LIST OF FIGURES

Figure Number		Page No
Figure. 1	Palaeolithic record of South Asia from 400 - 10 ka (Adopted from Anil e	t
	al. 2018)	3
Figure. 3.2.1	Luminescence signal in saturation for the OSL sample from Retlapalle	.25
Figure. 3.2.2	Preheat plateau test: equivalent dose (de) variation with preheat temperature	e
	for the natural samples. At each point, de is the arithmetic mean of three	e
	values. The error bar is the standard error of the three values. The doses for	r
	260° c, 280° c, 300° c, and 320° c fell within 5% of the estimated paleo-dose	
	a) Sample from Hanumanthunipadu;b) Sample from	
	Retlapalle	.27
Figure. 3.3.1	Flow chart showing the broader lithic technological classification adopted	1
	in this study	29
Figure. 3.3.2	Technological Classification of flakes	.30
Figure. 3.3.3	Classification of Cores	.30
Figure. 3.3.4	Core attributes recorded in this study	.31
Figure. 3.3.5	Flake attributes recorded in this study	.32
Figure. 3.3.6	Attributes recorded for retouched artefacts	.33
Figure. 3.3.7	Metrical attributes recorded for Bifaces	.33
Figure. 3.3.8	Schematic sketch showing the recording of core dimensions (modified after	r
	Jones, 2007)	.35
Figure. 3.3.9	Recording of last scar dimensions (modified after Jones, 2007)	.36
Figure. 3.3.10	Recording of Flake dimensions (modified after Jones, 2007)	.39
Figure. 3.3.11	Recording of flake platform dimensions (modified after Jones, 2007)	.39
Figure. 3.3.12	Flake platform types recorded (Source: Jones 2007)	40
Figure. 3.3.13	Schematic sketch showing platform preparations (modified after Jones	5
	2007)	41
Figure. 3.3.14	Flake terminations recorded in this study (Source: Jones 2007)	.41
Figure. 3.3.15	Dorsal scar patterns recorded in this study (Source: Jones 2007)	.41
Figure. 3.3.16	Recording of type of arises on flakes dorsal surface	.42

Figure. 4.1.1	Composite stratigraphy of the upper Gundlakamma river basin (a); Unit A
	exposed at Kalagotla III (b); step trench from Retlapalle (c); Unit F exposed
	at Chintakunta (d)46
Figure. 4.1.2	UNIT F exposures at Chintakunta (a); conglomerate with artefacts (b);
	Handaxe eroded from Unit F (c)47
Figure. 4.1.3	The site of Kalagotla III shows well-represented Unit A sediments and
	associated microlithic artefacts (Source: Anil et al. 2022)47
Figure. 4.1.4	Carbonate concretions above and within the ash beds observed at
	Kagitalagudem (Source: Anil et al. 2022)
Figure. 4.1.5	Images showing the sites with sediments (Unit D) underlying the YTT
	deposits. A) below YTT sediments with artefacts exposed at Telladinne; b)
	Unit D sediments exposed at Kalagotla-I due to anthropogenic activities; c
	and d) below YTT sediments exposed at Kagitalagudem (source: Anil et al.
	2022)
Figure. 4.1.6	Sediments with artefacts overlying the ash beds exposed at JP Cheruvu
	(Source: Anil et al. 2022)49
Figure. 4.1.7	In situ artefacts eroding from the sediments (Unit B) stratigraphically
	overlying the YTT deposits. Artefact clusters from a) Chimaletipalle; b) JP
	Cheruvu; c) Ardhaveedu; d) Veerabhadrapuram (source: Anil et al. 2022)52
Figure. 4.1.8	Embedded artefacts exposed at Rangannapalle (source: Anil et al. 2018)54
Figure. 4.1.9	Colluvial fan exposed at Rangannapalle (source: Anil et al 2018)55
Figure. 4.1.10	Pebble conglomerate observed at Kutagundla (source: Anil et al. 2018)55
Figure. 4.1.11	Calcrete bed (tufa) exposed on the surface at Vemulapadu 2 (source: Anil et
	al. 2018)
Figure. 4.1.12	Calcretized sandy silt at Hanumanthunipadu (source: Anil et al. 2018) 56
Figure. 4.1.13	Calcretized sandy silt overlain by a-2 sand dunes at Vemulapadu (source:
	Anil et al. 2018)57
Figure. 4.1.14	Composite Stratigraphy of the upper Paleru basin (Source: Anil et al. 2018)

