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CHAPTER - VII

AH IHVESTIGATION INTO EXPECTED VALUE AID QUANTILE 

METHODS OP PROBABILITY PLOTTING BY SIMULATION

7.1 Expected Value Method of Probability Plotting j

7.1.1 In order to test whether a given sample belongs to a 

certain pre-assigned parent population, Polks and Blankenship 

C 27 J have proposed a practical method called Probability 
Plotting Metnod with the use of an ordinary graph paper, for 

Normal, Exponential and Weibull populations. According to 

this method, if (y^ ,yg, *.. ,y ) is a random sample from a

y i=1,2,...,n, are these observations 
when ordered such that y^ ^ 

are the expected values of y^ in 'the particular population,

s(i)= E( ya) }

then, the n points i=1,2,...,n, when plotted

on an ordinary graph paper, should fall almost along a 

straight line. We shall refer to this method as the Expected 

Yalue Method or Method I.

7.1.2 Por the Normal population N(0,1), the expected values

of ordered observations, also called order statistics, have been

^y(2)^ an4'lf X(i)

popuraxion, ix y(i
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calculated for different values of n and are available in

Table XX of Usher and Yates £251 , or in Table 10.B.1 of

Sarhan and Greenberg £ 53 1 f or in Table 28 of Pearson and

Hartley [4-9J or in Table 9-1 of Rao, Mitra and Mathai [50j .

If X^.^ is "the expected value of the ith ordered observation

from 1(0,1), the expected value of the ith orderes observa-
• 2tion from 1(^,6“^) will be

E (y(i)) = /u +

This df course is true for any population with location and

up areplotted on an ordinary graph paper, they should lie almost 

along a straight line and the slope of the fitted straight 

line and its intercept on the y-axis will provide estimates 

of the parameters 6” and ya.

scale parameters /u and €~. If the points [X^^, y

7.1.3 Por the standard Exponential population dP=e-^dy, 

O^y<00, the following expressions for the.expected value of 

ith order statistic and its variance have been obtained by 

Epstein and Sobel ][23j 5

E (y(i)) =
r3=1

1
n-j+1 ’

Tar (y(i)) z3=1 (n-3+1)2 *

...(7.1)

...(7.2)

n being the size of the sample. It appears that these results



: 102 :

were earlier established, by Gumbel U3QU • In Section 1.4

below, we shall derive a similar expression for the rth

cumulant k of the distribution of the ith order statistic 
r

in the standard Exponential distribution, from which the 

above results follow# It is easy to calculate from (7.1).

However, for n 410, ready-made tables, e.g. Table 11.A.1 

of Sarhan and Greenberg £533 are available, which can be 

used. For the general ease, f(x}= ~i exp ( x >A, ot "7 0,

if y^jj I® 'the ith ordered observation in a random sample of 

size n from this population, its expected value will be equal 

to A where is the expected value of the ith

ordered observation in a sample of size n from the standard 

Exponential population, which can be calculated by using (7#l). 

Here also, if the points £x^, y^^J, i=1»2,#..,n are plotted 

on an ordinary graph paper, the n points would lie almost 

along a straight line and, the slope of the fitted straight 

line and its intercept on the y-axis would provide estimates 

of the parameters ck and A.

7.1.4 We shall now obtain an expression for kr the

rth cumulant of the ith order statistic in sample of size n 

from the standard Exponential population, let y be the standard 
exponential variate with frequency density function f(y)=e**^,

0 < yl oo . Then F(y) = j e”y dy=(1-e~’3r). If y^j Is the ith

order statistic in this distribution, the distribution of y^j
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will be given by
i-1 n-x

o -v _ ~^(i) "”^(i) _ n-i+1- ^ [e ] dy,.
^(i) *f( i) [(n-i+1)

The moment generating function 0(t) of 7(j_) will be

.00
0(tW I Jn+1 ) ^ (-1)J ( i:1 )

