Chapter 1

Introduction

Fixed point theory is a fundamental and versatile branch of mathematics with
wide-ranging applications in various fields. It provides a powerful framework for
understanding the existence and uniqueness of fixed points of function, making
it a valuable tool in both pure and applied mathematics. It includes classical
results for proving the existence and uniqueness theorems in ordinary differen-
tial equations, partial differential equations, integral equations, matrix equations,
functional equations, iterated function systems, variational inequalities etc. Nu-
merous problems in various branches of mathematics can be recast as fixed point
problems, which have roots in functional analysis, topology, operator theory,
fractal theory, differential geometry, eigenvalue problems, approximation theory,
among others. Significantly, the applications of fixed point theory extend beyond
Mathematics such as Statistics, Operation Research, Computer Science, Engi-
neering, Physics, Chemistry, Biology, Medical Science, Economics and several
others.

Let T be a self mapping on a non-empty set X. A point x € X is called a
fixed point of the operator T, if Tx = z, we denote x € Fixz(T).

The existence of a fixed point for a mapping is guaranteed by a fixed point
theorem, which states specific requirements for a mapping and its domain. The
most renowned result in fixed point theory is the Banach Contractive Mapping
Principle [7], which proclaims “Every contraction mapping of a complete metric
space into it self has a unique fixed point.” Note that a contraction mapping is
continuous, but a continuous mapping need not be a contraction. One limitation
of the Banach contraction principle is that the mapping must be continuous on

its entire domain. As a solution, Kannan [34] presented a weaker contraction
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condition to examine the existence of fixed points as follows:
Let (X, d) be a complete metric space and f : X — X be a self-map. If there
exists A € [0, 1) such that

d(fz, fy) < Ald(z, fz) +d(y, fy)],Vr,y € X, (1.1)

then f possesses a unique fixed point.
Thereafter, Chatterjea [13] proved the above result, replacing condition (1.1)
by the following:

d(fz, fy) < Md(x, fy) +d(y, fr)],Vr,y € X.

However, the Kannan contraction is not an extension of the Banach con-
traction. Subrahmanyam [59] affirmed that this result characterizes the metric
completeness. In the subsequent period, the idea of fixed points was further
enhanced by numerous expansions and extensions like almost-contraction, occa-
sional contraction, asymptotic pointwise contraction, etc. These alternative fixed
point theorems are valuable because they apply to a broader range of mappings,
including those that may not strictly satisfy the conditions of the Banach con-
traction principle.

Although most of the aforementioned linear contractions do not require the
mapping to be continuous across the entire domain, they do require that the
mapping to be continuous at the fixed point. With this in mind, Rhoades [52]
compared around 250 contractive definitions and proposed the following intrigu-
ing open question:

“ Is it possible to establish a contractive condition that ensures the existence
and uniqueness of a fized point, without requiring the continuity of the mapping
at that fized point?”

After the first solution given by R. P. Pant [47], several solutions to this
open problem have been presented via different approaches [45, 48, 51]. After-
ward, the Banach contraction principle and all of the aforementioned findings
are expanded. These expansions involve relaxation or modification of the stan-
dard Banach contraction principle’s assumptions to accommodate various forms
of nonlinear mappings or different spaces. The following are three typical methods

for enhancing and extending the Banach contraction principle.
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(i) Extending the contraction conditions to various general contraction condi-

tions.
(ii) Increasing the number of involved mappings.

(iii) Replacing the metric spaces with the various generalized metric spaces.

1.1 Theory of generalized contractions

The Banach contraction principle employs Lipschitz contraction, in which the
contraction constant is less than 1. To extend the Banach contraction principle,
many authors have introduced different implicit functions that also cover different
types of non-linear contractions of the existing literature. In this direction, Kho-
jasteh et al. [38] introduced the notion of simulation functions and Z-contraction
mappings, which unify all the linear contractions. Moreover, the authors also ex-
amined the existence and uniqueness of fixed points for such contractions. This
makes fixed point theory a powerful tool to study various mathematical, scien-
tific and engineering problems. Later, Roldan et al. [18] sharpened the notion of

simulation functions and also proved coincidence and common fixed point results.

