

Aim and Objectives

Aim and Objectives

2.1 Significance

Following oral administration, dissolution of the drug molecule in the gastrointestinal tract is a prerequisite for the absorption process. Up to 40 per cent of new chemical entities discovered by the pharmaceutical industry today and a number of already existing drugs are poorly soluble or lipophilic compounds. For poorly water-soluble drugs (BCS class II and IV), the maximum achievable intraluminal drug concentration may limit absorption. The introduction of high-throughput screening and combinatorial chemistry in drug development has resulted in a shift such that more new chemical entities suffer from limited aqueous solubility and/or poor dissolution properties.

In the era of research and development, plenty of techniques are developed for solubility enhancement of poorly soluble drugs but these techniques often have some limitations like scale up, cost effectiveness, instability, biocompatibility, toxicity, regulatory requirements etc. Some of them are listed in table 2.1. There is a continuous need to explore new and ideal approach to enhance the aqueous solubility of these compounds.

Formulation	Associated problem
technique	
Micronization	\oplus Difficult to control particle size, shape, morphology,
	surface properties and electrostatic charges.
	$\oplus \mathrm{High}$ energy process causes crystal disruption.
	\oplus Unstable and chances of recrystalization on storage.
Salt formation	\oplus High reactivity with atmospheric CO ₂ and H ₂ O cause
	precipitation of poorly water soluble drugs.
	\oplus Epigastric distress due to high alkalinity.
Spray drying	\oplus Thermal stress and degradation of pharmaceuticals.
	\oplus Use of organic solvents.
Hot melt extrusion	\oplus Not suitable for thermolabial pharmaceuticals.
Solvent evaporation	\oplus Difficulties in removing solvent residue.
	\oplus Toxicity potential of organic solvents.
Conventional method of solid dispersion	\oplus Laborious and expensive method.
	\oplus Difficult for moisture sensitive drugs.
	\oplus Phase separation and crystallization.
	⊕Stability of drugs and vehicles.
Precipitation	\oplus Not universally acceptable technique.

Table 2.1 Problems associated with established formulation techniques.

Aim and Objectives

im and Objectives 2	
	⊕Needs to be stabilized.
	\oplus Interference of solvent residue.
Milling	\oplus Residue from milling media
	\oplus Large batches difficult to produce due to size of
	milling chamber
Homogenization	\oplus Thermal stress and degradation of Pharmaceuticals.
	⊕Great experience needed.
pH adjustment	\oplus Risk for precipitation upon dilution with aqueous
	media having a pH at which the compound is less
	soluble. Intravenously this may lead to emboli.
Co-solvency	\oplus Uncontrolled precipitation occurs upon dilution with
	aqueous media.
	$\oplus As$ with all excipients, the toxicity and tolerability
	related with the level of solvent administered has to be
	considered.
	\oplus The precipitation tendency of the drug on dilution
Microemulsion	may be higher due to the dilution effect of the
	hydrophilic solvent.
	\oplus The tolerability of formulations with high levels of
	synthetic surfactants may be poor in cases where long
	term chronic administration is intended.
	\oplus Formulations containing several components become
	more challenging to validate.
Complexation	\oplus Toxicity issues of complexing agents.
	\oplus Necessity to evaluate various physical properties i.e.
	forces which imparting in complexation.
	\oplus Dilution of system may still result in precipitation.
Supercritical fluid process	\oplus Critical control of the system parameters are essential
	like the density, transport properties (such as viscosity
	and diffusivity), and other physical properties(such as
	dielectric constant and polarity) vary considerably with
	small changes in operating temperature, pressure, or
	both.

Aim and Objectives

2.2 Aim and Objectives

The aim of this study was envisaged to prepare a formulation which can enhance the solubility of a poorly soluble drug. It was hypothesized that incorporating drug in nano-sized mesoporous silica material will enhance its solubility which in turn may help in enhancing the absorption through gastro-intestinal tract and ultimately the bioavailability.

Keeping this aim in perspective, the specific objectives of the investigation were therefore:

- 1) Review of the literature with special reference to mesoporous silica materials, their synthesis, properties, evaluation techniques and cytotoxicity.
- 2) Preparation/synthesis of mesoporous nanoparticles (MSNs) and their characterization.
- 3) Loading of drug in the MSNs, optimization of procedure and characterization.
- 4) In-vitro dissolution studies of the prepared drug loaded MSNs.
- 5) Stability studies of drug loaded MSNs.
- 6) Cytotoxicity studies of drug loaded MSNs.

On the basis,

- 1) Methotrexate and Dasatinib were selected for the investigation.
- 2) Analytical methods for both the drugs were developed for different analytical studies.
- 3) MCM-41 and MSU-H were selected as mesoporous silica materials for preparing MSNs.
- 4) The selected drugs were loaded into the pores of prepared MSNs and the process was optimized.
- 5) The drug loaded MSNs were characterized by SEM, TEM, DSC, FTIR, Nitrogen adsorption isotherm and XRD methods.
- 6) *In-vitro* dissolution studies were performed in different dissolution media and *in-vitro* dissolution data were compared with that of commercialized formulations.
- 7) The cytotoxicity of prepared and drug loaded MSNs were performed by using K-562 and L-132 cell lines.