' fU) f(n-i+1 ) Ag 3 n-i-t+3+1

Now Ifl,^,",.11,1)1.1), = B(n-i-t+1,i) = j (1-x)1"1 xn“i_t 

I(n-t+1) 0
dx

= r c-i)3 f1:1) 1
3=0 3 7 n-i-t+3+1

Hence 0(f)
f(n+1) . f(n-i-t+1 )f( i)

f(i) /(n-i+1) * f(n-t+l)

If the cumulant generating function is K(t) = log 0(t), the 

rth cumulant of the distribution of is given by,

^log f(n-i-t+1 - log f(n-t+l)J

, po
km jj- log fz = v' (z) = -^+(z-i) r -n+iTriTT)

W
(Higher Transcendental functions, Yol.I, by Erdelyi A.et.el., 
1.7 p.15) [24] .
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oo
Hence (z) = £ T -(g-O

3=0 L(3+D(z+3) 2 + (3+1) (z+3) ]
DO
y 1
3=0 (z+3)'

and
dz

log fz
,r-| + (.). £ iziTkni=
dzr-1 3=0 (z+3). nT

We therefore get : 

^r

dt
J^log f(n-i-t+1) - log f(n-1+1) 3

00
= (r-1)t r 1 1

3=0 L(n-i-t+j+l) (n-t+j+1)

00
Hence k_ (r-1)j X r  —----- 1-—73=0 L (n-x+3+1)r (n+3+1>r J

(r-Djr—iL (n-i+1)r (n-i+2)^- + • . . . +
(n-1 )3

11 1 H- ■ a. . . 1 a. 1 a.
nr (n+1)r (n+2)r

1 1
(n+1) (n+2) (n+3) ■J

:(r-1)! C + 1 +
(n-i+1) (n-i+2)‘

+ __1_ 1r J
n

i.e. k =(r-1 )l H ----- ------ -
3=1 ,(n-3+ir
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Since k 1 /U1 k, /*2’ k5 /X3t k4 f14 " 5/a2 etc.

we can get the moments of the ith order statistic in the 

standard exponential population,, and in particular :

(y(i>> = x3~1
1

(n-j+1) *

/u2
1

(n-j+1)2

/a, (y(i)) -
i
X
3=1

21
(n-j+1)5 etc.

7.2 Quantile Method of Probability Plotting:

7.2.1 In order to test whether a given sample belongs to a

Normal population, Rao, Mitra and Mathai £50"^ have proposed

a Probability Plotting Method with the use of an ordinary

graph paper, by using quantiles (also called fractiles or

partition values). In this method, if (y^ ,y2>... ,y ) is a

random sample from a Normal population, if y^j, i=1,2,...,n

are these observations when ordered such that y^-j)4 ^(2)^ ' ^(n)

and if x are certain quantiles in the standard Normal 
pi

population N(0,1), p^ to be obtained from i and n by p^= — ,

V
ordinary graph paper, should fall almost along a straight line,

y/^y, i=1,2,...,n when plotted on anthen the points

if the sample comes from a Normal population. A similar method
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has been given by Epstein \_22~J for the Exponential population.

We shall refer to this method as the Quantile Method or Method II.

7.2.2 We may mention here a very simple but a very important 

property of a partition value namely that, 'it survives a 

transformation*. Let x and u be two random variables such that 

x is a certain transformation of u i.e. x=$(u). Let 0(u) be a 

monotonic increasing function of, u and let the inverse func- 

tion x=j2T (u) be single valued in the range of u. If the 

probability differential of'x is f(x)dx, the probability 

differential of u is f [0(u)3 0 (u)du. Hence

,up »
\ 1 [<*(u)3 0 (u)du = p
- 00

is equivalent to

x^(p
) f(x)dx = p,
-oo

where .
x = 0(u ) or u = 0" (x ).P ^ P P P

This means that, if u^ is a certain partition value in the 

distribution of u, such that p proportion of observations are 

less than or equal to u , the corresponding partition value 

Xp in the distribution of x such that p proportion of observa­

tions are less than or equal to x , is given by x=$(u ). We
x' hr ir

saythat a partition value survives a transformation. Means,

moments etc. do not enjoy this property.
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7.2.5 If y is a certain partition value in a particular
ir

