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CHAPTER-III

ISOSPIN BREAKING IN DIAGONAL PION-NUCLEON COUPLING

CONSTANT: QCD SUM RULE APPROACH

3.1 Introduction

Determination of meson-nucleon couplings is of particular interest in particle physics
as well as in nuclear physics. In particle physics, estimate of these parameters is
useful to test the low energy behaviour of the QCD. In nuclear physics, nucleon-
nucleon interactions are traditionally viewed as arising from meson exchanges. Pion
exchange is linked to spontaneous and explicit chiral symmetry breaking (CSB) of
low-energy QCD. According to Goldstone theorem, pions are Goldstone bosons
having point like derivative couplings to the nucleons. For intermediate and short
distances, heavy mesons have to be included in the modeling.

On the other hand, at energies much below the scales set by the pion mass,
it is sufficient to consider four-nucleon interaction only. Starting from nucleon and
pion degrees of freedom, effective field theory has been used for a separation of these
scales [1]. Accounting higher order terms in the chiral expansion, a form of two-
nucleon potential for the neutron-proton system has been developed in so-called
modified Weinberg scheme a;ld shown to be close in accuracy to the so-called
modern potentials (in some partial waves) [2]. Isospin symmetry is a good symmetry
of low-energy hadronic physics and charge symmetry is even better. In low-energy

observables isospin violation is typically much smaller. The study of charge
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symmetry breaking, which is a special case of isospin breaking, in pion-nucleon
coupling is an important step for investigation of charge symmetry breaking effects in
nucleon-nucleon interactions.

The effect of isospin violating meson-nucleon couplings has recently seen a
strong revival of interest in the investigation of charge symmetry breaking
phenomenon. On a microscopical level, isospin symmetry is broken by
electromagnetic interaction as well as the mass difference of up and down quarks:

m,—my; . We shall examine the difference between the diagonal pion-nucleon

coupling constants, g

opr® ™ Bn® using the QCD sum rule method.

3.2 A Model Calculation in QCDSR: Proton Mass

QCD sum rule method was originally suggested by Shifman, Vainstein and
Zakharov, and has been applied to determine masses and leptonic widths of light
mesons (p, ©, x*). For these determination, virtuality region is taken of the order of
Q%~1GeV? and 0g~0.3-0.4, so that perturbative terms are small i.e og/r~0.1 and hence
only leading logarithmic corrections~[as(Q®)InQ*A?] are taken into account. To
illustrate the characteristic features of the method and to use it for our main
calculation, we shall show a calculation of the mass of the proton using QCD sum
rules.

For this purpose we consider the polarization operator as

Tpk) =i | d'e™ (0| T{n (0, 7 (0} 0) 3.1)
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where 77 (x) 1s the quark current with proton quantum numbers and p* is chosen to be
space-like: p?<0, lP2{~1GeV2 . The current 7 is colorless product of three quark

fields N(x) = &ave 4°°q%, ¢=,d, the exact form of the current will be specified below.
Unlike mesons, in baryons there exist several currents with quantum numbers of

a given baryon. The choice between them should be done from physical reasons in

order to provide: (1) renormcovariance, (2) existence of nonrelativistic limit, (3) the

above formulated requirement (for proton) for the functions f and £, (given below in

Eq. (3.2) ) to be of the same order, (4) convergence of operator expansion series

within accounted terms. Specifically for proton all these requirements are satisfied by

the current ,

1= @ Cry 1)y 754 Eave

The general structure of [](p) is

)= phiPH) + £ (3.2)

Far each of the function f£,(p?), i=1,2 the following operator expansion can be written:

£ =Y Clp* KO 0P ©)]0) (3.3)

where (0|0, |0y are vacuum expectation values of different operators (vacuum

condensates) and C,(p*) are functions calculable in QCD.

