Chapter 2

Non-linear Cyclic Contractions in
G-metric Spaces

2.1 Introduction and preliminaries

Many real-world problems involve non-linear relationships and complex inter-
actions. Non-linear cyclic contractions provide a more realistic framework for
modeling and analyzing systems where linear contractions may not accurately
represent the underlying dynamics.

The study of non-linear cyclic contractions in G-metric spaces is motivated
by the need to generalize and extend the classical fixed-point theorems to a more
general and flexible mathematical structure known as a G-metric.

In 2003, Kirk et al. [39] introduced cyclic contraction to generalize the Ba-
nach contraction principle. An important advantage to this approach is that
cyclic contractions, unlike Banach-type contractions, need not be continuous.
Such contractions are further generalized by Shatanawi and Postolache [58], by

introducing the pair of (A, B)- weakly increasing mappings as follows:

Definition 2.1.1. [58, p.2] Let (X, <) be a partially ordered set and A, B be
two closed subsets of X with X = AU B. Let S,T : X — X be two mappings.
Then the pair (S,7) is said to be (A, B)-weakly increasing if Sz < T'Sz for all
r € Aand Tx < STx for all x € B.

Shatanawi and Abodayeh [57] introduced a new contractive condition by
utilizing the notion of (A, B)- weakly increasing mappings and using altering
distance functions, proved the common fixed point result in G-metric spaces.

The concept of altering distance functions in fixed-point theory is a powerful
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tool that arises from the need to provide more flexibility and generality in the
study of fixed points. In traditional fixed-point theorems, a single contraction
condition, often based on a metric or a norm, is imposed. Altering distance
functions allow for the consideration of non-uniform contraction conditions, where
the contraction factor may vary for different pairs of points.

An altering distance function is a continuous, non-decreasing mapping
¢ : [0,00) — [0,00) such that ¢~1(0) = 0. The family of all altering distance
functions is denoted by F;.

The flexibility of altering distance function allows for the study of fixed points
in a wider variety of spaces and under more diverse contraction conditions, making
the theory more applicable to real-world problems across different disciplines.

In numerical methods and algorithms that involve fixed-point iterations, al-
tering distance functions can enhance the robustness of the convergence analysis.
They provide a way to tailor the contraction condition to specific regions of in-
terest, improving the convergence properties of the algorithm.

In many applications, especially those involving nonlinear mappings, the con-
traction condition may not be uniform across the entire space. Altering distance
functions provide a flexible framework to accommodate such non-linearities and
variations in the contraction behavior.

Shatanawi and Abodayeh [57] proved the following result that cannot be
reduced to quasi-metric spaces using the methods of Jleli and Samet [29] or
Samet et al. [54].

Theorem A. [57, Theorem 2.1, p.45] Let < be an ordered relation in a set X.
Let (X, G) be a complete G-metric space and X = AU B, where A and B are
nonempty closed subsets of X. Let S,T" be self mappings on X that satisfy the

following conditions:
(i) The pair (S,T) is (A, B)-weakly increasing.
(ii)) S(A) € B and T'(B) C A.

(11i) There exist two functions @, € Fyy such that

p(G(Sx, TSz, Ty)) < (G, Sx,y)) — (G, Sz, 9))
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holds for all comparative elements x,y € X withx € A and y € B;
o(G(Tx, STz, 5)) < p(G((x, Tx,y))) — Y(G(z, Tx,y))

holds for all comparative elements x,y € X with x € B and y € A.
(iv) S or T is continuous.
Then, S and T have a common fized point in AN B.

In Chapter 2, the concept of (A, B)-weakly increasing mappings is employed
to introduce generalized cyclic contractive conditions and rational type cyclic
contractive conditions. These contractions are utilized to establish common fixed
point results in the framework of G-metric spaces which generalize Theorem A.

Moreover, numerical example is furnished to validate obtained result.

2.2 Results for generalized cyclic contraction in

G-metric spaces

In this section, consider functions 1) € U instead of ¢ € F,; to generalize the
contractive condition of Theorem A. Here, the continuity of the auxiliary function
1) is not required to establish common fixed point result.

U is the family of all mappings ¢ : [0, c0) — [0, 00) such that, if {¢,,} C [0, c0)
and v (t,,) — 0 then ¢,, — 0. Note that, Fy;, C V.