population with location and scale parameters yu and and

if x is the corresponding partition value in this population 
P

when standardized, then y =yu + 6” x • Hence, in order to

test whether a given sample belongs to a particular population

or not, we can have a modified Probability Plotting Method

with the use of an ordinary graph paper, by using a certain

number of partition values, which may not necessarily be

"equi-distant" quantiles in which p2~P1 = = * • •-Pr*-Pr_1 •

let y , i=1,2,...,r, be certain r partition values, calculated 
pi

from the given n observations in the random sample of size

n, n > r, from a certain population with location and scale

parameter /u and €T and let x be the corresponding partition 
' pi-

values in this population when standardized. If these r points

IX » 3^1* i=1,2,...,r, are plotted on an ordinary graph 
pi pi

paper, they should fall almost along a straight line and the 

slope of the fitted straight line and its intercept on the 

y-axis would provide estimates of the parameters 6~and^u.

Shis is a more general approach to the problem. But there are 

various problems which will have to be solved. What value of 

r should be selected i.e. how many partition values should be 

used? How to obtain the p^'s from i and n ? We do not propose 

to discuss these questions here. Here, we shall consider only 

the Quantile Method proposed by Rao, Mitra and Mathai for the
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Hormal and lay Isptein for the Exponential populations, in which 

instead of a few partition values all the observations in the 

sample are directly used.

7.2.4 As stated earlier, in the Quantile Method, the ordered 

observations y^, i=1,2, ...,n obtained from the random sample 

of size n namely (y1,y?,. *.,y), are plotted against x ,
i C. 11 ir

which are certain quantiles of the standard parent population, 
where p^ are to be obtained from i and n in a certain way.Rao, 
Mitra and Mathai have proposed to take 'p^=i/n. But, for i=n, 

this will present difficulty and we consider p^=i/n unsuitable 

for our purpose. ,J-’he ordered observations i=1,2,...,n

may be looked upon as n quantiles partitioning the whole area 

into n+1 equal parts, just as the five sextiles partition the 

whole area under the frequency curve into six equal parts. 
Instead of p^=i/n, it is preferable to take p^= i/(n+l). But, 

there are other values for p^ which may be preferable. Eor 

our investigation, however, we shall consider only three 
values of p^ to choose from, namely (i) p^=i/(n+l), (ii) 

Pi-C-n/n and (ill) (1-3/8)/(n+i). taking' Pl=i/(n+1) 
appears to have been first proposed by Weibull (1939) £.57^] 
and recommended by Gumbel (1954) £.31 ^ • taking p^=(i—s)/n 

appears to have been first discussed by Bliss (1937) and

by Ipsen and Jerne (1944) [^39 ~\ .



: 109 :

7.2.5 We shall give some details of Blom’s work £3] on this 

problem, which throws light on the two Probability Plotting 
Methods being considered here and which also suggests a link 

between them.Blom has proposed a general rule for p^ namely

P,
_ U , (<A, p ^ 1)i n- -p+1 

where d and p may be so chosen that
E (yd) )~xp1 •

He has statedthat, in the Normal distribution, the rule
n = i-3/8 pi n+i

i.e. taking o<=p=3/8, leads to a practically unbiased estimate 

of 6“ with a mean square deviation about 6* which is about the 

same as that of the unbiased best linear estimate and that the 

rule given by Chernoff and lieberman (1954) m , namely,

i.e. taking =<=|J = ■§■ leads to a, biased estimate of 6"with 

nearly minimum mean square deviation about 61 Taking ck =jg has 
been recommended as a working rule for any probability plotting 
by Bernard and Bos-Pevenbaeh (1 953) £ 1 ] , who proposed to 

take <A =p=0.3 irrespective of the shape of the distribution.