A2 - .= 1
AP =Cop’ In=2 1 CE0|gT W g aTPg|0y— +
- £ p
2 a
- - 1
{0265, G |0y In A"z + (0|22 ga.98,0"* G5, iq{m-—;{ (3.4)
z - z 2 P

+polynomials
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Auz - - as 4, a l
£(P%) = C,p* In (0] 9q|0) + G50} g9 —= G G, |0)—
z 14

-P
Cs Z (0] 97 T ®q T%g]0) a—; + polynomals
k P

(3.5)

where C/’s are constants, A, is the ultraviolet cut-off. The current u-and d-quark
masses entering the Lagrangian of QCD are very small, of the order of several MeV,
so they can be neglected with very good accuracy, i.e for the time being, we neglect
the quark masses, then Locp is chiral-invariant. If this chiral symmetry would not be
spontaneously broken, then £ (p®) would remain identically zero. As explained in
Chapter 1, the chiral symmetry is spontaneously broken. The first evidence of this is

the existence of large baryon masses: Mp>>Aqcp. Another signal is the fact that chiral

symmetry violating quark condensate (0|§q|0) is non-zero, and is approximately equal

to (240MeV)’.
- 2.2
Olqal0y = —~L2" —_aorter?, (3.6)
2 mu +md

Since (O[Eq{O) is the lowest dimensional chirality violating operator, the

operator expansion for f,(p?) starts from the term proportional to (0[ 40} .

For any colorless operator O; and O; at large Ne

(01010, |0 = (0] 0, |0X0| 0, 10>(1+0(7v1—)) 37

Le in the limit N, —>  factorization becomes exact. By virtue of factorization and

taking into account the relation-

(0|45 0125 [0y =878, 0l 20> (3.8)
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(a, b= 1,2,3 are color, a,  are Lorentz indices) all four-quark vacuum expectation
values (v.e.v) reduce to the quark condensate square (O[EqIO)Q. In order to improve

and control the accuracy in the calculation of mass, other v.e.v’s will also be taken

into account: Gluonic condensate (0]—6” G |0y R mixed

condensate (0|0, (A" 1 2)G,|0) and higher dimensional
v.ev’s (0/7g]0X0|go,, (A7 12)GTql0y , @,{0]qq]0)® <o|qq|0)<o| $G2,G[0) . The

gluonic condensate gives a contribution into chirality preserving structure f;( ).

[1(p) may be expressed using the dispersion relations

FA )-»«-— Mg—ldp + polynomial (3.9)

i
In order to extract physical quantities of interest, it is useful, at this stage, to
apply Borel transformation on both side of this equation. The Borel (Laplace)

transformation is defined as

_ N ) ( q )n+l d
Bfl (q )“ --qé,ln’?}oo n! d 2n
~q* I n=M" fixed

—=fd). (3.10)

This gives

« 2
B (9)=— [oxp(-L)m 5 (7).
0

where fi(s) is given by dispersion relation (3.9). In particular, we have

LI G.11)

Al2 sn (Mz)n—l(ﬂ‘“l)!

The Borel transform permits to attain three goals at once:
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(1) to nullify subtraction term,
(2) to suppress the contribution of the higher excited states compared to the desired
lowest state (proton)

(3) to suppress the contributions of high order terms in the operator expansion (owing

to
factor 1/(n-1)! in (3.11)).
The lowest state (proton) contribution to imaginary part of [](p) has the form
m; TI(p) = 70| pX Pl |08 (0" ~m*) = 7hp* (p + m)S(p* ~mr®), 5.12)
where

Oln|p = Ayu(p)
Here Ay is the proton transition constant into quark current and u(p) is the proton
spinor.

It is clear from above that proton contribution will dominate in some region of
the Borel parameter M? only when QCD calculated functions f; and f; are of same
order, and the spontaneous violation of chiral invariance characterized by the value of
quark condensate has to explain the numerical value of the proton mass.

