


CHAPTER-m

ISOSPIN BREAKING IN DIAGONAL PION-NUCLEON COUPLING 

CONSTANT: QCD SUM RULE APPROACH

3.1 Introduction

Determination of meson-nucleon couplings is of particular interest in particle physics 

as well as in nuclear physics. In particle physics, estimate of these parameters is 

useful to test the low energy behaviour of the QCD. In nuclear physics, nucleon- 

nucleon interactions are traditionally viewed as arising from meson exchanges. Pion 

exchange is linked to spontaneous and explicit chiral symmetry breaking (CSB) of 

low-energy QCD. According to Goldstone theorem, pions are Goldstone bosons 

having point like derivative couplings to the nucleons. For intermediate and short 

distances, heavy mesons have to be included in the modeling.

On the other hand, at energies much below the scales set by the pion mass, 

it is sufficient to consider four-nucleon interaction only. Starting from nucleon and 

pion degrees of freedom, effective field theory has been used for a separation of these 

scales [1], Accounting higher order terms in the chiral expansion, a form of two- 

nucleon potential for the neutron-proton system has been developed in so-called 

modified Weinberg scheme and shown to be close in accuracy to the so-called 

modem potentials (in some partial waves) [2]. Isospin symmetry is a good symmetry 

of low-energy hadronic physics and charge symmetry is even better. In low-energy 

observables isospin violation is typically much smaller. The study of charge
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symmetry breaking, which is a special case of isospin breaking, in pion-nucleon 

coupling is an important step for investigation of charge symmetry breaking effects in 

nucleon-nucleon interactions.

The effect of isospin violating meson-nucleon couplings has recently seen a 

strong revival of interest in the investigation of charge symmetry breaking 

phenomenon. On a microscopical level, isospin symmetry is broken by 

electromagnetic interaction as well as the mass difference of up and down quarks: 

mu-md . We shall examine the difference between the diagonal pion-nucleon 

coupling constants, gpp![o - gmj[e using the QCD sum rule method.

3.2 A Model Calculation in QCDSR: Proton Mass

QCD sum rule method was originally suggested by Shifman, Vainstein and 

Zakharov, and has been applied to determine masses and leptonic widths of light 

mesons (p, it, k*). For these determination, virtuality region is taken of the order of 

Q2~lGeV2 and as~0.3-0.4, so that perturbative terms are small i.e as/7t~0.1 and hence 

only leading logarithmic corrections~[as(Q2)lnQ2/A2] are taken into account. To 

illustrate the characteristic features of the method and to use it for our main 

calculation, we shall show a calculation of the mass of the proton using QCD sum 

rules.

For this purpose we consider the polarization operator as

(3.1)
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where 7 (x) is the quark current with proton quantum numbers and p2 is chosen to be

space-like: p2<0, |p2|~lGeV2. The current T] is colorless product of three quark

fields ri(x) = eabc qdqbqc, q=u,d, the exact form of the current will be specified below.

Unlike mesons, in baryons there exist several currents with quantum numbers of 

a given baryon. The choice between them should be done from physical reasons in 

order to provide: (1) renormcovariance, (2) existence of nonrelativistic limit, (3) the 

above formulated requirement (for proton) for the functions fi and fi (given below in 

Eq. (3.2) ) to be of the same order, (4) convergence of operator expansion series 

within accounted terms. Specifically for proton all these requirements are satisfied by 

the current,

For each of the function /,(/) ,1=1,2 the following operator expansion can be written:

where <o| 0‘n |o> are vacuum expectation values of different operators (vacuum 

condensates) and C'„(p2) are functions calculable in QCD.

q = (uaCy4 ub)y^ y5dc eabc 

The general structure of f](p) is

n(P)=pMPz)+f2(p2) (3.2)

f,(p7)=J^c’n(p2)(o\oii>m\o) (3.3)

Up2) = Co/ In ^4+Yj c\ (f)\qT{k)(i Uk)q |o) -V+

(3-4)

+polynomials
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(3.5)
fliP2) = C\P2 ln —p:<c|<?-71°>+C3(0|qq~GaMVG“v \0)-~-

C5 Y <0| qq qr(k)q qTik)q\Q)^j+ polynomials 
k P

where C,9s are constants, A„ is the ultraviolet cut-off. The current u-and d-quark 

masses entering the Lagrangian of QCD are very small, of the order of several MeV, 

so they can he neglected with very good accuracy, i.e for the time being, we neglect 

the quark masses, then LQCd is chiral-invariant. If this chiral symmetry would not be 

spontaneously broken, then f2 (p2) would remain identically zero. As explained in 

Chapter 1, the chiral symmetry is spontaneously broken. The first evidence of this is 

the existence of large baryon masses: Mb»Aqcd- Another signal is the fact that chiral 

symmetry violating quark condensate (01 gg |0) is non-zero, and is approximately equal 

to -<240MeV)3.