Definition 1.1.1. [18, p.346] A simulation function is a function ¢ : [0, 00)* — R

satisfying the following conditions:
(¢1) €(0,0) =0;
(&) C(t,s) < s—t, forallt,s>0;

(¢s) if {t,} and {s,} are sequences in (0,00) such that lim ¢, = lim s, > 0

n—oo n—oo

and t,, < s,, then limsup ((t,, s,) < 0.

n— oo

Set of all simulation functions is denoted by Z.

Example 1.1.1. Let (¢ : [0,00) x [0,00) — R be the function defined by (¢, s) =
As — t, where A € (0,1). Then, ¢ € Z.

Alongside simulation functions, the concept of Z-contraction mappings was
introduced as a broader class of contraction mappings. Z-contraction mappings
expand the standard definition of contractions and offer a framework for discov-
ering fixed points in a broader range of situations. Roldan et al. [18] introduced

Z-contraction for pair of mappings as follows:
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Definition 1.1.2. [18, p.348] Let (X, d) be a metric space, T, g : X — X be self
mappings. Then T is called a (Z, g)-contraction if there exists ( € Z such that

C(d(Tw, Tv),d(gu, gv)) > 0, for all u,v € X and gu # gv.

If g is the identity mapping on X, we say that T is a Z-contraction for (.

In recent years, the concept of simulation functions has been utilized and

improved by several authors and accordingly, the literature is well furnished with

fixed point results via simulation functions (see [11, 17, 36, 41, 19]).The following

points highlight the significance of simulation functions.

(i)

(iii)

by S

Metric space extensions: Although the Banach contraction principle
and other fixed-point theorems are commonly employed in metric spaces,
simulation functions can be utilized in more general spaces, including partial
metric spaces, G-metric spaces, quasi-metric spaces, b-metric spaces, etc.
This expansion enables the extension of fixed-point theory to a broader

range of spaces.

Nonlinear mappings: Many practical problems involve nonlinear func-
tions, which do not satisfy the Lipschitz contraction condition. Simulation
functions provide a way to address such nonlinear mappings and establish

the existence of fixed points.

Generalization: Simulation functions generalize and extend the contrac-
tion condition by providing a wider class of nonlinear contractions. Using
this notion, many contraction conditions can be addressed from one plat-

form.

Overcoming limitations: The notion of simulation functions overcomes
the limitations of standard fixed point problems. If the problem does not
satisfy the standard fixed point framework, simulation functions provide a
way to redefine and extend the contraction condition to find the solution

to a fixed point problem.

On the other hand, the concept of a-admissible mappings was first introduced

amet et al. [55] to generalize the Banach contraction principle. a-admissible

mappings are generally used to solve problems for which the traditional contrac-

tion

condition might not be applicable. Karapinar [37] extended this to triangular
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a-admissible mappings. Later, Shahi [56] introduced this notion for two mappings

as follows:

Definition 1.1.3. [56, p.302] For a nonempty set X, let T,¢g : X — X and
a: X x X —[0,00) be mappings. We say that T is a-admissible for g if

algr,gy) > 1 = a(Tz,Ty) > 1, for all z,y € X.

For g =iy (identity mapping on X), T is an a-admissible mapping.
Definition 1.1.4. [49, p.75] For a nonempty set X, let 7,¢g : X — X and
a: X x X — [0,00) be mappings. We say that 7" is triangular c-admissible for
g if

(i) T is a-admissible for g;

(ii) a(gz,gy) > 1 and a(gy,g9z) > 1 = algr,gz) > 1, forall z,y,z € X.

Alghamdi et al. [4] generalized this definition to three variables. Further,
Kutbi et al. [40] extended this definition for two mappings as follows:

Definition 1.1.5. [40, p.4] For a nonempty set X, let 7, g : X — X and
ag : X?* — [0,00) be mappings. We say that T is rectangular ag-admissible for
g, if

(i) ag(gz,gy,92) > 1 = ag(Tz, Ty, Tz) > 1, for all x,y,z € X.