Contributions of higher mass states will also be taken into account in order to
improve and control the accuraey in the dispersion representation as written above, by
replacing Imf(p?) by contribution of the simplest quark loops starting from some
“continuum threshold” W. Taking into account all points stated above, the sum rule

for the calculation of the proton mass is given as
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w2 w?t o m
e .y, 479 +%02L4/9 +%bM2E0( iy 4/9 __;_az o
M . M M
.2 m? ,(3.13)
= /’L " exp{- M_Z)
w? _ 3 w2 m, >
2aME, (—L 419 +%“—2L‘”9 +—;—bM2EO ()L 479 —%az %
M M M M
2 m? ‘ (3.14)
= Anexp(—M—z)m
Here
aq= - 2ny’( ojgglo ),
Eg_ a ~apv ~ 2
b= (27n)2<0| G, G |0~ 0.5GeV* g
_ A -
-g(0|7o,p > 5 |0) =m (0| q4|0)
mp =~ 0.8GeV?
The factors
Eo(x) = 1-€™ , Ej(x)= 1-(1+x)e™ and Ex(x)= 1-(1+x+x* /2)e™ (3.15)

take into account the continuum contribution. We also have
AL =322%22,

In(M/72)
In(ge/ A)

the factors L= take into account the anomalous dimensions of the operators

(A is the QCD parameter, p is the renormalization point, numerical values hereafter

corresponds to  p=1.0GeV).
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charge independence breaking is explained in terms of one-pion exchange together
with a four-nucleon contact term [4]. Therefore, it is useful to constrain the isospin
violation in the pion-nucleon couplings directly from QCD based non-perturbative
methods such as QCD sum rule.

At the fundamental level, isospin violation takes place due to charge
difference and mass difference of up- and down-quarks. At the phenomenological
level, the effect of these differences may get augmented due to strong interaction, and
in practice, this may appear in the form of isospin splitting of other phenomenological
parameters such as quark condc;nsates. QCD sum rules have been used in past to study
pion-nucleon couplings and also their isospin breaking[5-11]. Three different methods
have been used to investigate pion-nucleon coupling constant in the framework of the
conventional QCD sum rule. In the three-point function method, one studies the
vacuum-to-vacuum matrix element of the correlation function of the interpolating
fields of the two nucleons and a meson[6]. However, it has been argued that the
method suffers from contamination of higher resonance states [12].

In the two-point function external field method, one studies the correlation
function of the interpolating fi€lds of the two nucleons in the presence of an external
pion field [7]. However, the induced condensates appearing in this method are not as
reliably known, as the other more commonly used condensates. In the following we
shall follow the third, the two-point function method [5, 8-10] in which one studies
vacuum-to-pion matrix element of the correlation function of the interpolating fields

of two nucleons:

Tpk)=i [ d'xe™ (0| T{n ), 7 ©O)} [2°K)) (3.16)
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Here, 77 is the interpolating field of a nucleon and |#°(k)) is the neutral pion state
with momentum k. Isospin is suppressed for simplicity. For n, Ioffe’s interpolating
field [13] will be used; for proton, it is written as
10 =eabe (4a' (X)Cry ts(x))ys7"de(x) (3.17)
The correlation function is calculated, on the one hand, by Wilson’s operator product
expansion(OPE), and on the other hand it is evaluated using hadronic physical states.
The two descriptions are matched in the deep Euclidean region via the dispersion
relation and the physical quantity of interest is extracted.

The expression (3.16) is known to have four Dirac structures [11]. Among

these, the coefficient of the double pole of iys p structure on the mass shell vanishes,
and the sum rule obtained at the Dirac structure iys substantially underestimates the

ratio F/D compared to its value known in SU(3) symmetry limit [5]. The Dirac

structure iys £ has been found not to be reliable for calculating the NN coupling as it

contains large contribution from the continuum [8]. The sum rules for the meson-

"

baryon coupling constant at the structures iys £ and yso,,p"k’ have been studied
extensively in [5,8-10]. Kim et al. [8,9] have claimed to find nice features in the sum
rule at the yso,,p"k’ Dirac structure for calculation of 7NN coupling constant. It was
observed that for this sum rule the coupling constant comes out to be independent of
the choice of the effective Lagrangian, i.e, independent of pseudoscalar and axial
vector schemes [10], and is sts;ble against the variation of the continuum parameter
due to cancellation of contributions from higher resonances of different parities [8].
We use this sum rule to calculate isospin splitting in the diagonal pion-nucleon

coupling constant g In the existing result for the correlation function (3.16), we
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also include quark mass dependent terms and do renormalization groﬁp improvément.
In addition, we also take into account the effect of n’-n mixing and electromagnetic
correction to the 7°— quark couplings.