The following lemma is required to prove our main result.

Lemma 2.2.1. [5, p.143] Let ¢ € Fyy, b € U and t, C [0,00) be a sequence such
that ¢(tni1) < o(t,) — ¥(ty,), for all n € N, then t, — 0.

Now, the main result of this section is stated here.

Theorem 2.2.2. Let < be an ordered relation in a set X. Let (X,G) be a
complete G-metric space and X = AU B, where A and B are nonempty closed

subsets of X. Let S, T be self mappings on X that satisfy the following conditions:
(i) The pair (S,T) is (A, B)-weakly increasing.

(ii) S(A) C B and T(B) C A.
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(11i) There exist two functions p € Fyy and ¢ € ¥ such that
o(G(Sz, TSz, Ty)) < o(M(z,y)) —(M(z,y)) (2.1)
holds for all comparative elements xr,y € X with x € A and y € B;
p(G(Tx, ST, Sy)) < o(M'(2,y)) — 9 (M'(z.y)) (2:2)

holds for all comparative elements x,y € X with x € B and y € A, where

M (z,y) = max {G(:z:7 Sz, y),G(x, Sz, Sz), Gy, Ty, Ty),

1

! (ctsw. 50.1y). G(x,TSa:,Tw,G(Sx,TSx,y))};
M'(z,y) =max {G(az, Tz, y),G(x, Tz, Tx),G(y, Sy, Sy),

%(G(T;L‘, Tz, Sy),G(x, STz, Sy), G(Tx, ST, y)) }

(iv) S or T is continuous.
Then, S and T have a common fized point in AN B.

Proof. Since A is nonempty, start with zo € A. From condition (i7), we can

construct a sequence {x,} in X such that
STon = Tany1, for xo, € A; Trony1 = Topya, for ze,11 € Byn > 0.

From condition (7), we have x,, < ,41, for all n > 0. If x9,, = 72,,41 for some
no € N, then xs,, is a fixed point of S in A N B. Since x9,, X Tan,+1, from (2.1),

we have

SO(G(iﬂznOJrl’ Long+2, $2n0+2)) = SO(G(SIQnO,TS$2n07T$2n0+1))
< %(M($2n0»$2n0+1)) - w(M($2nov$2no+1))v (2.3)

where
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M(z2n07 12n0+1>

= Inax {G(@nm S$2no, $2n0+1), G(Izno, S$2no> 5372710)7
1
G($2n0+1, T$2n0+1, T$2n0+1), 5 G(Sﬂbno; 5332710, T552n0+1)7

G(;B2n07 TS:anoa T:I:Qno-i-l)v G(SSBZnov TS:anoa x2n0+l)) }

= Inax {G(J?Qno, Tong+1, 332n0+1), G($2n0+17 Tong+2, $2n0+2)7

1

5 (G($2n0+1> Tong+1, $2n0+2), G(SCQnm Long+2, 5U2n0+2)) }

Using Lemma 1.3.3, we obtain
G($2n0+17 Long+1, $2n0+2) < 2G(£2n0+1, Tong+2, $2n0+2)7

and by rectangle inequality (G5), we get

G($2n07 Long+25 552n0+2) < G(ZEQnO, Long+15 332n0+1) + G(l“2n0+17 Long+25 152n0+2)-

Then,

M(SL‘Qnov x?n()-i-l) - maX{G(xQnov x?no-ﬁ-lv x?no-ﬁ-l)a G($2n0+17 1l2n0+27 ZEQTL()-Q—Z)}

= G(3U2n0+1, Long+2, l'2n0+2)-

From (2.3), we have

@ (G(Tang+1, Tang+2, Tang+2)) <O(G(T2ng41, Tang42, Tang+2) )