Since <0|ggj0> is the lowest dimensional chirality violating operator, the

i.e in the limit Nc -» °° factorization becomes exact. By virtue of factorization and 

taking into account the relation-

2 mu+md
(3.6)

operator expansion for /,(/) starts from the term proportional to <0|^|0>. 

For any colorless operator Oi and 02 at large Nc

<o| Ofi210>=<0| o, |0><0| 0210}(1+0(—)) (3.7)

<0|^(0)^(0)|0> = -^^a/,<0|W|0) (3.8)
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(a, b = 1,2,3 are color, a, j3 are Lorentz indices) all four-quark vacuum expectation 

values (v.e.v) reduce to the quark condensate square <0|^|0)2. In order to improve 

and control the accuracy in the calculation of mass, other v.e.v’s will also be taken 

into account: Gluonic condensate {0\—G°GaMV\G) , mixed

condensate <o| qoftv (A" / 2)G^vq |0) and higher dimensional

v.e.v’s <0|W|0X0|9£r/n,(A"/2)G>|0) , as(0\qq\0y , (0|W|0)<0|-^-G;,Ga^|0) . The
7t

gluonic condensate gives a contribution into chirality preserving structure f(p2). 

II(P) may be expressed using the dispersion relations

oo .

/,(*) = --f
n J
1 rim/G/) , 2i ■~l.2.£..’dp2- + polynomial
ni p -*

(3.9)

In order to extract physical quantities of interest, it is useful, at this stage, to 

apply Borel transformation on both side of this equation. The Borel (Laplace) 

transformation is defined as

Bf,{q2)= Lim (°2^+> d

n\ dq
q1 / n-M1 fixed

In
m2).

This gives

bm2 W = — JexP(“^2)Im f (P2 )dP2 ’

where f(s) is given by dispersion relation (3.9). In particular, we have

(3.10)

BMl sn (w2)""'(«-1)! (3.11)

The Borel transform permits to attain three goals at once:
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(1) to nullify subtraction term,

(2) to suppress the contribution of the higher excited states compared to the desired

lowest state (proton)

(3) to suppress the contributions of high order terms in the operator expansion (owing 

to

factor l/(n-l)! in (3.11)).

The lowest state (proton) contribution to imaginary part of J](p) has the form

lmII(p) = n;{0\r}\p)(p\?j\0)S(p2-m2) = 7rAN2(p+m)S(p2-m2), 

where

{Q\ij\p) = ANu(p)

Here XN is the proton transition constant into quark current and u(p) is the proton 

spinor.

It is clear from above that proton contribution will dominate in some region of 

the Borel parameter M2 only when QCD calculated functions fj and fj are of same 

order, and the spontaneous violation of chiral invariance characterized by the value of 

quark condensate has to explain the numerical value of the proton mass.

Contributions of higher mass states will also be taken into account in order to 

improve and control the accuracy in the dispersion representation as written above, by 

replacing Imf(p2) by contribution of the simplest quark loops starting from some 

“continuum threshold” W. Taking into account all points stated above, the sum rule 

for the calculation of the proton mass is given as
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w_
M

,-4/9 4 24/9 1M E2(---- j-)i + j« T + jiM E0(---- j-)L -j a
W_
AT

,-4/9 i m,

„2 m= 2 exp(-------~-)A M M2

M
, (3.13)

2 2 2 „ \ r—4/9 272 a3 r4/9 I n,2r w-4/9 I 2 mo
l(T72-} + 4^ “3a —T-

M MM
_ 2 /w2

= 3 exp(------=-)mA" M2

(3.14)

Here

aq= - (27t)2( 0]^|0>,

b-(2^<°lfG'''G"'10>“0-SGer!
and

-S{^\qcyap^Gapnq\Q)^{Q\qq\Q,)