In order to reduce the dependence of the splitting in the coupling on the
isospin splitting in the quark condensate, which is rather poorly known, we take the
ratio of the sum rule for the coupling gxnn to the corresponding chiral-odd sum rule
for the nucleon mass, and then consider the difference and the average of this ratio for
proton and neutron. This resulting sum rule is fitted to a straight line form, ;which

directly gives the difference and the average of the couplings:

dg= grtopp"‘ gnonn, 2251 (gztopp + ga'onn)/ 2. :(3.18)

3.4 Sum Rules for Pion-Nucleon Couplings

As stated above, in order to construct sum rules for the coupling guw ‘at the
structure yso,,p'k’, in addition to the results already derived in Ref.[5], we calculate
contributions coming from the quark mass dependent terms of Figs.3.1(a) and 3.1(b).
We enumerate below the Fourier transforms and the Borel transforms of the

coefficients of ys0,,p"k’, of these contributions for the proton:

Fig 3.1(a) —-1— — (1/27%)my £ 50,y p*k’In(-p?)
—2L_5 (MP27)myfyso pUKY (3.192)
Fig 3.1(b) —£5— — (1/96:)(my /p*) (Tu Y { dd ) yso,y p'K »

—2 5 (1/9F)(my M) { @ ) { dd ) yso, p'K’ '(3.19b)
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@ (b)

(©)
Figure 3.1: The additional dragrams considered in this work. The solid lines denote the quark

propagator, dashed line 1s the pion propagator, and the blob denotes their interaction vertex. Cross

denotes quark mass msertion.

We have checked that the coefficient of the operator mq (( #u ), dd )
{ (/m)G?) is zero. So far we have assumed that n° mass eigen state is a pure

isovector state. However, it is well known that the mass eigenstates 7° and 1] are not
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pure octet states [14], rather they are mixtures of flavor octet eigenstates 3 and 7z
Denoting ©— 1 mixing angle by 8, the mass eigenstates may be written as :

| 2°) =|m) +0|ms), | m) =[m) —6[m).

Since 0 is small = 0.01, this amounts to the replacement for the couplings:

8 pp= Bw3pp+ © Euspps ' = Er3nn O Susin. (3.20)
Here, we ignore any possible mixings of #° andn with 11°. We use the sum rules for
the couplings of pure octet states, gxann and grenn [5] in the above Eq. (3.20) to get
the couplings of the physical state 7° with nucleons.

It has been pointed out in [7] that the vertex corrections to #°uu. and =°dd
couplings, due to photon exchanges, can give rise to non negligible isospin br{aaking
in gaan. Specifically, it has been found that in the minimum subtraction scheme the
following electromagnetic corrections arise to the pion-quark couplings:

a 52

13 '
gl glufl+Z (2 - 290}, gl gla{l+Z (2 - tye)) (3.21)
4z 9 3 4z 9 3

The most important correction arising due to these vertex corrections is shown
in Fig.3.1(c) for perturbative contribution. This correction will be different for proton
and neutron because 7° couples to different quark lines for the two cases. S:imiiar
correction will also arise in other terms. In effect, the coeﬁ'ic‘ient of each term in the
OPE is multiplied with a factor which depends on the charge of the quark to which =°
couples in the nucleon.

Combining the sum rule for the meson-nucleon couplixfgs as obtained in
Ref.[5], but with the specification of the flavor of the quark condensate, at the Dirac

structure ysopy p'k’ with the above three types of corrections, we get the following
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sum rules, after Borel transformation and renormalization group improvement, for the

diagonal pion-nucleon couplings:

2 pphp (14D M)
S gM2) @y o MEy(sEIM> 1 )
P IR L o (@G )+ S m l—f’f—
2 p-14/27 2
31 2 4M L 266 MAL 8/9m E (SP/MZ)
1+ 2 (2 - 2y + - 4°0
(5 -3k 6 27 22%(d)
106 52
[ 9M2)>(1 7——){1+i(—-—7E)}], (3.222)
g ke (1+ DM’
(m Mz) {au) [{M E()(SoiM )+ ((aS/ )G2>+ m Il'
e a4 1+ ) x
Iy 127 216 " 35 9
/ .
2 2 2 47-8/9 noye2 v
52 4 2, 4M° mg e 265°  MALYOm By (sP M) 105
222 22 (2 0wy - uf0 (30 x
I (G 31 (5= 2 272 () ) [ 9M2)
1
(1-7-—){1+—( — EYE)}] (3.22b)