- w(G(xznOH, L2042, $2n0+2))-
Implies that ¢(G(x2n0+1,$2n0+2,$2n0+2)) = 0. Since ¢ € ¥, we have
G(Tang+1; Tangt+2, Tang+2) = 0

and hence Ta,,+1 = Tong12. S0, We get Ton, = Tong+1 = Tong+2. Lherefore, xq,, is

a fixed point of 7" in AN B. Hence, x,, is a common fixed point of S and 7" in
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ANB.
Now, we assume that x,,1 # z,, for all n € N. Since, x3, = x9,1, for all n > 0,

from (2.1), we have

@(G($2n+17$2n+27$2n+2)) = @(G<Sx2n7TS$2n7Tx2n+1>)
< 90(]\4($2mf52n+1)) — 1/)(]\4($2n7$2n+1))7 (2.4)

where
M($2m $2n+1) = max {G(CEQm Ton+1, $2n+1)7 G(I2n+17 Ton+2, $2n+2)}-
Case i:  If M(za,, Tont1) = G(Tan+1, Tant2, Tant2), then by (2.4), we get

SO(G(fUQnH’ Ton+2, $2n+2)) S@(G(]:Qn—i—la Lon+2; $2n+2))

- w(G(ZE?n-Q—l» Lon+2, $2n+2)).

Therefore, w(G(x2n+1,:c2n+2,x2n+2)) = 0, for all n > 0. By taking limit as
n — 00, we get

nh—>nolo w(G(Qﬁgn-H, Lon+2, m271-5—2)) =0.

Since ¢ € ¥, we have
nh_>n010 G(T2n41, Tant2, Tons2) = 0. (2.5)
Case ii:  If M(x9,,T2n11) = G(T2n, Tans1, Tons1), then by (2.4), we get
@(G(I2n+17$2n+27$2n+2>) < @(G($2n7$2n+17$€2n+1>) - w(G<$2mx2n+l7x2n+l>)'
By Lemma 2.2.1, we get
nh_)ngo G(zan, Tans1, Tant1) = 0. (2.6)

From (2.5) and (2.6), we obtain that

lim G(x,, Zni1, Tpy1) = 0. (2.7)

n— oo
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From definition of G-metric space, we have

lim G(xp, Tp, Tni1) = 0. (2.8)

n— oo

That is, {x,} is asymptotically regular sequence. Now, we prove that {z,} is a
G-Cauchy sequence. It is sufficient to show that {xs,} is a G-Cauchy sequence.
Suppose that {x,} is not a G-Cauchy sequence. Then by (2.7), (2.8) and Lemma
1.3.14 there exist € > 0 and two subsequences {xa,, } and {zay,, } of {za,} such

that, for all £ € N, & < 2ny < 2my < 2n,1 and for all given py, po, p3s € Z,

lim G($2nk+p1v L2my+pa2> :E?mk+p3) =& (2'9)
k—o00

Since, Tom, < Tan, 41, by using (2.1), we get

@(G($2mk+1, 332mk+2,$2nk+2)> = QD(G(SCEka,TSCEzmk, T$2nk+1))
< SO(M(-TQmM 772nk+1)) — (M (22, Tongt1)),

where

M($2mk7 $2nk+1>
= max {G<x2mk7 Smem xan+1)> G(mem Sx2mk7 S”“Eka>7
1
G('T/‘an—‘rl; TmQT%—I—lv Tank—l—l)v 5 G(‘stmkv S'T;kaa TmQTLk—‘rl);

G(T/zmk, TS'Tkaa T-772nk+1), G(S-szk, TS-Tka, <772nk+1>> }

= max {G(@mk? Tomy+1, xan—&—l)y G(mem Lomp+1, $2mk+1):
1

G(’JJanH; Lon,+2, $2nk+2), s G(iL'kaH, Loamy+1, $2nk+2)7
2

G(:L'kav :L‘ka-i-Qv iL.an-i-Q); G(QL'ka-i-lv Ika+27 I2nk+l)) }

By using (2.7), (2.8) and (2.9), we get klglgo M (2om, , Ton,4+1) = max{e,0,5} = €.

Take {tx, = G(Tom;+1, Tamy+2, Ton,+2)} and {sp = M (xom, , Ton,+1)}. Then
{tx} and {si} are sequences converging to the same limit € and they satisfy
o(tr) < @(sk) — W(sk), for all k. Therefore, ¥ (sx) < w(sk) — ©(tr)-
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By taking limit as k — oo, since ¢ € Iy, we have

Jim 9(si) < (2) —@(e) = 0.

Since 1 € U, hm s = 0. This implies that € = 0, a contradiction. Thus,
{zon} is G- Cauchy So sequence {z,} is G-Cauchy. Since (X, G) is complete,
there exists u € X such that {x,} is G-convergent to u. Therefore, the subse-
quences {Za,11} and {wy,} are G-convergent to u.