« 0.8GeF2 

The factors

Eo(x) = l-e'x , Ei(x)= l-(l+x)e'x and E2(x)= l-(l+x+x2 /2)ex (3.15)

take into account the continuum contribution. We also have

l£=32?r44,

the factors L = ^ take into account the anomalous dimensions of the operators
ln(///A)

(A is the QCD parameter, p is the renormalization point, numerical values hereafter 

corresponds to p= 1 .OGeV).
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charge independence breaking is explained in terms of one-pion exchange together 

with a four-nucleon contact term [4], Therefore, it is useful to constrain the isospin 

violation in the pion-nucleon couplings directly from QCD based non-perturbative 

methods such as QCD sum rule.

At the fundamental level, isospin violation takes place due to charge 

difference and mass difference of up- and down-quarks. At the phenomenological 

level, the effect of these differences may get augmented due to strong interaction, and 

in practice, this may appear in the form of isospin splitting of other phenomenological 

parameters such as quark condensates. QCD sum rules have been used in past to study 

pion-nucleon couplings and also their isospin breaking[5-ll]. Three different methods 

have been used to investigate pion-nucleon coupling constant in the framework of the 

conventional QCD sum rule. In the three-point function method, one studies the 

vacuum-to-vacuum matrix element of the correlation function of the interpolating 

fields of the two nucleons and a meson[6]. However, it has been argued that the 

method suffers from contamination of higher resonance states [12].

In the two-point function external field method, one studies the correlation 

function of the interpolating fields of the two nucleons in the presence of an external 

pion field [7]. However, the induced condensates appearing in this method are not as 

reliably known, as the other more commonly used condensates. In the following we 

shall follow the third, the two-point function method [5, 8-10] in which one studies 

vacuum-to-pion matrix element of the correlation function of the interpolating fields 

of two nucleons:

(3.16)
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Here, V is the interpolating field of a nucleon and J Tt°(k)) is the neutral pion state 

with momentum k. Isospin is suppressed for simplicity. For q, Ioffe’s interpolating 

field [13] will be used; for proton, it is written as

t|(x)~8abc (uaT(x)CYM Ub(x))y5yMdc(x) (3.17)

The correlation function is calculated, on the one hand, by Wilson’s operator product 

expansion(OPE), and on the other hand it is evaluated using hadronic physical states. 

The two descriptions are matched in the deep Euclidean region via the dispersion 

relation and the physical quantity of interest is extracted.

The expression (3.16) is known to have four Dirac structures [11]. Among 

these, the coefficient of the double pole of iys p structure on the mass shell vanishes, 

and the sum rule obtained at the Dirac structure iys substantially underestimates the 

ratio F/D compared to its value known in SU(3) symmetry limit [5], The Dirac 

structure iys k has been found not to be reliable for calculating the JtNN coupling as it 

contains large contribution from the continuum [8], The sum rules for the meson-

baryon coupling constant at the structures iy5 k and y5oflvp^kv have been studied 

extensively in [5,8-10]. Kim et al. [8,9] have claimed to find nice features in the sum 

rule at the ysoiIvpJlkv Dirac structure for calculation of 3iNN coupling constant. It was 

observed that for this sum rule the coupling constant comes out to be independent of 

the choice of the effective Lagrangian, i.e, independent of pseudoscalar and axial 

vector schemes [10], and is stable against the variation of the continuum parameter 

due to cancellation of contributions from higher resonances of different parities [8]. 

We use this sum rule to calculate isospin splitting in the diagonal pion-nucleon 

coupling constant gnNN In the existing result for the correlation function (3.16), we
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also include quark mass dependent terms and do renormalization group improvement.
i

In addition, we also take into account the effect of 7c°-r[ mixing and electromagnetic 

correction to the n°- quark couplings.

In order to reduce the dependence of the splitting in the coupling on the 

isospin splitting in the quark condensate, which is rather poorly known, we take the 

ratio of the sum rule for the coupling g^N to the corresponding chiral-odd sum rule 

for the nucleon mass, and then consider the difference and the average of this ratio for 

proton and neutron. This resulting sum rule is fitted to a straight line form, which 

directly gives the difference and the average of the couplings:
L.