Here, L = ln(MZ/A(;CDZ)/IH([LZ/AQCDZ), u is the renormalization scale, and
Aqep is the QCD scale parameter. The anomalous dimensions of various operators
have been taken into account through the appropriate powers of L [15]. It is
understood that within this truncated series, v.e.v’s of the quark and the gluon

operators have to be taken at the scale yu. Dyy are unknown constants arising from

resonance states (ggo.Gg)=m; (7q), Ye is the Euler’s constant. S?” are the continuum

thresholds which take care of contributions of excited states in a standard way, and
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Eo(x)=1-¢™. It is clear from the sum rules (3.22a) and (3.22b) that the isospin splitting
in the diagonal coupling constant, 8g, has a direct dependence on the isospin splitting

of the light quark condensate { §g ) and on the same of the coupling of the nucleon

interpolating field to the nucleon state, Ay. Both these splittings are rather poorly
known. However, if we divide these sum rules by the chiral-odd mass sum rules of the
respective nucleons, then the Ay dependence will get cancelled and the dependence of
dg on the isospin splitting of the quark condensate will get minimized. We use the

sum rule for the calculation of neutron-proton mass difference derived by Yang et

al.[15]:
2
2 1 m g - 1 4. Sk 47 1 a;, 2
/’{( = —{ Y exp( 2)<dd>[ 2M Eq( 2)(14-———)——<(-——~)G > +
p " p M 4z M 9 18 z
-1/9 "6 » 2
544 - 2 L M my —-8/9 Son M my
—— g < uu > - { X )L Eq( )+ { )N ) %
81 M2 167:2 <dd> M2 32”2 <dd>
-1 2,2 »
o - s’ 4 < uu > - m M
<(—~—§~-)G2 > L 8/9E2(‘ ag‘)”"‘md = = 2my < > (= 7)o ( 0); )l
z M 3 <dd > 24z M
(3.23a)
2 n
2 1 m - 1 4 N x 1 a 2
1= ~(—exp(—I) < uu > [—5 M E (=)0 + ) - — < (=67 >+
n my M iz M 9 18 %
-1/9 6 n 2
544 - 2 L M m -8/9 s M m
——ray < dd > 57— = ) LI Eq{ o’;)'*"( 5 ) %
81 M 167 <uu> M 327 <uu>
- 2
@ - s” 4 < dd > —
< (Z6% > P Ey(Zy - —m, ST oy < @4 >)
4 M 3 < uuy >
(3.23b)
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The terms with y in Egs.3.23a) and (3.23b) take into account perturbative

electromagnetic contribution, and m,a, = (27)* (ego Fg), and (zTa.Fu)z-%(Ea'.Fq) with

(c-fd Fd) = ~é<§o* Fgq), has been introduced (Fy,» is the electromagnetic-field strength
tensor). In order to attain fit, %= 0.0036 and men”= 0.048GeV? has been chosen [15].

Here, Sf,{," are the continuum, thresholds for the mass sum rules, and these may, in

general be different from S, . Ey(x) = 1-(14x)e™ and Ea(x) = 1-(I+x+x° 2)e™.
Eliminating lpz of Eq.(3.22a) with the above 7\1,2 of Eq.(3.23a) and A;* of Eq.(3.22b)
with the above A.2 of Eq.(3.23b), we get the sum rules for g 'y, and g . Finally, on
taking the difference and the average of these two sum rules we get sum rules for 8g
and g, which we express as:

8g (1+ D' M?) =FaM),  ga'wn (140" M?) = F,0M), (3.24)
where D and D%y are constants. We shall study the sum rule for gnoNN also, in
parallel with that for 8g, and compare the result for g,’xn with that derived earlier [5]
in a similar approach. Thus a straight line fit of Fa,s(Mz) will directly give dg and

gKONN in the form of intercepts.