Since {x9,} € A and A is closed, implies that u € A. Also, {z2,11} C B
and B is closed, implies that v € B. We may assume that S is continuous. So,

we have lim Sy, = Su and lim Sz, = hm Tonse1 = u. By uniqueness of the
n— oo n—oo

limit we have Su = u. Since u < u, from (2 1) we have

o(G(u, Tu, Tu)) = ¢(G(Su, TSu, Tu))
< gp(M(u, u)) — w(M(u, u)), (2.10)

where
M (u,u) = max {G(u, Su,u), G(u, Su, Su), G(u, Tu, Tu),
%(G(Su, Su, Tu), G(u, T'Su, Tu), G(Su, T'Su, u))}
— max {G(u, w, ), G, T, Tw), % (G(u,u. Tu). G, T, Tu), Glu, Tu,u)) }

1
= max {G(u, Tu, Tu), éG(u, Tu, Tu)}

= G(u, Tu, Tu).
Using (2.10), we obtain

¢ (G(u, Tu,Tu)) = p(G(Su, STu, Tu))
< go(G(u, Tu, Tu)) — (G(u, Tu, Tu)).

Therefore, dJ(G(u, Tu, Tu)) = 0. Implies that G(u,Tu,Tu) = 0. Hence,
Tu = u. Thus, u is a common fixed point of S and T in AN B. O

To support the usability of our result, the following example is stated.
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Example 2.2.1. Let X =[0,1] and S,T : X — X be given as

2

S(x) =T(x)

1+

Take A = [0, 3] and B = [0, 1]. Define the function G : X x X x X — [0,00) as

2

0, ifor=y=z2,

G(r,y,2) = {

max{z,y, 2z}, otherwise.

Clearly, G is a complete G-metric on X. We introduce a relation on X by x <y
if and only if y < 2. Also, define the functions ¢, ¢ : [0,00) — [0,00) by ¢(t) = 2t

t
Note that S(A) =[0,+] € B and T(B) = [0, 3] € A.

To prove (i), given = € X,

z? x?
Te =TSz = .
ST =15 = T A o+ 29
72
Since x € [0,1],m < 1. Thus, TSx < Sz and STz < Tx. Hence

Sy X TSz, forall zx € A and Tx < STz, for all x € B.
To prove (iii), given z,y € X with > y. Then,

G(Sz, TSz, Ty) = G(Tx,STx, Sy)

1’2 272 372 y2
= max , ,
{(1+x) (1+z)(14+x+22) (1+y)}

o
C (141)
and
M(z,y) = M'(z,y) = max< x e =x
7y - 7y - 7%2(1_'_77)72 - .
Since
222 x
— <2r - ——,
(1+x) (1+ 2x)
we have

p(G(Sz, TSz, Ty)) < (M (x,y)) — (M (z,y))
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and
(G(Tz, ST, Sy)) < p(M'(2,y)) — b(M'(z,y)).

Hence, all the conditions of Theorem 2.2.2 are satisfied. Notice that 0 is the

unique common fixed point of S and 7.

The following result is obtained from Theorem 2.2.2 as a generalization of
Theorem A. For that, drop the condition ¢(0) = 0, continuity of ¢ and replace
) € Fy with ¢ € U in Theorem A.

Corollary 2.2.3. Let < be an ordered relation in a set X. Let (X,G) be a
complete G-metric space and X = AU B, where A and B are nonempty closed

subsets of X. Let S, T be self mappings on X that satisfy the following conditions:
(i) The pair (S,T) is (A, B)-weakly increasing.
(1)) S(A) C B and T'(B) C A.

(11i) There exist two functions ¢ € Fyy and 1) € ¥ such that
p(G(Sz, TSz, Ty)) < (G, Sx,y)) — (G, Sz, 9))
holds for all comparative elements x,y € X withx € A and y € B and
p(G(Tx, STz, Sy)) < p(G((x, Tx,y))) — (G, Tz, y))

holds for all comparative elements x,y € X withx € B and y € A.
(iv) S or T is continuous.

Then, S and T have a common fized point in AN B.