(ii) ac(gz. gy,9y) = 1 and ag(gy, 92,92) 21 = ac(gz, 92,92) = 1.
For g = ix (identity mapping on X), T is a rectangular ag-admissible map-
ping in the sense of Alghamdi et al. [4].
Ghosh et al. [24] weakened the concept of rectangular «g-admissible map-
pings of Kuthi et al. [40] by introducing weak «,,-admissible mappings for two

mappings as follows.

Definition 1.1.6. [24, p.57] For a nonempty set X, let 7,¢g : X — X and
Qp : X3 — [0,00) be mappings. We say that T is a weak a,-admissible mapping
for g, if for all x,y € X we have

aw(9T, 9y, 9y) > 1 = a,(Tz, Ty, Ty) > 1.

In the above definition, if we consider g as an identity mapping, then T is

weak «v,,-admissible mapping.



Chapterl

1.2 Theory of common fixed points

Let T, g be self mappings on a non-empty set X. A point z € X is called:
e a coincidence point of T" and g, if Tz = gz, we denote x € C(T, g);
e a common fixed point of T" and g, if Tx = gz = .

Although the fixed point theorem for one single-valued mapping is a powerful tool,
numerous problems in pure and applied mathematics can be transformed into
problems involving more than one mapping. In many real world applications like
game theory and network theory, there are often multiple players or components
involved, which represent mappings. Common fixed points represent equilibrium
or stability in the system. When the system involves more than one mapping
that has a different roles, common fixed points correspond to analyze whether all
these aspects are in balance. Isbell [28] raised a question on the common fixed
point as follows:

“Let (T, g) be a pair of two commuting (that is, Tgx = gTx, for all x € X)
continuous self-mappings on the unit interval. Do they have a common fixed
point?”

Boyce [10] and Huneke [27] answered this question negatively by constructing
a pair of commuting mappings having no common fixed point. The counter
example can be defined more explicitly as follows [27]:

For each real valued function h defined on a subset of the reals, let
h* =1—h(1 — ). Now choose any b € [0, 3], define

~ 3—2b+(6—4b)'/?
5T 1—2b

and three linear functions:

hi(z) = sz — sb+b;
hs(x) = —hs(x).

Let
r=hi'(1) ;3 wa=h3'(0) ; x3=hs (1-Db);

ra=hy (1) ¢ w5 =hy " (hy'(0) 5 @e = hiTH(0).
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Define the functions f and g as follows:

g(x) = b for z € ]0,] ; g(z) = hi(z) for x € [b, 4]

g(x) = ho(x) for z € [xq, x4) ; g(z) = hg(z) for x € [x9, 3]

g(x) = B~ (g(h5())) for @ € [z, 24] p g(x) = Wi (g(hs(x))) for @ € [24, 23]
g(x) = h3~ (g5 () for @ € [ws, 2] pg(a) =I5 (g(hi(2))) for @ € [x6,1 — 0]
g(xz) = fixed point of hj for z € [1 — b, 1]

and f = g* for z € [0, 1].

The functions f and g are commuting and satisfy the Lipschitz condition:
|f(z) — f(y)| < slz — vy, for all z,y € [0,1] but does not have a common fixed
point.

Thus, coincidence and common fixed point theorems for contractive type
mappings necessarily require certain suitable hypotheses on the underlying struc-
ture and also sometimes, on the mappings. In this direction, Jungck [31] in-
troduced the concept of compatible mapping and proved common fixed point
theorem, which led to the development of the common fixed point theory as
a dynamic area of study. Over time, mathematicians subsequently introduced
numerous novel concepts, such as weakly compatible mappings, subcompatible

mappings and other related ones.

Definition 1.2.1. [32, p.772] Let T', g be self mappings on a metric space (X, d).
We say that T" and g are compatible if and only if

lim d(Tgx,, gTz,) =0,

n—oo

for all sequences {x,} C X such that the sequences {gz,} and {T'x,} are con-

vergent and have the same limit.
Note that, if T and g are commuting, then 7" and g are compatible.