3.5 Analysis of Result and Discussion
Let us define a, =-(27)*(qq), b=(g362> , ¥ = ~<~5‘!197—2—1 and set ( gq ) =

! (i)

%[<Jd> ().
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Normally, for the calculation of gm, light quark mass dependent terms are
not included. However, we find that the perturbative quark mass dependent term is
numerically more important than the power corrections in quark mass independent
terms. To get an idea of the errors involved in values of g and g, we vary the
values of condensates and the continuum threshold consistent with their valueg used
in literature: the value of @, has been varied from 0.45 GeV>[17] to 0.55 GeV?
[7,15,18], while that of b has been varied between 0.47 GeV4[5,15] to 1.0
GeV*[16,17); & has been varied from 0.2 GeV[19] to 0.35 GeV? [20]. Most of our
analysis is based on y = -0.01 which is the upper limit from a range given in Ref.[6]
based on various sources: 0.002<- y <0.010. For the sake of comparison, we have also
given results obtained for y =-0.00657[14] .The variation of the continuum threshold
So from 2.07GeV? to 2.57GeV? [5], for a given set of condensates, changes gaw by a
maximum of 3% and changes 8g at most by 7%. The range of the Borel mass squared
is 0.8 GeV><M* <1.0 GeV>. This range is chosen so as to ensure that the contribution
of excited states remains less than 50% and that of the operator of the highest
dimension considered remains less than 10% of the total. Smaller range of Borell mass
parameter, such as the above, is normally used whenever QCD sum rules are applied
for calculating isospin splittings of nucleonic parameters [15]. Moreover, this range is
within the ones used in Refs. [5,15].

We have looked for the values of gy and 3g in the parameter space spanned by
ay, b, 8 and S within the ranges stated above. The highest and the lowest values of g
and gxnn along with the values of the parameters for which they arise are displayed in

Table 3.1. In all, we get 6g = — (4.9241.90) x10? and — (5.09+1.87)x10%,
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gnun=11.76+2.43 and 11.13+2.45 for Aqcp=0.1 GeV[15] and 0.15 GeV respectively.
For a given set of values of ay, b, 8 and Sy, the maximum variation occurring in 8g
due to change in Aqcp from 0.1 GeV to 0.15 GeV is 6.3% while that for g is 7.5%.
The values of Sg/gmn obtained are —(4.17+1.42)x10  and —(4.55+1.42)x107? for
Aqcp = 0.1 GeV and 0.15 GeV respectively. The lowest numerical range of 8g, for y
=-0.00657 in the same parameter space, gets pushed down to -1.13x1072. In Table 3.2,
we have displayed a set of values of parameters (ay, b, 5> and Sg) which give rise to
central values of dg for the two values of Agcp andy.

Contributions to 8g for its central value coming from various symmetry
breaking parameters are displayed in Table 3.3. We observe that the contributions
coming from the non vanishing values of each of y, a, 6, Amg, and Amy individually
add up almost linearly to give the final value of 6g when all of these parameter are

non zero. It is well known that mq<gg > is renormalization group invariant quantity

[15]. From the contributions of Amg and y to dg , it is evident that 8g will remain
stable for a variation in Am, and the corresponding variation in y in accordance with
the renormalization group equation. The largest contribution to dg (8g/gmn = -2.0
x107?) comes from Amyz#0 alone. Naively, one may expect its contribution to be ~
Amy/my ~ 107 . However, r.h.s of Eqs (3.22a,b), when divided by r.h.s of mass sum
rules of Egs.(3.23a,b) contain electromagnetic contribution from phenomenological
parameters %, and mey . Moreover, Dy in egs.(3.22a,b), which decide the slope of the
straight line, arises due to the 'transitions N—N*, and depends on the nucleon mass
nonlinearly due to its dependence on Ay and gmnn+. The resulting fractional change in