Figure. 4.2.1	Composite stratigraphy observed at Vemulapadu with artefact associations.
	1: Schematic sketch of the composite stratigraphy; 2: Photograph of the
	layers, Units E and D; 3: Units C and B; 4 and 5: embedded handaxes within
	unit E; 6: Artefacts from Unit C; 7: microlithic artefacts from
	Unit B
Figure. 4.2.2	In Situ Hand axe associated with Unit E sediments at Vemulapadu 65
Figure. 4.2.3	Sediment sample collected from Unit E for age estimations
Figure. 4.2.4	Results of p-IR-IRSL analyses of sample from Unit E. a: typical feldspar
	shine down curve; b: typical growth curve; c: radial plot representing the
	estimated palaeodoses
Figure. 4.2.5	Hand axes recovered from Unit E, at Vemulapadu67
Figure. 4.3.1	Images showing the location of site A. Agraharam and exposed artefact
	clusters. a: several streams cut through the site; b: Artefact cluster exposed
	due to the stream erosion; c: Artefact cluster exposed due to anthropogenic
	activities
Figure. 4.3.2	Artefacts and their geological context. a and b: Artefacts embedded within
	the ferricrete gravels; c and d: test pit showing the stratigraphic context of
	sedimentary units70
Figure. 4.3.3	Results of p-IR-IRSL analyses of sample from artefact bearing horizon. a:
	typical feldspar shine down curve; b: typical growth curve showing
	saturation of the signal71
Figure. 4.2.4	Large flakes recovered from the site. a to d: large flakes with prepared
	platforms; e and f: retouched large flakes72
Figure. 4.3.5	Variation in mean biface elongation (length to width ratio) for Indian
	assemblages. Comparative data from Gaillard et al. 1986; 2008; Paddayya
	& Petraglia 1993; Chauhan 201075
Figure. 4.3.6	Variation in mean biface refinement (thickness to width ratio) for Indian
	assemblages. Comparative data from Shipton 2016. Note that A. Agrahara,
	occurs next to the Bhimbetka on one end of the distribution, while
	assemblages with Early Pleistocene age estimates occur on the other end of
	the distribution76
Figure 4.3.7	Refined, symmetrical bifaces from A. Agraharam. a to d: Handaxes; e and
	f: Cleavers

Figure. 4.3.8	Cores from the assemblage. a: Giant core; b and c: preferential surface
	cores; d and e: discoidal cores; f: laminar flake core; g and h: Levallois cores
Figure. 4.3.9	Transverse flakes from the assemblage. a to e: transverse flakes with
	platforms extend over to lateral margins; f to i: transverse flakes with
	prepared platforms; j: transverse flake recovered from test pit; k to n: tang
	like point made on a transverse flake (arrows indicate the position of the
	platform); o: Bifacial point made on a transverse flake; p: notch made on a
	transverse flake
Figure 4.3.10	Bifacial points. a, b, h, j, k: Bifacial points with basal modifications; c to g
	and i, l: bifacial points
Figure. 4.3.11	Flake tools. a: Split discoidal core; b to h: points with basal modifications
	(tangs); I and j: points on prepared core flakes; k to m: prepared core flakes;
	n: Scraper; o and p: Laminar flakes
Figure 4.3.12	Hand axes with preferential flake removals
Figure. 4.4.1	Anthropogenic activities exposed artefacts bearing horizons at
	Nandanavanam
Figure. 4.4.2	Shale bed rock exposed at the site
Figure. 4.4.3	Images showing the geological context of the artefacts. a: Artefact bearing
	horizon overlain by reddish sandy silts; b: artefact bearing horizon; c: In situ
	artefacts exposed91
Figure. 4.4.4	Test pit showing the artefact bearing horizon
Figure. 4.4.5	Results of p-IR-IRSL analyses of sample from artefact bearing horizon. a:
	typical feldspar shine down curve; b: typical growth curve showing
	saturation of the signal93
Figure. 4.4.6	Variation in mean biface elongation (length to width ratio) for Indian
	assemblages. Comparative data from Gaillard et al. 1986; 2008; Paddayya
	& Petraglia 1993; Chauhan 201097
Figure. 4.4.7	Bifaces in the assemblage. a: Hand axe; b: Cleaver; c: Diminutive Hand
	axe
Figure. 4.4.8	Variation in mean biface refinement (thickness to width ratio) for Indian
	assemblages. Comparative data from Shipton 2016
Figure. 4.4.9	Discoidal core