Proof. By taking M (z,y) = G(x,Sx,y) and M'(x,y) = G(x,Tz,y) in Theorem
2.2.2, we get the result. O

2.3 Rational type cyclic contraction in G-metric

spaces

This section deals with the rational type cyclic contraction using C-class [6] func-

tions which cover a large class of contractive conditions. Further, existence of the
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common fixed points of rational type cyclic contraction is studied. Alongside, an
example to authenticate the obtained result is given.

Ansari [6] introduced C-class function as follows.

Definition 2.3.1. [6, p.1] A function F': [0,00)* — R is called a C-class function

if it is continuous and satisfies the following conditions:
(F1) F(s,t) <s, forall s,t>0;
(Fy) F(s,t) = s implies that either s =0 or t =0, for all s,¢ > 0.

The collection of all C-class functions is denoted by C.

The main result of this section is stated below.

Theorem 2.3.2. Let < be an ordered relation in a set X. Let (X,G) be a
complete G-metric space and X = AU B, where A and B are nonempty closed

subsets of X. Let S,T' be self mappings on X that satisfy the following conditions:
(i) The pair (S,T) is (A, B)-weakly increasing.
(i1) S(A) C B and T'(B) C A.

(11i) There exist two functions ¢ € Fyy and 1 € ¥ such that

p(G(Sz, TSz, Ty)) < F(p(M(z,y)),9(M(z,)))  (2.11)

holds for all comparative elements x,y € X withx € A and y € B and

p(G(Tw, STz, Sy)) < F(p(M'(x,y)), (M (z,9))) (2.12)

holds for all comparative elements x,y € X withx € B and y € A,
where F € C,

G(Sz,Sz,y)[1 + G(z, x, Ty)]
1+ G(z, Sz,y) ’
G(Ty,Ty,y)[l + G(Sz, Sz, x)]
1+ G(x, Sz,y) }

M(z,y) ZmaX{G(:L', Sw,y),

and

G(Tz, Tz, y)[1 + G(x, x, Sy)]
1+ G(z,Tx,y) ’

M'(z,y) = max {G(%Trﬂ,y),
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G(Sy,Sy,y)[1 + G(Tz, Tx, x)]
1+ G(x,Tx,y) ’

(iv) S or T is continuous.
Then, S and T have a common fized point in AN B.

Proof. Start with xy € A. Using condition (i7), we can construct a sequence {z,,}
in X such that Sws, = x9,.1, for x9, € A and Tx9, 11 = Toy40, for x9,,1 € B,
n > 0. Using condition (i), we have x,, < z,,1, for all n > 0.

If x9,, = Topy+1, for some ny € N, then z,,, is a fixed point of S'in AN B. Since

Tony =X Tang+1, from (2.11), we have

(G(Smnm T'Sxop,, Tﬂ?zno+1>)

=
< F(o(M(22ng; Tang 1)), O (M (T2ng Tang+1)))
(2.13)

SO(G(-TQnOH, T2n0+25 372n0+2))

where

M (22ny, Tang+1)
G(STang, STang, Tang+1)[1 + G(Tang: Tong: TTong+1)]
1+ G(m%o’ Sm?nov 5E2n0+1)
G(Tx2mg41, TTong 11, Tong+1)[1 + G(STang, STang, Tang )] }
1+ G(z2ng, STang, Tong+1)

)

= max {G(xQnoa Sm?noa m?no-ﬁ-l)a

G(T2n011, Tang+15 Tang+1)[1 + G (X200, Tangs Tangt2)]
1+ G(T2n4; Tang+1; T2ng+1)
G (290425 T2ng+2, Lang+1)[1 + G(T2ng 11, Tang+15 T2ny )] }
1+ G(T2n4; Tang+15 T2ng+1)

’

= Inax {G(CL’QnO, Tong+1, 552n0+1),

= maX{G(iUQno, Tang+1, $2n0+1)7 G($2n0+1, Tong+2, 172n0+2)}

= G($2n0+17 Tong+2; $2n0+2)-

From (2.13) and (F}) , we have

SO(G(I.ZTL(H—D Z'2n0+2, I'2n0+2))
< F(@(G(Z2n+15 Tang+2: T2ne+2) ) U (G(T2n0 41, T2ng425 T2ng+2)) )

< ¢(G($2no+17$2n0+2,$2n0+2))7
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implies that

F(SO(G(CEQnOJFh Long+2; 562n0+2)) ) 1/)(G(332n0+1, L2ng+2; 172n0+2)))

= @(G($2n0+1, L2no+25 $2n0+2))'

From (F}), we have

SO(G(!E2nO+17 Long+25 $2n0+2)) =0 or w(G<x2no+la Long+2; $2n0+2)) =0.