8g=gjt pp~ gjt nnj &eNN~ (&U pp^ §is nn)/2. (3.18)

3.4 Sum Rules for Pion-Nucleon Couplings

As stated above, in order to construct sum rules for the coupling g^NN at the 

structure Y5C7HvP^kv, in addition to the results already derived in Ref.[5], we calculate 

contributions coming from the quark mass dependent terms of Figs.3.1(a) and 3.1(b). 

We enumerate below the Fourier transforms and the Borel transforms of the 

coefficients of ysOnvP^k'’, of these contributions for the proton:

Fig 3.1(a)... FT > - (l/27^)md p%vln(-p2)

(M^Jnidfrysanv p"kv (3.19a)

Fig 3.1(b) > - (l/QfsXniu /p4) < uu)(dd) y5a^v P^kv 1 ■

—» (l/9$,)(mu /M2) (uu)(dd) yso^v ptlkv ■ (3.19b)
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(a) (b)

(c)

Figure 3.1: The additional diagrams considered in this work. The solid lines denote the quark 

propagator, dashed line is the pion propagator, and the blob denotes their interaction vertex. Cross 

denotes quark mass insertion.

We have checked that the coefficient of the operator mq ( ( uu ), ( dd )) 

{(rxs/7t)G2) is zero. So far we have assumed that 7t° mass eigen state is a pure 

isovector state. However, it is well known that the mass eigenstates n° and r| are not
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pure octet states [14], rather they are mixtures of flavor octet eigenstates %3 and 7tg 

Denoting tt— rj mixing angle by 0, the mass eigenstates may be written as :

I 7S° > = | 513) +0 | ) , | n) = j 5t8> - 0 11t3 ) .

Since 0 is small = 0.01, this amounts to the replacement for the couplings:

grt pp — grc3pp 0 gjr8pp> gji nn ~ grc3nn 6 git8nn- (3.20)

Here, we ignore any possible mixings of n° andr) with t|\ We use the sum rules for 

the couplings of pure octet states, g^NN and gn8NN [5] in the above Eq. (3.20) to get 

the couplings of the physical state 7t° with nucleons.

It has been pointed out in [7] that the vertex corrections to 7t°uu. and 3t°dd 

couplings, due to photon exchanges, can give rise to non negligible isospin breaking 

in gjtNN- Specifically, it has been found that in the minimum subtraction scheme the 

following electromagnetic corrections arise to the pion-quark couplings:

g*°uu-> gAu{l+— (- - ^Ye)}, g«0dd-> g,°dd{l+-(- -iyE)} ' (3.21)
4n 9 3 4* 9 3

The most important correction arising due to these vertex corrections is shown 

in Fig.3.1(c) for perturbative contribution. This correction will be different for proton 

and neutron because %° couples to different quark lines for the two cases. Similar 

correction will also1 arise in other terms. In effect, the coefficient of each term in the 

OPE is multiplied with a factor which depends on the charge of the quark to which 7i° 

couples in the nucleon.

Combining the sum rule for the meson-nucleon couplings as obtained in 

Ref.[5], but with the specification of the flavor of the quark condensate, at the Dirac 

structure 750^ p|ikv with the above three types of corrections, we get the following
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sum rules, after Borel transformation and renormalization group improvement, for the 

diagonal pion-nucleon couplings: 

gjt pp^p (1+DjqjM )

(mp/M2) m ^
fn

M4Eo(SglM2)
+ 216

< (as/7t)G2 ) + mu}( 1- Ofn
Ivi,

)x

{i+ — (H
4n 9

~ TE)}+fr ( — 
3 3

m0 L ■14/27 26<J2 M4lTS/9mdEo(sP/M2)

27 2%Z(dd)

1 + 10 s1
9M1 )0-

V- ){l+i(?-’TE)}], 

4 n 9
(3.22a)

gAn^O+DJVP)