Figure. 4.4.10	Preferential Surface Core 100
Figure. 4.5.1	Anthropogenically exposed vertical section with artefacts at
	Hanumanthunipadu and location of the trench106
Figure. 4.5.2	Images showing exposed sections and in situ artefacts. a) Artefact exposures
	(above), in situ artefacts (below) (Source: Anil et al 2022)107
Figure. 4.5.3	Section facing north (right) and a schematic sketch of the section (left).
	U: identifying specific lithological units; dots and codes: positions of OSL
	samples (Source: Anil et al 2022)108
Figure. 4.5.4	a) SAR growth curve for p-IR-IRSL signal, b) luminescence decay curve
	for p-IR-IRSL signal, c) Radial plot of estimated Des using p-IR-IRSL
	protocol indicating that dose scatter is less. Over-dispersion (OD) for all D_{es}
	is ~8%, d) Large dose scatter observed in the sample recovered from Unit
	15 (Source: Anil et al 2022)111
Figure. 4.5.5	Anomalous fading (g-value) measurements on a single aliquot by using a
	series of prompt and delayed sensitivity corrected measurements of the
	HMP sample (source: Anil et al 2022)111
Figure. 4.5.6	The measured dose response curve (DRC), unfaded DRC and the simulated
	natural DRC are shown (Kars et al., 2008; Kars and Wallinga, 2009). The
	natural L_x/T_x is also shown. The natural luminescence signal is higher than
	the simulated natural DRC and hence gives the dose saturation value only
	$(2d_0 = 511 \pm 1 \text{ gy})$ (Source: Anil et al 2022)112
Figure. 4.5.7	Core and debitage pieces recovered from the trench (Source: Anil et al
	2022)
Figure. 4.5.8	Schematic sketches of the two (a and b) Preferential Levallois cores from
	the assemblages (source: anil et al 2022) 115
Figure. 4.5.9	Large quartzite blocks used as cores (multi-platform cores) recovered from
	the trench (Source: Anil et al 2022) 116
Figure. 4.5.10	Representative samples of Levallois debitage products present in the
	assemblage. a to d: Levallois point; e and f: Levallois flakes117
Figure. 4.5.11	Bifacial artefacts recovered from the trench. a to c: Bifacial points; d:
	Diminutive Hand axe 118
Figure 4.6.1	1: Step-trench section showing the lithological Units: 2: Unit A; 3: General
	view of the site, Retlapalle

Figure 4.6.2	Rock magnetic parameters and inter parametric ratios for sediment samples
	from Retlapalle step trench124
Figure 4.6.3	Particle size, organic matter, and carbonate values for the Retlapalle step
	trench. The sediment log shows the position of the YTT deposits and
	samples collected at 10 cm interval125
Figure. 4.6.4	A scanning electron microscope image of glass shards and (brighter) biotite
	grains (top right corner and bottom left corner of the image) from
	Retlapalle126
Figure. 4.6.5	a: Glass shard compositions (normalized to 100%) from Retlapalle tephra
	(black diamonds) compared with published proximal YTT data (grey
	triangles; from Smith et al., 2011). b: Biotite composition of crystals from
	the deposits at Retlapalle compared with those from the tephra in the Son
	and Jurerru valleys and proximal samples of OTT, MTT And YTT (data
	from Smith et al., 2011) 127
Figure. 4.6.6	Results of pIR-IRSL analyses at Retlapalle. Each panel shows a-d separately
	for the samples RTP-18-1, RTP-18-3, and RTP-18-4. a: typical feldspar
	shine down curve; b: typical growth curve; c: radial plot representing the
	estimated palaeodoses; d: typical g-value data129
Figure 4.6.7	Representative lithic artefacts from UNIT E at the Retlapalle step-trench. 1:
	Multiplatform core; 3: Unidirectional core; 2,8,9 and 10: flakes; 6 and 7:
	Prepared core flakes; 4: retouched piece; 5: diminutive handaxe130
Figure. 4.6.8	Preferential Levallois core
Figure. 4.6.9	Levallois point core
Figure. 4.6.10	Recurrent Levallois cores
Figure. 4.6.11	Discoidal cores in the assemblage. Note the variation in the size of the cores
Figure. 4.6.12	Small Discoidal cores
Figure. 4.6.13	Blade cores in the assemblage137
Figure. 4.6.14	Prepared core and Levallois flakes. a to e: Prepared core flakes; f to i:
	Levallois flakes
Figure. 4.6.15	Blades in the assemblage
Figure. 4.7.1	Trench and a schematic sketch of the stratigraphy of Vemulapadu 145
Figure. 4.7.2	Artefact exposures within Unit D