Definition 1.2.2. [33, p.200] Let 7', g be self mappings on a metric space (X, d).
We say that T" and ¢ are weakly compatible mappings if they commute at their

coincidence points, that is, for any = € X,

Ty =gr = Tgxr = glx.
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In addition to the condition of commutativity, some weaker hypothesis on the
underlying space is required. However, an iterated sequence is generally required
to start with this algorithm. In this direction, the concept of Picard-Jungck

sequence is defined as follows:

Definition 1.2.3. [18, p.349] Let T,g : X — X be self mappings on X. A
sequence {x,} in X is said to be a Picard-Jungck sequence of the pair (T, g)

(based on xg) if g, 1 = Tz, for all n > 0.

If T'(X) C g(X), then there exists a Picard-Jungck sequence of (7', g) based

on any point ry € X.

1.3 Theory of generalized metric spaces

Many mathematicians extended the Banach contraction principle in the setting
of metric spaces to other generalized metric spaces, such as D-metric spaces [22],
b-metric spaces [15], G-metric spaces [43], Gp-metric spaces [3] and several others.

In 1963, Gahler [26] first proposed the notion of a 2-metric. Later, it is
observed that a 2-metric is not a continuous function of its variables compared
to a standard metric. Therefore, it was difficult to connect the results from
metric spaces and 2-metric spaces. Due to this, Dhage [22] proposed the idea of
a D-metric. However, Mustafa and Sims [43] found that most of the topological
properties of the D-metric were incorrect. To overcome the drawbacks of a D-
metric, Mustafa and Sims [43] introduced the notion of a G-metric. The authors
examined the topological properties of this space and illustrated, how G-metric
spaces can employ an equivalent concept to the Banach contraction mapping and
numerous fixed point theorems on G-metric spaces have been established since
then.

Definition 1.3.1. [43, p.290] Let X be a nonempty set and G : X* — [0, c0) be

a function satisfying the following properties:

(Gy) G(x,y,2) =0,ifr =y =z,

(Gy) G(z,x,y) >0, for all z,y € X with = # v,

(G3) G(x,z,y) < G(z,y,2), for all z,y,z € X with z # y,

(Gy) G(x,y,2) = G(x,2z,y) = G(y, z,z) = ... (symmetry in all three variables),

9
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(Gs) G(x,y,2) < G(z,a,a) + G(a,y, 2), for all z,y,2,a € X(rectangle inequal-
ity).

The function G is called a G-metric on X and the pair (X, G) is called a
G-metric space. In this case, G(x,y, z) can be interpreted as the perimeter of the

triangle with vertices x, vy, z, that is,
G(x,y,2) =|r —y|+|y—z|+|z—z|, forall z,y,z € X.

then (X, G) is a G-metric space.
Here are some fundamental definitions and results of G-metric spaces ob-
tained by Mustafa and Sims [43].

Definition 1.3.2. [43, p.290] A G-metric space (X, G) is said to be symmetric
if G(z,y,y) = Gy, z, ), for all x,y € X.

We list few examples of G-metric spaces below:

Example 1.3.1. Let (X, G) be a G-metric on X, then G, : X* — [0, 00) defined
by

Gz, 2)
Gl = T G, 2
for all z,y, z € X is G-metric on X.

Example 1.3.2. Let X =[0,00) and G : X* — [0, 00) be defined by

0, ifr=y=z

G(z,y,2) :{

max{z,y, 2}, otherwise,
for all z,y, z € X is G-metric on X.
The following are the basic properties of G-metric spaces.

Lemma 1.3.3. [43, p.291] Let (X, G) be a G-metric space. Then for any x,y, z €
X the following properties hold:

(1) If G(x,y,2) =0, thenz =y = 2.
(i) G(z,y,y) < 2G(y, z,z).
(iii) G(x,y,2) < Gz, z,y) + G(z, 1, 2).

10
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Now, we see relation between metric spaces and G-metric spaces.

Every metric induces G-metric on X in different ways.