(m2/M2) m ^ M%{S$/M2)+ 1 ((as/7l)G2) + <g>md +
f„ 12*z 216 9 V3 f„^fn

/
(1+.^ (!£ - iyg)}^ (i£l _ V z-i4/27 + 26^ Ar4I~8/9m„g0(OM2) } J, lo/2^

6 27 2,~ '4# 9 3 2 7tl{uu)
1+-

9M*

(1—( — --yE)}] (3.22b)
v3/^. 4.t 9 3

Here, L = ln(M2/AQCD2)/ln(p2/AQCD2), p is the renormalization scale, and 

Aqcd is the QCD scale parameter. The anomalous dimensions of various operators 

have been taken into account through the appropriate powers of L [15]. It is 

understood that within this truncated series, v.e.v’s of the quark and the gluon 

operators have to be taken at the scale p. Dkn are unknown constants arising from

resonance states (qgcr.Gq) = (qq), yEis the Euler’s constant. are the continuum

thresholds which take care of contributions of excited states in a standard way, and
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E0(x)=l-e'x, It is clear from the sum rules (3.22a) and (3.22b) that the isospin splitting 

in the diagonal coupling constant, 8g, has a direct dependence on the isospin splitting 

of the light quark condensate ( qq ) and on the same of the coupling of the nucleon

interpolating field to the nucleon state, Xn- Both these splittings are rather poorly 

known. However, if we divide these sum rules by the chiral-odd mass sum rules of the 

respective nucleons, then the Xn dependence will get cancelled and the dependence of 

8g on the isospin splitting of the quark condensate will get minimized. We use the 

sum rule for the calculation of neutron-proton mass difference derived by Yang et 

al.[15]:

2
2 1 m

= -(------ )exp(-----;
p

544

X ) exp(—~2~) <dd > [---- T M ’ Ex (-^-)(1 + —)-------< (—)G ‘ > +4 X , 1

■na. < uu >
2 L

M 

-1/9

4 a M '

81
(-

M

M ‘ 16a
2 ^<dd> -8/9)L ""£2(-2T-) + ( M

18

2

M 32 a
2 ^<dd> )x

< > l
It

2 r-8/9 S0n ,
E2 (—-)

M

- 2 2 ..2 of< «“ > „ - . ,mem M ^ ,SoN ^
-----r------• - 2mu < uu > +(--------- =------)£0 (—=-)]
<dd> 24a2 M2

(3.23a)

3 = -(—)exp(—iy-) < uu > [ -M'Ei (-*%-)( 1 + —)------- < (— )G ~ > +
^ n m tl 1 11 ^ 018 *

1 as^2

M

544
■aas < dd >

2 L 1/9
- (-

M

4 a

-)(-

M

-8/9

18 a 

2
, /v - ~)L 'E2
2 <uu> m 2 22a2 <“«>

A/

M 1 6tt

-)(- ) x

8/9<(—)<? >L (-=%-)
* A/

< rfrf >
< uu >

2 m ^ < cW > ]

(3.23b)
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The terms with % in Eqs.(3.23a) and (3.23b) take into account perturbative

2electromagnetic contribution, and m]maq = (In)1 (eqa Fq), and (ua.Fa) = - (qa.Fq) with

(da Fd'j = -^(qa Fq), has been introduced (F,iU is the electromagnetic-field strength 

tensor). In order to attain fit, % = 0.0036 and mem2 = 0.048GeV2 has been chosen [15]. 

Here, are the continuum Thresholds for the mass sum rules, and these may, in

general be different from Sp,n . Ej(x) = l-(l+x)e'x and E2(x) = l-(l+x+x2 /2)e’x. 

Eliminating Xp2of Eq.(3.22a) with the above Xp2 of Eq.(3.23a) and X„2 of Eq.(3.22b) 

with the above Xn2 of Eq.(3.23b), we get the sum rules for g*°pp and g^im- Finally, on 

taking the difference and the average of these two sum rules we get sum rales for Sg 

and giiNN) which we express as:

5g (1+ DaKN M2) = Fa(M2), gjt°NH (l+DsffN M2) = FS(M2), (3.24)

where D%n and Ds„n are constants. We shall study the sum rule for g^Vj also, in 

parallel with that for 8g, and compare the result for g^NN with that derived earlier [5] 

in a similar approach. Thus a straight line fit of Fa>s(M2) will directly give Sg and 

gn°NN in the form of intercepts.