Since ¢ € Fy and ¢ € U, we have G(Zang41: Tong+2s Tang+2) = 0. That is,
Tony = Long+1 = Tang+2. Hence, xqy,, is a common fixed point of S and 7"in AN B.
Now, we assume that x, # z,1, for all n > 0. Since z3, = To9,1, from (2.11),

we have

(G (22n41, Tans2, Tans2)) = ©(G (S0, T'STon, TT2041))
< F(‘p(]w(@mx%ﬂ»a¢(M($2n,$2n+1))), (2.14)

where

M (25, Tony1)
G(Sxan, STon, Toni1)[1 + G(T2n, Ton, TToni1)]
1+ G(x2n, STon, Tant1)
G(Txony1, TToni1, Tansi1)[1 + G(Sxap, STap, Tap)] }
1+ G(x2n, STon, Toni1)

)

= Inax {G(IZna Sm?n: $2n+1)7

G (22011, Tony1; Tant1)[1 + G (220, Tan, Tany2)]
1 + G(22n, T2n+1, Tant1)
G (2012, Tant2: Tant1)[L + G241, Tans1, T2p)] }
1+ G(22n, T2n+1, Tant1)

= max {G(x?m Ton+41, x2n+1>7 )

= m&X{G(@m Lon+1, $2n+1>7 G($2n+1, Ton+2, I2n+2>}~

If M(xopn, Tont1) = G(Tapi1, Tonta, Tanie), for all m > 0, then from (2.14), we

have

@(G($2n+1> T2n+2; 372n+2))

< F(@(G(@2ms1; Tang2: Toans2)), ¥ (G(Zon41, Tanga, Tont2)) )
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Since I is a C-class function, we have

F(SO(G(CCQnH; Lon+2, 172n+2)) 5 1/)(G(1’2n+1, Lon+2, $2n+2)))

= @(G<$2n+17 Ton+2, x2n+2))7

implies that

@(G<x2n+l7 Ton+2, $2n+2)) =0or ¢(G(I2n+17 Ton+2, $2n+2)) =0, for all n > 0.

Since ¢ € F,;, we have G(Za,41, Tant2, Tonio) = 0, for all n > 0, implies that
Topi1 = Tonpyo, for all n > 0, a contradiction.

Therefore, M(xop, Toni1) = G(Ton, Tant1, Tans1), for all n > 0.

Now, from (2.14) and (F}), we get

@(G($2n+1,$2n+2,$2n+2)) < F(@(G($2n’$2n+1,ﬂ?2n+1))a 1/)(G($2m$2n+1,3?2n+1)))
SD(G(:EQn,xQnJ,_l, $2n+1>)7 for all n Z 0. (215)

Since Top i1 = Topie, from (2.12), similarly we can prove

W(G($2n+27$2n+3, $2n+3)) < F(@(G($2n+17$2n+27J72n+2))7 ¢(G($2n+17$2n+27x2n+2)))

< ©(G(want1, Tant2, Tanya)), for all n > 0. (2.16)

From (2.15) and (2.16), we conclude that

O(G(Tnt1, T, Tng2)) < F(0(G(@n, T, Tng)), (G (T, T, Tnt)))
gp(G(mn,an,an)), for all n > 0. (2.17)

Since IS Falta we get G<xn+1»xn+27$n+2> S G(l’mxn+1,£€n+1>, for all n Z 07
which implies that the sequence {G(x,, Zy41,Tn11)} is @ non-negative monotoni-

cally decreasing sequence. So, there exists r > 0 such that
lim G(xp, Tpit1, Tny1) =7

n—oo

By taking limit as n — oo in (2.17), we get

p(r) < F(o(r), lim ¢(G(2n, Tni1, Tni1))) < @(r),

n—o0
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which implies that F(gp(r), nll_{l;O d)(G(xn, Tpil, xn+1))) = p(r).
From (F3), we get ¢(r) =0 or lim z/)(G(mn,an,an)) = 0. Since ¢ € F,; and
P €V, we get e