Lemma 1.3.4. [}3, p.290] If (X, d) is a metric space, then the following functions
Ge.G?: X3 — [0,00) defined by

Gy, = max{d(z,y),d(y, 2), d(z,z)},
Gy = d(z,y) +d(y, z) +d(2,z),
for all x,y,z € X are G-metrics on X. Furthermore,

G (z,y,2) < Glx,y, 2) < 3Gh(x,y,2), for allz,y,z € X.

Conversely, any G-metric on X also induces some metrics on X.

Lemma 1.3.5. [43, p.292] If (X,G) is a G-metric space, then the following
functions dS,dS : X* — [0, 00) defined by

d% = max{G(z,y,7),G(y. z, 1)},
S = G(z,y,y) + Gly, v, ),
for all x,y € X, are metrics on X. Furthermore,

d (2, y) < dJ (2, y) < 2d5(x,y), for all 2,y € X.

Also, d© and d¢ are equivalent metrics on X and they generate the same topology
on X.

Now, we present some basic definitions and propositions of G-metric space.
Definition 1.3.6. [43, p.292] Let (X, G) be a G-metric space.

e The open ball of center g € X and radius r > 0 is defined as
Bg(xo, 1) ={y € X : G(xo,y,y) <7}
e The closed ball of center ¢y € X and radius r > 0 is defined as

EG(LL'Ov/r) = {y € X G(:E07y7y) S 7'}-

11
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Clearly, = € Bg(xg,7) C Bg(zg, 7).

The family of all open balls {Bg(xq,r) : 20 € X,r > 0} is the base of a
topology 7(G) on X, which is known as the G-metric topology.

Proposition 1.3.7. [2, Prop.3.2.1, p.42] Let (X, G) be a G-metric space and dS

and dS are the metrics on X as in Lemma 1.5.5, then
Byc(w9,7) € By (w0,7) € Ba(xo,7) € Bag (20, 2r) € Byg (w0, 27).

Consequently, the G-metric topology 7(G) coincides with the metric topology
generated by the equivalent metrics d& or d¥ as defined in Lemma 1.3.5. We can

give a more geometrical definition of an open set in terms of neighborhoods.
Definition 1.3.8. [2, p.44] Let (X, G) be a G-metric space. Then

e a subset U C X is a G-neighborhood of a point x € X if there exists r > 0
such that Bg(z,r) C U.

e a subset U C X is G-open if it is empty or it is a G-neighborhood of all its

point.
e asubset U C X is G-closed if its complement X\U is G-open.

Now, we introduce the notions of convergent sequence and Cauchy sequence

using the topology 7(G).

Definition 1.3.9. [43, p.292] Let (X, G) be a G-metric space, {z,} € X be a
sequence and x € X. We say that:

(1) {z,} G-converges to z, and we write {z,} — z, if lim G(z,,zm,z) =0,
n,M—00
that is, for all € > 0 there exists ny € N satisfying G(z,,, T, z) < ¢, for all
n,Mm > ng.
(2) {z,} is G-Cauchy if lim G(x,,xm, ) = 0, that is, for all € > 0 there

n,m,k—oco
exists ng € N satisfying G(x,,, T, %) < €, for all n,m, k > ny.

(3) (X, Q) is G-complete if every G-Cauchy sequence in X is G-convergent in
X.

Note that, the limit of a G-convergent sequence in a G-metric space is unique.

Further, every G-convergent sequence in a GG-metric space is G-Cauchy.

12
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Proposition 1.3.10. [/3, Prop.6, p.292] Let (X, G) be a G-metric space, {x,} C
X be a sequence and x € X. Then

(i) {xn} G-converges to x <= lim G(zp,xp,2) =0 < lim G(xp,z,2) =0.

n—oo n—oo

(i) {z,} is G-Cauchy <— lim G(zn,Tm,Tm) = 0.

n,Mm—00

Definition 1.3.11. [43, p.293] Let (X, G) be a G-metric space. We say that a
mapping 7 : X — X is G-continuous at x € X if {Tz,,} — Tz, for all sequence
{z,,} € X such that {z,,} — x.