3.5 Analysis of Result and Discussion

/7j\

Let us define a. =-{2tc)2(qq), b = (gfG2) , y = ——^-1 and set ( qq ) =
' ' {uu)

^[(dd) + (uu)].
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Normally, for the calculation of g^N, light quark mass dependent terms are 

not included. However, we find that the perturbative quark mass dependent term is 

numerically more important than the power corrections in quark mass independent 

terms. To get an idea of the errors involved in values of Sg and g„NN, we vary the 

values of condensates and the continuum threshold consistent with their values used 

in literature: the value of au has been varied from 0.45 GeV3[17] to 0.55 GeV3 

[7,15,18], while that of b has been varied between 0.47 GeV4[5,15] to 1.0 

GeV4[16,17]; 52 has been varied from 0.2 GeV2[19] to 0.35 GeV2 [20]. Most of our 

analysis is based on y = -0.01 which is the upper limit from a range given in Ref.[6] 

based on various sources: 0.002<- y <0.010. For the sake of comparison, we have also 

given results obtained for y =-0.00657[14] .The variation of the continuum threshold 

So from 2.07GeV2 to 2.57GeV2 [5], for a given set of condensates, changes gKNN by a 

maximum of 3% and changes 8g at most by 7%. The range of the Borel mass squared 

is 0.8 GeV2<M2 <1.0 GeV2. This range is chosen so as to ensure that the contribution 

of excited states remains less than 50% and that of the operator of the highest 

dimension considered remains less than 10% of the total. Smaller range of Borel mass 

parameter, such as the above, is normally used whenever QCD sum rules are applied 

for calculating isospin splittings of nucleonic parameters [15]. Moreover, this range is 

within the ones used in Refs. [5,15].

We have looked for the values of gKNN and 8g in the parameter space spanned by 

au, b, S2 and So within the ranges stated above. The highest and the lowest values of Sg 

and guNN along with the values of the parameters for which they arise are displayed in 

Table 3.1. In all, we get Sg = - (4.92±1.90) *10'2 and - (5.09±1.87)xl0'2,
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gltNN=11.76±2.43 and 11.13±2.45 for AQCd=0.1 GeV[15] and 0.15 GeV respectively. 

For a given set of values of au, b, S2 and So, the maximum variation occurring in 8g 

due to change in AqCd from 0.1 GeV to 0.15 GeV is 6.3% while that for g^N is 7.5%. 

The values of 8g/gUNN obtained are -(4.17±1.42)xl0'3 and -(4.55±1.42)xl0‘3 for 

Aqcd = 0.1 GeV and 0.15 GeV respectively. The lowest numerical range of 8g, for y 

=-0.00657 in the same parameter space, gets pushed down to -1.13xl0'2. In Table 3.2, 

we have displayed a set of values of parameters (au, b, S2 and So) which give rise to 

central values of 8g for the two values of Aqcd and y.

Contributions to Sg for its central value coming from various symmetry 

breaking parameters are displayed in Table 3.3. We observe that the contributions 

coming from the non vanishing values of each of y, a, 0, Amq, and AmN individually 

add up almost linearly to give the final value of Sg when all of these parameter are 

non zero. It is well known that mq<qq> is renormalization group invariant quantity 

[15]. From the contributions of Amq and y to Sg , it is evident that Sg will remain 

stable for a variation in Amq and the corresponding variation in y in accordance with 

the renormalization group equation. The largest contribution to Sg (Sg/g^NN = -2.0 

xlO'2) comes from Amj#0 alone. Naively, one may expect its contribution to be ~ 

Amn/mN- 10‘3. However, r.h.s of Eqs (3.22a,b), when divided by r.h.s of mass sum 

rules of Eqs.(3.23a,b) contain electromagnetic contribution from phenomenological 

parameters % and mera . Moreover, DJ[N in eqs.(3.22a,b), which decide the slope of the 

straight line, arises due to the transitions N—»N*, and depends on the nucleon mass 

nonlinearly due to its dependence on Xn and guNN*- The resulting fractional change in 

Dkn, due to change in mN, is larger, and is in opposite direction (DKp = 7.35x 10'2, DOT
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= 6.86xl0'2 ) compared to that in g*NN (gjt°pP =11.602, gK°nn=l 1.810 ) in the region of 

interest M2~mH2. Finally, it should be kept in mind that the separation of 

contributions to 8g , as shown in Table 3.3, is not very clear cut. As is evident from 