r= lim G(x,, i1, Tpy1) = 0. (2.18)

n—oo

Now, from definition of G-metric space, we have

lim G(z,, xn, pe1) = 0. (2.19)

n— oo

Now, we prove that {x,} is G-Cauchy. It is sufficient to show that {xs,} is a
G-Cauchy sequence. Suppose, {z,} is not G-Cauchy. Then, by (2.18), (2.19)
and Lemma 1.3.14, there exist ¢ > 0 and two subsequences {za,, } and {zam, }
of {x9,} such that, forall k € N, k < 2n;, < 2my < 2njy1 and for all given

D1, D2, P3 € 2,

lim G($2nk+p17 L2my+pa2> m2m;ﬁ-p3) =& (2'20)
n—oo

Since, Tom, < Tan, 41, from (2.11), we have

(G(szmk, T'Swopm,, T932nk+1))

=
< F(QD(M(Q;ZWM an;ﬁ-l))a 1/} (M(SEZWM ank+l)))7
(2.21)

SD(G(iL"zkarl, Tomy+2, $2nk+2))

where

M(iUka, 332nk+1) = max{ G($2mk, Tomy+1, I2nk+l)7

G(Tam+1, Tamp+1s Tong+1) [1 + G(Zamy s Tomy,, Tang+2)]
1+ G(iL‘zmk, To2my+1, Iznk+1)

G($2nk+2, Ton,+2) xan-l—l)[l + G<x2mk+172mk+1 w”szk)]
1+ G(@omy,, Tamy+1s Tong+1) .

)

By using (2.18), (2.19) and (2.20), we get klim M(xam, , Ton,+1) = €.
—00
Taking limit as k — oo in (2.21), we get

90(6) < F(SD(g)v lim ¢(M(I2mk7$2nk+1)>)'

k—oo
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Since, I is a C-class function, we get

90<E> < F(Qp(‘g)vkli_)%z/)(M(zkavxan-H))) < 90(5>7

implies that
§0<€> =0 or hm T/J(Af(ahmk ‘T?mﬁ‘l)) - 0’

implies that ¢ = khm M (xom,,, Ton,+1) = 0, a contradiction. Thus, {z2,} is a

G- Cauchy sequence in (X, G). So, the sequence {z,} is a G-Cauchy sequence
n (X,G). Since, (X,G) is complete, there exists u € X such that {z,} is G-

convergent to u. Therefore, the subsequences {z2,} and {z2,1} are G-convergent

to wu.

Since {z2,} C A and A is closed, implies that u € A. Also, {z2,11} C B and B

is closed, implies that u € B.

Now, we may assume that S is continuous. So, we have

Su = lim Sx,, = hm Topi1 = U.
n—oo

By uniqueness of the limit we have Su = u.

Since u < u, from (2.11) we have

(G(u. Tu, Tu)) = p(G(Su, TSu, Tu))
< F(p(M(u,w)), (M (u,u))), (2.22)

where

M (u,w)

_ maX{G(u, Su, ), G(Su, Su,u)[1 4+ G(u,u, Tw)] G(Tu,Tu,u)[l + G(Su, Su,u)] }

1+ G(u, Su,u)] ’ 1+ G(u, Su,u)]
= G(u, Tu, Tu).

Using (2.22) and (F}), we get

(p(G(U,TU,TU)) < F(gp(G(u7 Tu, Tu)),l/)(G(u, Tu, Tu)))
< ¢(G(u, Tu, Tu)).
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From (Fy), we get

o(G(u, Tu, Tu)) = 0 or (G(u, Tu,Tu)) = 0.
This implies G(u, Tw, Tu) = 0. Hence, Tu = u. Thus, u is a common fixed point
of Sand T"in AN B. O

In Theorem 2.3.2, if we replace ¢ € Fy; with ¢ € U and take M(z,y) =
G(x,Sz,y), M'(x,y) = G(z,Tz,y) and F(s,t) = s —t, then we get Theorem A,

as a particular case.
The following example shows that the condition (ii7) defined in Theorem
2.3.2 is more general than the condition (iiz) of Theorem A.

