exist € > 0 and two subsequences
{@on@y} and {zomm)} of {x2,} such that, for all k& € N, & < 2n(k) <
2m(k) < 2n(k + 1) and for all given py, ps, p3 € Z,

kh—>ngo G(ﬂfzn(k)+p1, L2m(k)+p2> me(k)-i-pa) =& (6.16)

Considering two non increasing subequences

a; = G(Tan(k) (1), T2m(k)(1)s T2m(k)(D))

and

@ = G(Tan(k) (1)+2: T2m(k) (1) +2> T2m(k) (1)+2)

of G(Zon(k), Tam(k)s Tam(k)) a0d G(Zan(k)+25 Lam(k)+25 L2m(k)+2)
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such that

lim q; = lim a; = ¢. (6.17)
l—00 l—00

From (6.1) and (1), we have
Cr <nl(aj,a;) < Flay, ay).
Letting [ — oo, we get

Cr < llim n(ay, a;) < F(lim a;, lim a)) = F(e,2) < Cp.
—00

l—o0 l—00

This implies,
llim n(aj,a;) = Cr. (6.18)
— 00

Type II: From ()%, llgilo a; = 0, a contradiction to (6.17).

Type I: From (72), we get, limsup n(a;, a;) < Cr, a contradiction to (6.18).
Thus {zs,} is a G-Cauchy sle_zlcﬁence. Hence {z,} is G-Cauchy sequence.
Since (X, G) is complete, x,, — u € X, implies that

lim zo, = lim x9,41 = u.
n—oo n—oo

Assume S is continuous, then lim Sz,, = lim x5,,; = Su. Implies that
n— oo n— oo
Su = u.
From (6.1), we have
Cr < n(G(Su, TSu,TSu), G(u, Su, Su))

= n(G(u, Tu, Tu), G(u, u,u))
< F(G(u,u,u), G(u, Tu, Tu)).

From (Fy), we get 0 < v(G(u, Tu, Tu)) < v(G(u,u,u)) = v(0) = 0. Since
v € T'([0,00)), we get G(u, Tu, Tw) = 0, implies that Tu = u. The unique-
ness follows from part (i).

O
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The following example validates our result.

Example 6.2.1. Let X = [0, 1]. Define G : X® — [0, 00) as

0 if v =y =
’ I (6.19)
max{z,y, 2}, otherwise.

G(I,y,z) = {

Then (X, G) is a complete G-metric space. Define 5,7 : X — X as S(z) = 5
and T'(x) = §, for all x € X. Also define 7 : [0,00) — [0, 00) by

(t) = t, ifo<t<l,
R I

and 7 : [0,00)* — R by

v(s)

T40s) v(t), for all t,s € [0, 00).

n(ta S) =

Taking F(s,t) = v(s) —v(t) with Cp = 0, for all s,¢ € [0,00). Then 7 is a
(generalized) I' — C'p-simulation function type I and all the conditions of Theorem

6.2.3 are satisfied and z = 0 is the unique common fixed point of S and 7T

6.3 Consequences: Common fixed point results

in quasi-metric spaces and metric spaces

In this section, firstly the weak (ng,T)-contraction for quasi-metric spaces is
defined. Further, the common fixed point result is extended to quasi-metric and
metric spaces. The result obtained for metric spaces generalizes the result of
Golshan [25, Theorem 2.4, p.6].

Definition 6.3.1. Let (X, d) be a quasi-metric space and S, T be self mappings
on X. For a function 7 : [0,00) x [0,00) — R, S is called

(i) an (np,T)-contraction if

n(d(Sx,Ty),d(z,y)) > Cp, for all z,y € X, (6.20)
n(d(Tx, Sy),d(x,y)) > Cp, for all 2,y € X, (6.21)
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(ii) a weak (ng, T)-contraction if

n(d(Sz,TSx),d(z, Sz)) > Cp, forall x € X, (6.22)
n(d(Tx, STx),d(x, Tx)) > Cf, for all v € X, (6.23)

(iii) a generalize weak non-expansive map if

d(Sz,TSz) < d(
d

z,Sz), for all z € X. (6.24)
d(Tx,STx) < d(z,

Tx), for all z € X. (6.25)

If we take T"= S in (6.20)-(6.25), we get the following contractions.
A mapping S is called

(a) an nmp-contraction if

n(d(Sz, Sy),d(z,y)) > Cr, forall v,y € X, (6.26)

(b) a weak ng-contraction if

n(d(Sz, S*x),d(x, Sz)) > Cp, for all z € X, (6.27)

(c) a weak non-expansive map if

d(Sx, S?z) < d(w, Sx), for all v € X. (6.28)

Remark 6. In (6.26) and (6.27), Cr = 0 reduced to &-contraction and weak

&-contraction of [25] respectively.
Theorem 6.2.3 in context of quasi-metric spaces is stated as follows.

Theorem 6.3.2. Let (X,d) be a complete quasi-metric space, S and T be self
mappings on X and n : [0,00) x [0,00) — R be a function.

(i) Let S be an (ng,T)-contraction. If n satisfies (m1), then S and T have at
most one common fized point.
Also, if v € I'([0, 00)) then

d(Sz, Ty) < d(x,y), for all z #y.
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Conditions (i) and (iii) of Theorem 6.2.3 holds. S and T have a unique

common fized point.

Proof. In Theorem 6.2.3, take dg(x,y) = G(z,y,y), then result follows from
Theorem D. O

Theorem 6.3.2 is also valid in context of metric spaces. Now, if we consider
(X,d) as a complete metric space then based on Theorem 6.3.2, Theorem 2.4 in

[25] can be improved as follows.

Corollary 6.3.3. Let (X,d) be a complete metric space, S be a self mapping on
X and £ : [0,00) X [0,00) = R be a function.

(i) Let S be an &-contraction. If€ satisfies (&), then S has at most one common
fized point.
Also, if v € I'([0, 00)) then

d(Sz,Sy) < d(x,y), for all x #y.

(ii) Let & be a simulation function of type II, if S™, ng € N be a weak -
contraction then S is asymptotically reqular. The same result holds true if

& be a simulation function of type I and f be a weak non-expansive map.

(i1i) Let S be an &-contraction with S is continuous and & be a simulation func-
tion of type II (or type I and S be weak non-expansive map) S has a unique

fixed point.

Proof. In Theorem 6.3.2, if we take T' = S, F(s,t) = v(s) — v(t) and Cr = 0,

then (ng, T)-contraction reduces to -contraction in [25]. U

Remark 7. Thus, Corollary 6.3.3 generalizes [25, Theorem 2.4, p.6] for weaker
hypothesis. In Corollary 6.3.3, we do not require the condition (7) and (8) of
Theorem 2.4-(ii) and condition (10) of Theorem 2.4-(iii) of [25].
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