To prove the given sequence is Cauchy, the following condition is the suffi-

cient.

Lemma 1.3.12. [2, p.52] Let {z,,} be a sequence in a G-metric space (X, G) and
assume that there exist a function ¢ € Fxr and ng € N such that, at least, one

of the following conditions holds:
(a) G(Tpi1, Tniz, Tngo) < (G (T, Tngr, Tns1));
(b) G<xn+17 Tn+1, xn+2) S SO(G(xm T,y xn+1)) ’

for all n > ng, where Fipr is the set of continuous functions ¢ : [0,00) — [0, 00)
such that ¢(t) = 0 if and only if t = 0.
Then {x,} is a Cauchy sequence in (X, Q).

Definition 1.3.13. [2, p.52] A sequence {z,} in a G-metric space is asymptoti-
cally reqular if

lim G(zp, Tpi1, Tpi1) = 0.
n—oo

Following is the necessary conditions that must be verified by any asymptot-

ically regular sequence if it is not Cauchy.

Lemma 1.3.14. [2, p.58] Let {x,} be an asymptotically reqular sequence in a
G-metric space (X, G) and suppose that {z,} is not Cauchy. Then there exist a
positive real number € > 0 and two subsequences {x,, } and {zy,} of {xn} such
that, for all k € N,

k< ng <my < nggr,

G(l’nk,xmk_l,xmk_l) S e< G(l‘nk,l‘mk,l'mk)

13
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and also, for all given py,ps, p3s € Z,

lim G($nk+P1>$mk+p27 Sﬁmk-‘:—ps) =&
k—o0

Barinde [9] introduced asymptotic regularity for two operators in metric

spaces which can be extended to G-metric spaces as follows.

Definition 1.3.15. Let (X, G) be a G-metric space and T, g : X — X be two
operators. Then the operator g is called T-asymptotically regular in (X, G) if

G(g"(2), T(¢g"(x)), T(g"(x))) = 0 as n — oo, for all z € X.

Fixed point theory for G-metric spaces is a specialized area of fixed point
theory that deals with the properties of mappings on spaces that are equipped
with a generalized metric or G-metric, which allows for a more flexible definition
of distance than the traditional metric. Abbas and Rhoades [1| were the first
to explore the study of common fixed point theory in the context of G-metric
spaces. Subsequently, numerous authors have obtained fixed and common fixed
point results in the framework of G-metric spaces. The study of common fixed
points is an active and important area of research in fixed point theory for G-
metric spaces, as it has many open problems and a wide range of applications
in various areas, such as optimization, neural network, approximation theory,
integral and differential equations, control theory, numerical analysis and several
others.

Thereafter, Jleli and Samet [29] and Samet et al. [54] observed that the
structure of G-metric and quasi-metric are similar and many fixed point results

of G-metric spaces can be derived from the quasi-metric spaces, defined as follows.

Definition 1.3.16. Let X be a non-empty set and d : X x X — [0,00) be a

function such that the following are satisfied:
(i) d(z,y) =0 if and only if z = y;
(il) d(z,y) < d(z,z) +d(z,y), for any points z,y,z € X.

Then, d is called a quasi-metric on X and the pair (X, d) is called a quasi-metric

space.

Notice that, dg(x,y) = G(z,y,y) forms a quasi-metric. Hence, if the con-

traction condition of the fixed point theorems in G-metric can be reduced to two
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variables, then results can be derived from quasi-metric space or usual metric
space. Karapinar and Agarwal [35] proved that the techniques of Jleli and Samet
[29] and Samet et al. [54] can’t be applicable if the contraction condition in
fixed point theorem can’t be reduced to two variables and they introduced a new
contraction condition in G-metric spaces. In this direction, researchers obtained
several fixed point results in G-metric spaces by using the notion of (2-distance
introduced by Saadati et al. [53]. On the other side, Kirk et al. [39] introduced
the cyclic mappings to generalize the Banach contraction principle, which was
further generalized to (A, B) weakly increasing mappings [58] to derive common
fixed point. Moreover, the idea of Jleli and Samet [29] and Samet et al. [54] are
not applicable to the above mentioned notions.