Dy, due to change in my, is larger, and is in opposite direction (Dyp = 7.35x 102, D
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= 6.86x107 ) compared to that in gaw (gxpp =11.602, g:":=11.810) in the reg;ion of
interest M?>~my”.  Finally, it should be kept in mind that the separation of
contributions to 8g , as shown in Table 3.3, is not very clear cut. As is evident from
Eqgs.( 3.23a,b), Amy itself arises due to y and Amg, in addition to its dependence on
purely phenomenological parameters ¥ and men. The smallest contribution to g
(Bg/g,thélO"') comes from AS¢#0 and ASon#0. The continuum for the proton may
come from a combination of px° and nn*, while that for the neutron may come from
a combination of nn° and pr". This is well supported by the fact that the first ‘/zl+ state
[N(1440)] decays (60-70)% of the time to Nz. Hence, in an average sense we e‘xpect
So? = 8" for the sum rules (3.22a) and (3.22b), and SONP = Son" for the sum. rules
(3.23a) and (3.23b). To get an idea of the effect of the difference of the above
continuum thresholds for proton and neutron on g, in view of the above argument,
we consider this difference to be typically in the range of 0.1% [15].

The resulting value of &g, for the choice (So™-So")/S; = (SonP-Son")/S oy = +0.1%, has
been displayed in Table 3.3. In view of the very small contribution of ASy and ASon
to 8g, we set them zero in our further analysis.

To sum up, taking into account uncertainties in the quark condensate, thexlgluon
condensate, the twist-4 parameter 5%, the continuum threshold S and the QCDfscale
parameter, Agcp, we obtain for y=-0.01 the following estimate of 6g and gam:’

Sg=— (4.99+ 1.97) x107%,
gy =11.44 £2.76,

8g /g = — (4.36 £1.62) x107, (3.25)
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TABLE 3.1: The maximum and minimum values obtained for 8g and g in the parameter

space spanned by a, = (0.45 ~0.55) GeV?, b= (0.47 —1.0) GeV*, 8% = (0.2—0.35) GeV?, S =

(2.07—2.57) GeV?, Aqcp=(0.1—0.15) GeV and M*= (0 8 — 1.0)GeV? The fixed parameters are So™

(the continuum threshold in the mass sum rule)=2 25[15], m;=0.0051, ms=0.0089, m,>=0.8, u=0.5,

m;=0.93827,m,=0.93957, £,=0.093 (all in GeV units), £/f, =1.1{21].

Agep=0.1GeV Agep =0.15 GeV

ay b 5 Sa 3gx10° 2 8gx10° N

GeV’ | GeV* | GeV? | GeV? [y= [y=-— |y= Y= |v= == [y= ‘ v==

—0.01 | 0.00657 | ~0.01 | 000657 | —0.01 | 000657 | —0.01 | 0.00657

0.55 [047 |035 |257 |-3.02 [-335 1103 11,027 [-323 -1.98 1032|1030
045 [100 1020 [207 [-682 |[-4.66 12200 [1219 |-696 | -4.49 11.66 | 11.64
055 [047 [020 [257 |-3.80 |[-1.36 9.33 931 |-3.88 -1.13 8.68 8.66
045 |1.00 [035 [207 [-579 [-3.41 1419|1418 |-606 |-3.35 13.58 | 13.56

TABLE 3.2 : Values of parameters (in GeV units) used for determining central values of 8g for

[

different values of Agep and 7.

Central Agep=0.1GeV Agep =0 15 GeV
values v=—0.01 1=—0.00657 |y=—0.01 v=—0.00657
3g=-4.92x107 5g=-3.01x107 | 5g=-5.09x107 | 8g=-2.81x107
a1l =12.81 =11.15 =12.25
Parameters gan—=11.80 Zann™ N S NN
ay 0.543 0.461 0.534 0.470
b 0914 0.900 0912 0.850
5 0.310 0.300 0.310 0310
S, 2.520 2.520 2.560 2.160
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TABLE 3.3: Contribution to 8g from various symmetry breaking parameters (SBP’s) taken to be

non zero, one at @ tme, and also wien all SBP’s are non-zero The values of a,, b, &%, and S, have

been taken from Table 3.2, so as to give central values of 8g and g as obtained there. Amg= 0.0

means, m,= my= 0.007, Amy= 0.0 means m,= m,;~ 0.93892 (average nucleon mass) along with the

coefficients of y in the Egs. (3.23a) and (3.23b) being 5/18 and m.,2=0. In the row with AS, #0, and

ASpy #0, the two results are for the two signs of ASy and ASgy respectively.