Figure. 4.7.3	Thin calcrete layers observed within Unit E146
Figure. 4.7.4	Results of p-IR-IRSL analyses for sediment sample from Unit D. a: typical
	feldspar shine down curve; b: typical growth curve; c: radial plot
	representing the estimated palaeodoses 147
Figure. 4.7.5	Location of the Trench and Grid149
Figure. 4.7.6	Variation in mean biface elongation (length to width ratio) for Indian
	assemblages. Comparative data from Gaillard et al. 1986; 2008; Paddayya
	& Petraglia 1993; Chauhan 2010 153
Figure. 4.7.7	Variation in mean biface refinement (thickness to width ratio) for Indian
	assemblages. Comparative data from Shipton 2016. Note that Vemulapadu
	occurs on the lower end of the distribution, while assemblages with early
	Pleistocene age estimates occur on the other end 154
Figure. 4.7.8	Preferential Levallois core
Figure. 4.7.9	Recurrent Levallois core
Figure. 4.7.10	Uni-directional Recurrent Levallois core
Figure. 4.7.11	Levallois point core
Figure. 4.7.12	Discoidal cores
Figure. 4.7.13	Transverse flakes
Figure. 4.7.14	Levallois flakes in the assemblage. a to d: Levallois flakes (d is from
	Trench); e: platform rejuvenated flake161
Figure. 4.7.15	Blades in the assemblage161
Figure. 4.7.16	Levallois points in the assemblage163
Figure. 4.7.17	Bifacial and Tanged points. a to d: bifacial points; e to g: tanged points 164
Figure. 4.8.1	Trench 1 excavations 169
Figure. 4.8.2	a: Section facing west, trench 1; b: Schematic sketch of the section 170
Figure. 4.8.3	Coarse sediments within Unit 2 170
Figure. 4.8.4	Results of p-IR-IRSL analyses for sediment sample from Unit 3. a: typical
	feldspar shine down curve; b: typical growth curve; c: radial plot
	representing the estimated palaeodoses 171
Figure. 4.8.5	Results of p-IR-IRSL analyses for sediment sample from Unit 3. a: typical
	feldspar shine down curve; b: typical growth curve; c: radial plot
	representing the estimated palaeodoses

Results of p-IR-IRSL analyses for sediment sample from Unit 4. a: typical
feldspar shine down curve; b: typical growth curve; c: radial plot
representing the estimated palaeodoses 174
In situ artefacts excavated from the Unit 3 of Trench 1175
Unidirectional cores
Worked pebbles. a; split cobble with platform preparation; b: worked
nodule
Flake component in the assemblage. a and b: flakes with cortical platform
and dorsal surface with 100% cortex; c: Flake with cortical platform with
flake scars on the dorsal surface; d: flake with prepared platform and
prepared dorsal surface; e: platform rejuvenation flake
Levallois cores. a: Preferential Levallois core; b: Recurrent Levallois core180
Levallois point cores
Unidirectional Recurrent Levallois core
Cortical flakes with cortical platform 184
Cortical flakes with prepared platforms
Prepared core products. a to c: Levallois flakes; d and e: blades; f: platform
rejuvenation flake
Levallois points
Trench 2 with YTT as a distinct Unit
Schematic sketch of section facing north of Trench 2, Motravulapadu 190
YTT horizon in the western section of the trench 2191
Close view of the YTT sediment with diffused contact with underlying and
overlying sediments
Results of p-IR-IRSL analyses for sediment sample overlying the YTT
horizon. a: typical feldspar shine down curve; b: typical growth curve; c:
radial plot representing the estimated palaeodoses
Results of p-IR-IRSL analyses for sediment sample underlying the YTT
horizon. a: typical feldspar shine down curve; b: typical growth curve; c:
radial plot representing the estimated palaeodoses194
Trench 4: sedimentary units and the location of luminescence samples and
artefacts
In situ blade exposed during the excavation