Motivated by the definitions of b-metric and G-metric spaces, recently Agha-
jani et al. [3] introduced the notion of Gy-metric spaces, replacing the triangle

inequality with a more flexible condition, as follows:

Definition 1.3.17. [3, p.1087] Let X be a nonempty set, s > 1 and G} : X3 —

[0, 00) be a function satisfying the following properties:
(GB1) Gy(z,y,2) =0,if z =y = 2,
(GB2) Gy(x,x,y) >0, for all z,y € X with z # y,
(GB3) Gy(z,x,y) < Gy(z,y,2), for all x,y,z € X with z # y,
(GB4) Gy(z,y,2) = Gp(p{x,y, z}), where p is a permutation of x,y, z,
(GB5) Gy(r,y,2) < s[Gy(z,a,a) + Gy(a,y, 2)], for all z,y,z,a € X.

Then Gy, is called generalized b-metric on X and the pair (X, G) is called a
Gp-metric space.

Every G-metric space is a G-metric space with s = 1 and so the class of G-
metric spaces is larger than the class of G-metric spaces. The following example

shows that a Gp-metric on X need not be a G-metric on X.

Example 1.3.3. Let X = R. Define a mapping G : X? — [0, 00) by
G(z,y.2) =max{|z —y [*,|y =2z [*.| z — 2 "},
Then (X, G) is a Gp-metric space with s = 2.
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Further, they established common fixed point results for weak contractive
mappings in partially ordered Gy-metric spaces.

In this thesis, motivated by all the above mention types of generalizations of
the Banach contraction principle, many interesting coincidence or common fixed
point results in the context of G-metric spaces are cultivated. Further, examine
the possibilities of their applications in the domain of integral equations and

neural networks.

1.4 Synopsis of the thesis

The central theme of the thesis revolves around exploring the existence and
uniqueness of common fixed points for self-maps. This exploration involves the
introduction of a new contraction on G-metric space, motivated by the promising
practical applications of fixed point results. The significance of these findings
lies in their ability to provide a valuable advantage in addressing a multitude of
nonlinear problems documented in the literature, particularly in the realms of
neural networks and integral equations.

In Chapter 2, by utilizing the notion of (A, B)-weakly increasing mappings
and altering distance functions, a generalized cyclic contraction and rational type
cyclic contraction via C-class function in G-metric spaces are introduced. Both
contractions generalize the contractive condition of Shatanawi and Abodayeh [57]
for larger class of auxiliary functions. Besides, common fixed point results for such
contraction in the setting of G-metric spaces are studied. Some examples are also
presented to show that our results are effective.

In Chapter 3, Ciri¢ type Zp-contraction and the generalized Ciri¢ type
(Z(a,r), T')-contraction for two mappings via Cp-simulation functions are intro-
duced to study the existence and uniqueness of coincidence points and common
fixed points in the context of quasi-metric spaces. Further, extending both the
results to G-metric spaces.

In Chapter 4, (¢, ¢)-Wardowski contraction for three maps in the setting of
Gp-metric spaces is introduced to establish a condition for which the common
fixed point is a point of discontinuity. Further, its application to neural networks
is discussed.

In Chapter 5, extended I' — Cp-simulation functions are studied by intro-

ducing the notion of I' — C-class functions and illustrative examples of extended

16



Chapterl

I' — Cg-simulation functions are constructed. Further, Geraghty type and al-
most Suzuki type contractions are studied for pair of mappings and furnished
related coincidence and common fixed point result in precomplete subspace of
Gyp-metric spaces and G-metric spaces. Furthermore, the implication of Geraghty
type contraction for non-linear integral equations is explored and discussed.

In Chapter 6, a generalized I' — C'p-simulation functions are introduced as
an extension of generalized simulation functions and common fixed point result
is studied by defining weak (g, T')-contraction for pair of mappings in G-metric
spaces. Further, consequences to quasi-metric spaces and metric spaces are dis-

cussed.
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