Eqs.( 3.23a,b), AmN itself arises due to y and Amq, in addition to its dependence on 

purely phenomenological parameters % and rnem- The smallest contribution to 8g 

(Sg/gjtNN'-^lO'4) comes from ASo#0 and ASoi#0. The continuum for the proton may 

come from a combination of p7i° and mt+, while that for the neutron may come from 

a combination of mt° and pif. This is well supported by the fact that the first lA+ state 

[N(1440)] decays (60-70)% of the time to Nir. Hence, in an average sense we expect 

Sop = Sq“ for the sum rules (3.22a) and (3.22b), and Son1* = Son" for the sum, rules 

(3.23a) and (3.23b). To get an idea of the effect of the difference of the above 

continuum thresholds for proton and neutron on 5g, in view of the above argument, 

we consider this difference to be typically in the range of 0.1% [15].

The resulting value of Sg, for the choice (Sop-Son)/S’0 = (SoNP-SoNn)/5 0N= ±0.1%, has 

been displayed in Table 3.3. In view of the very small contribution of AS0 and. ASon 

to Sg, we set them zero in our further analysis.

To sum up, taking into account uncertainties in the quark condensate, the,gluon 

condensate, the twist-4 parameter 82, the continuum threshold So and the QCD 'scale 

parameter, Aqcd, we obtain for y= -0.01 the following estimate of Sg and g^:; 

8g=- (4.99± 1.97) xlO"2, 

gnNN =11 -44 ±2.76,

Sg/&NN- - (4.36±1.62) xlO’3. (3.25)
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TABLE 3.1: The maximum and minimum values obtained for 5g and g,NN in the parameter

space spanned by au = (0.45 -0.55) GeV3, b= (0.47 -1.0) GeV4, 82 = (0.2 -0.35) GeV2, So"* = 

(2.07-2.57) GeV2, AQCD=(0.1 -0.15) GeV and M2= (0 8- 1.0)GeV2 The fixed parameters areSojT 

(the continuum threshold in the mass sum rule)=2 25[15], mu=0.0051, md=0.0089, mo2=0.8, |i=0.5, 

mp=0.93827,mn=0.93957, 4=0.093 (all in GeV units), fn/f„=l.l[21].

AQCD=0.1GeV Age =0.15 GeV

an b 82 So SgxlO4 gri*J SgxlO2 &NN

GeV3 GeV4 GeV2 GeV2 7 = r°" 7 = y—~ 7 = 7= “ 7 = 7= ~

-0.01 0.00657 -0.01 0 00657 -0.01 0 00657 -0.01 0.00657

0.55 0.47 0.35 2.57 -3.02 -3 35 11 03 11.02 -3.23 -1.98 10.32 10.30

0.45 1.00 0.20 2 07 -6.82 -4.66 12.20 12.19 -6 96 -4.49 11.66 11.64

0 55 0 47 0 20 2 57 -3.80 -1.36 9.33 9.31 -3.88 -1.13 8.68 8.66

0.45 1.00 0 35 2.07 -5.79 -3.41 14.19 14.18 -6.06 -3.35 13.58 13.56

TABLE 3.2 : Values of parameters (in GeV units) used for determining central values of Sg for 

different values of AqCD and y.

Central AQCD-0.1GeV Aqcd =0 15 GeV

values y =—0.01 7»- 0.00657 y = —0.01 y = -0.00657

5g=-4.92xl0'2

gnNh^ll-SO

8g=-3.01xl0‘4

gnNN=12.81

8g=-5.09xl0'2

gnNI^ll.15

Sg=-2.81xl0'2

SrNN=12.25Parameters

au 0.543 0.461 0.534 0.470

b 0.914 0.900 0 912 0.850

52 0.310 0.300 0.310 0.310

So 2.520 2.520 2.560 2.160
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TABLE 3.3: Contribution to Sg from various symmetry breaking parameters (SBP’s) taken to be 

non zero, one at a time, and also when all SBP’s are non-zero The values of a„, b, §2, and S0 have 

been taken from Table 3.2, so as to give central values of 5g and gcNN as obtained there. Amq= 0.0 

means, mu= md = 0.007, AmN = 0.0 means mp= mn= 0,93892 (average nucleon mass) along with the 

coefficients of % in the Eqs. (3.23a) and (3.23b) being 5/18 and mOT2=0. In the row with AS0 #), and 

ASon #0, the two results are for the two signs of AS0 and AS0N respectively.