Example 2.3.1. Let X = {0,1} and define G: X x X x X — [0,00) as
G(0,0,0) = G(1,1,1) = 0; G(0,0,1) = 1 and G(0,1,1) = 2.

Then the function G is a G-metric on X.
Take A = B ={0,1} and « < y if and only if 2 < y. Define the mappings
S, T: X — X as follows:
S(0) = 1, 5(1) = 0 and T(0) = 0,7(1) = 1.
Let ¢, : [0,00) — [0,00) and £ : [0, 00) x [0,00) — R be defined by

s
1+¢

,p(t) =t and F(s,t) =

)

DO |+

p(t) =

for all s,t € [0, 00).
Forz =0, y =1,

G(S0, S0, 1)[1 + G(0,0,T1)]
1+ G(0,50,1) ’
G(T1,T1,1)[1 + G(S0, S0,0)]
1+ G(0,50,1) }
= max{2,0} = 2.

M(0,1) = max {G(O, S0,1),
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Now,

> »(G(S0,TS0,T1))

(0).

Wl =

F(p(M(0,1)),(M(0, 1)) = F(p(2),¢(2)) = F(1,2) = 2 = ¢
@

Forx =1, y =0,

G(S1,S1,0)[1 4+ G(1,1,T0)]

M(1,0) = max {G(l, S1,0),

1+ G(1,51,0) !
G(T0,T0,0)[1 + G(S1, 51,1)]
1+ G(1,51,0) }
=max{1,0} = L.
Now,
P(e(M(1,0), (0 (1,0) = F(e(1), w(1)) = F(3.1) = & > p(G(81,751,70)
= ¢(0).

Hence, the condition (#ii) of Theorem 2.3.2 is satisfied.

But, ¢(G(0,50,1)) —(G(0,S50,1)) = ¢(2) —9(2) = 1—2 = —1 < 0. Which
shows that the condition (iiz) of Theorem A does not hold.

Now, the following example validates Theorem 2.3.2.

$2

1+

Example 2.3.2. Let X = [0,4] and S,7 : X — X be given as S(z) =

and T'(z) = £. Take A = [0, 5] and B = [0, 3]. Define the function
G:X?—0,00) as

0, ifr=y=z

G(x,y,2) :{

max{r,y,z}, otherwise.

Clearly, GG is a complete G-metric on X. We introduce a relation on X by x <y
if and only if y < x. Also, define the functions F': [0,00)*> — R by F(s,t) =s—t
and @, : [0,00) = [0,00) by ¢(t) =2t and ()

1+ 2t

Note that S(A) = [0, §] € B and T(B) = [0, 3] C A.
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To prove (i), given = € X,

2 2
1 a T

Since z € [0, 5], 2(1+ 1) < (1+2)

all x € X.
To prove (iii), given x € A and y € B with y > x. Then,

. Thus, T'Sx < Sz and hence Sz < T'Sx, for

x? x? y Y
atse 1050 = {750 5 = 5
e (14a) o(1+Y)
yll+x) vy 5}
M(z,y) = max <y, , =
) =m0 G
Since
W9y Y
2~ (1+2y)’
we have

p(G(Sz, TSz, Sy)) < F(p(M(x,y)), p(M(x,y)))-

Hence, all the conditions of Theorem 2.3.2 are satisfied. Notice that 0 is the

unique common fixed point of S and 7.

Corollary 2.3.3. Let < be an ordered relation in a set X. Let (X,G) be a
complete G-metric space. and X = AU B, where A and B are nonempty closed
subsets of X. Let S be a continuous self map on X that satisfies the following
conditions:

(i) Sx < S?z, forallz € X.
(i1) S(A) C B and S(B) C A.

(i1i) There exist two functions ¢ € Fyy, v € U such that
p(G(Sx, 5%, 8y)) < Fp(M(z,9)),b(M(z,y))) (2.23)

holds for all comparative elements x,y € X, where

G(Sz, Sz,y)[1 + G(z,x, Sy)]
1+ G(z, Sz,y) ’

M (z,y) =max {G(m, Sz, ),
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G(Sy, Sy, y)[1 + G(Sz, Sz, z)]
1+ G(z, Sz,y) '

Then, S has a fixed point in AN B.

Proof. The proof follows from Theorem 2.3.2 by taking T'= 5. O

37