Parameters Aqep =0.1 GeV Aqcp=0.15 GeV
8gx10° Zan | ogx10° . g

a=0=Amg= ASq=ASey =Amy =0, y=—001 -8.48 11.87 -9.36 11.22
o= 0= Amg= AS =ASey =Amy =0, y=—000657 | -4.47 12.89 -5.18 1:2.32
o =1/137,y= 6= ASy=ASey =Amq=lmN=o 1.90 11.82 1.86 11.17
8=0.01,y = 0. = ASy =ASgy =Am;= Amy=0 11.42 11.80 1111 f1.15
Amg# 0,y = & = ASg=ASoy =8 =Amy =0 11.10 11.80 10.35 .15
Amy# 0y = @ = ASq=ASen= 6= Amg= 0 -20.81 1171 -19.01 11.07
o= 0= Am;= Amy=7y=0.0 0.26 11.83 0.30 1i1.17
(SP-S)/ S, =+0.1% -0.25 11.83 -0.28 11.17
(So-So)/ S o = 20.1%
All symmetry y=—001 -4.92 11.80 -5.09 1115
breaking parameters  |y'=""0.00657 -3.01 12 81 -2.81 1225
are non zero ‘
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Using QCD sum rules, in which pion field has been treated as the external field,
authors of Ref.[7] have found 8g/gmy as —0.008, and in the cloudy bag model [22] it
is —0.006. As already stated, bulk of the confribution to 8g comes from the nuqleon
mass difference Amy. The quark mass difference Amg, and 7 ﬁlixing angle 6
contribute to dg in the opposite.direction, as obtained in[23] also; but these are alrlnost
cancelled by the contribution coming from dmy The sign of our result for 8g differs
from that of the three-point function method [6], the chiral bag model [24] and quark-
gluon model [25]. In chiral effective field theory, the underlying effective Lagrangian
has been extended to include strong isospin-violating and electromagnetic :four
fermion contact interactions [4]. In these works there is no direct dgrivation of 8g or
g:nN, but isospin violation in N-N scattering has been worked out. These authors xﬁnd
that the leading charge symmetry breaking (CSB) effects are four nucleon contact
terms of order o and order Amg, while the contribution due to Amy is rather small.
Since this formulation is based on a two-nucleon problem, a direct comparison with
our result is difficult. In contrast to chiral effective field theory, in QCD sum rule
approach, results based on QCD dynamics are matched to those obtained from
effective field theory in an appropriate Borel window and the quantity of the inte‘rest
is extracted. Our ;esult of g is consistent with that of Ref.[S], and the results of
recent measurements {26 J: gan~13-13.5.

Finally, we will discuss some of the implications of the isospin breaking in the
diagonal pion-nucleon coupling constant. Obviously it will contribute to the lpng
range part of the charge asymmietric nuclear potential Vca=Vyy—Vy, for the 'S state.

In order to calculate its effect on the difference of pp and nn scattering lengths, we
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use the phenomenological Argonne vz potential [27] disregarding the
electromagnetic potential part. With this potential, using g, n, and gxpp» Obtained for
dg from —6.0 x10< 8g < —3.8x107 and the corresponding guw from 8.7< gam <
13.5, in the OPEP part of vi3, we find using the standard method [28] that
0.8 fim < |am| — | @p| <23 fin (3.26)
as against the experimental result [29]:
| | = | app | = (1.620.6) fim. (3.27)
Earlier, we had observed that the nucleon mass difference gives the dominant
contribution to 8g Reversing the problem, one may ask how much of the nucleon
mass difference arises due to 8g? Analysis of the effect of pion loops on nucleon
mass has been done by several authors in effective theories of meson-nucleon
interaction [30]. Hecht et al. have concluded that the zN —loop reduces the nucleon’s
mass by ~(10—20)%. Assuming that half of this is due to n°~loop, we find that 5g
will give rise to a mass difference dm,— dm, = —(0.25 - 0.5) MeV, which is a shift in
opposite direction to the actual mass difference of the nucleons. Obviously in this case,
we cannot neglect the effect of other heavier meson exchanges, and what we have got

is far from the end of the story.
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