Parameters AqcD =0.1 GeV Aqcd=0.15 GeV

SgxlO2 gnNN SgxlO2 &NN

a = 0 = Amq= AS0=ASon “AmN= 0, y = —0 01 -8.48 11.87 -9.36 11.22

a = 0 = Am,,= ASo =AS0n =ArriN = 0, y =—0 00657 -4.47 12.89 -5.18 12.32

o =1/137,y= 0= AS0=ASon =Amq=AmN=0 1.90 11.82 1.86 11.17

0 = 0.01,y = o = AS0=ASon =Amq= Am^—O 11.42 11.80 11.11 11.15

Amq i* 0,y = a = AS0=AS0n =0 =AmN=0 11.10 11.80 10.35 11.15

AmN =£ 0,y = a = ASo= AS0n= 0= Amq= 0 -20.81 11.71 -19.01 11.07

a = 0 = Amq= AmN= y =0.0 0.26 11.83 0.30 11.17

(s0p-s 0ys^ =±0.1% -0.25 11.83 -0.28 il.17

(S0NP-SoNn)/S ON = ±0-1%

All symmetry

O0
1 i) -4.92 11.80 -5.09 11 15

breaking parameters y = -0.00657 -3.01 12 81 -2.81 12 25

are non zero ' ■
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Using QCD sum rules, in which pion field has been treated as the external field, 

authors of Ref.[7] have found 8g/gKNN as -0.008, and in the cloudy bag model [22] it 

is -0.006. As already stated, bulk of the contribution to 8g comes from the nucleon 

mass difference Amn- The quark mass difference Amq, and tc-tj mixing angle 0 

contribute to 5g in the opposite .direction, as obtained in[23] also; but these are almost 

cancelled by the contribution coming from Shin The sign of our result for 8g differs 

from that of the three-point function method [6], the chiral bag model [24] and quark- 

gluon model [25]. In chiral effective field theory, the underlying effective Lagrangian 

has been extended to include strong isospin-violating and electromagnetic four 

fermion contact interactions [4]. In these works there is no direct derivation of Sg or 

gjiNNj but isospin violation in N-N scattering has been worked out. These authors find 

that the leading charge symmetry breaking (CSB) effects are four nucleon contact 

terms of order a and order Amq, while the contribution due to AmN is rather small. 

Since this formulation is based on a two-nucleon problem, a direct comparison with 

our result is difficult. In contrast to chiral effective field theory, in QCD sum rule 

approach, results based on QCD dynamics are matched to those obtained from 

effective field theory in an appropriate Borel window and the quantity of the interest 

is extracted. Our result of g„NN is consistent with that of Ref.[5], and the results of 

recent measurements [26 ]: g^NN~13 -13.5.

Finally, we will discuss some of the implications of the isospin breaking in the 

diagonal pion-nucleon coupling constant. Obviously it will contribute to the long 

range part of the charge asymmetric nuclear potential VcA=Vnn-VPp for the % state. 

In order to calculate its effect on the difference of pp and nn scattering lengths,! we

82



use the phenomenological Argonne Vig potential [27] disregarding the 

electromagnetic potential part. With this potential, using gAn and grt°pp, obtained for 

Sg from -6.0 xi0‘2< 8g < -3.8xl0'2 and the corresponding g„NN from 8.7< gnNN < 

13.5, in the OPEP part of vig, we find using the standard method [28] that 

0.8 fin < | am | - | app | <2.3 fin (3.26)

as against the experimental result [29]:

I Onn | - I app | = (1.6± 0.6) fin. (3.27)

Earlier, we had observed that the nucleon mass difference gives the dominant 

contribution to 8g Reversing the problem, one may ask how much of the nucleon 

mass difference arises due to Sg? Analysis of the effect of pion loops on nucleon 

mass has been done by several authors in effective theories of meson-nucleon 

interaction [30]. Hecht et al. have concluded that the tjN - loop reduces the nucleon’s 

mass by ~(10-20)%. Assuming that half of this is due to n° - loop, we find that 8g 

will give rise to a mass difference 8mn- 8mp « -(0.25 - 0.5) MeV, which is a shift in 

opposite direction to the actual mass difference of the nucleons. Obviously in this case, 

we cannot neglect the effect of other heavier meson exchanges, and what we have got 

is far from the end of the story.
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