Figure. 4.8.26	Results of p-IR-IRSL analyses for sediment sample from Unit 2 above the	
	artefact horizon. a: typical feldspar shine down curve; b: typical growth	
	curve; c: radial plot representing the estimated palaeodoses 19	98

- Figure. 4.8.31 In situ and articulated skeletal remains of Bos sp 205
- Figure. 4.8.33 Test pits excavated below surface exposures of fossil remains 207

- Figure. 4.8.36Postcranial elements from surface collection213Figure. 4.8.37Cranial elements from surface collection213Figure. 4.8.38Cranial elements from surface collection214Figure. 4.8.39Taxonomy of the surface collected fossil remains215Figure. 4.8.40Identified specimens from trench 5216

Figure. 4.9.5	Hammerstones
Figure. 4.9.6	Early-stage flakes of core reduction sequence. a and b: cortical flakes with
	cortical platforms; c to e: cortical flakes with prepared platform
Figure. 4.9.7	Representative blade artefacts from the assemblage
Figure. 4.9.8	Backed tabular piece (top left) and backed blades
Figure. 4.9.9	Core showing the early-stage reduction from Ardhaveedu231
Figure. 4.9.10	Blade cores
Figure. 4.9.11	Levallois cores233
Figure. 4.9.12	Radial cores
Figure. 5.3.1	Graph showing the relative abundance of Biface elements
Figure. 5.3.2	Temporal distribution of Levallois cores
Figure. 5.3.3	Scatter plot (with biplot) of first two principal components of Core shape
	which account for $\sim 65\%$ variability and do not differ significantly between
	sites
Figure. 5.3.4	Scatter plot (with biplot) of first two principal components of Flake
	production which account for \sim 60% variability, which do not differ
	significantly between sites
Figure. 5.3.5	Temporal Distribution of other core types
Figure. 5.3.6	Temporal distribution of retouched artefacts
Figure. 5.3.7	Temporal Distribution of informal retouched artefacts
Figure. 5.3.8	Temporal distribution of Points
Figure. 5.3.9	Temporal distribution of unretouched artefacts
Figure. 5.5.1	Artefacts representing the below YTT archaeology from the upper
	Gundlakamma river basin. 1 and 2: Recurrent Levallois core (KGM); 3:
	Unidirectional Levallois core (TDE); 4: Bidirectional Levallois core
	(KGM); 6 to 10: Retouched Points (KGT, RVP, TDE); 11 and 12: Levallois
	points (NMP, KGT); 13 to 17: Tanged points (AGB, KGM, KGT); 18 to 21:
	Scrapers (TDE, NMP, KGT, HMT, CTK); 22 and 23: Borers (AVK, ERK);
	24: Burin (TDE); 25: Notch (CVD); 26 to 28: Flake-blades/Blades (NMP,
	KGT); 29 and 30: Levallois flakes (TDE, NMP). All these artefacts are from
	the surface collections of twelve different sites and are shown together for
	representative purposes. (Source Anil et al 2022)

Figure. 5.5.2	Artefacts representing the above YTT archaeology from the upper
	Gundlakamma river basin. 1: Blade core (VPT); 2: Unidirectional core
	(CLP); 3: Recurrent Levallois core (JPC); 4 to 12: Levallois points (VPT,
	VBP, JPC); 13: Levallois flake (VBP); 14 to 18: Blades (VBP, VPT, BNV,
	AVD); 19 to 22: Tanged points (VPT, JPC, MDM); 23 to 26: Borers (MMp,
	JMG); 27: Burin (MDM); 28: Notch (AGB II); 29 to 31: Scrapers (BNV,
	MDM, JNV). All these artefacts are surface collections from eleven
	different sites and shown together for representative purposes (Source Anil
	et al 2022)
Figure. 6.1	Comparison between the Pleistocene cultural developments in South Asia
	and current study region. Sites with firm chronological framework and
	secure geological context are shown here and other sites with chronometric
	ages are considered in the overall temporal range of the different cultural
	phases