A similar problem is found in the work of Ogawa [45,46] in 
connection with the spacing of quantiles and he suggests
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Equi-Probaole and Intuitive Plausible Spaeings of quantiles 

in which p^i/Cn+1) and pi=(i-§)/n are taken. Dave £15U also 

has come across a similar situation in his thesis on 

"Transformations of ^ariates" in which he wants to fit a 

polynomial transformation of the standard normal variate on 

non-normal data by using certain partition values which should 

be "optimally spaced". The problem of choosing p. is an
\ X

important problem which needs further investigation. The 

working rules suggested for p^ need also confirmation, In our 

present investigation into this problem, we have confined 

ourselves to the comparison of only three values of p^ namely 

p^i/Cn+1), p^i-iO/n and p^Ki - 3/8)/(n+i), considering 

Normal as well as Exponential populations and considering 

complete as well as censored samples.

7.2.6 Thus in the Quantile Method, to determine whether a
2samplg (y-j »y2> • • * >yn) comes from a Normal population N(yu,6" ), 

corresponding to the ith ordered observation y^, we obtain

x such that 
pi

P-5

-00

1
/2rr

31 2
e“^x dx

Pi , ...(7.3)

where p^ may be obtained from i and n in any one of the ways

mentioned in Section 7*2.4 or any other way and x then can
pi

be calculated by using Normal Tables like Table I of Usher 

and Yates £253 or Table 4 of Pearson and Hartley ,[49j[ .
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If the n points £x , I^y\ lie almost along a straight line, 
it is concluded that the sample comes from a lormal population 
and the slope of the fitted straight line and its intercept on 
the y-axis provide estimates for 6* and yu, lor the Exponen­
tial case, the method is similar. Here x - are to he obtainedpi
from

-x , e dx
'o pi

We easily see that
-|x = log -— , ...(7.4)

"^i

where p^'s have to he suitably chosen. If we take
p.=i/(n+l), x = log (n+1)/(n-i+1) and so on.
1 ' pi

7.3 Censored Sampling :

7*3.1 While distinguishing between censored sampling and
sampling from a truncated population, Gupta [32^ has defined
two types of censored sampling; Type I when observations in
the sample below (or above) a given value tQ of the variate
(also called a truncation point) may be censored, and Type II
when the r^ smallest (or greatest) observations out of a
sample of size n in the sample may be censored In Type I
censoring, the number of observations censored is a random
variable and the variate value, t , below (or above) which the

7 o
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observations are censored is fixed; whereas in Type II 

censoring, the number of observations censored is fixed and 

the variate value of the largest (or smallest) censored 

observation is a random variable. Estimation of the parameters 

from censored samples has been considered by Gupta £32 J ,

Ipsen £381 , Cohen £8,9,12] , laid £34,35,361 , Halperin £37(a),

37(b)! , Epstein [21] , Epstein and. Sobel £231 , Sarhan and 

Greenberg £>1,52] a&d others.

It would not be out of way if some examples of 

censored sampling are cited here. Some examples from £521 

are quoted here. In Experimental Biology, a known number of 

individuals might be exposed to a stimulus and the responses 

of some may fall qutside the limits. Thus, if n animals are 

injected with the same dose of an antigen and blood samples 

from each animal are tested for antibody response after a 

period of time, there may be only n-r^ of the animals with 

measurable amounts, as r^ of the animals develop the antibody 

to a level (say some fixed level) which cannot be measured by 

the prevailing technique. Thus, of the n items, the smallest 

r.j observations are censored because of fixed bounds. The 

individual values of the variate of n-r1 largest observation 

are available for statistical study such as estimation of the 

parameters of the population. This sample is called a singly 

censored sample from the left and is of Type I.
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One may have n items drawn at random from a population 
and to save time and expense, the experiment is discontinued 
before all items have actually developed the phenomenon being 
observed. Such a decision to cut off the experiment is made as 
soon as the first n-r2 experimental units have responded and 
the censoring is based upon fixed proportion of the observa­
tions. For example a biologist may perform an experiment on n 
animals to determine the effect of exposure to a drug by 
noting reaction time. Some animals may require an extremely 
long time to react. The experiment might be stopped when a 
fixed percentage have reacted.Thus, one would have the exact 
data on the smallest n-r2 items. This sample is termed a 
singly censored sample from the right and is of Type II.
This situation may occur in life testing, incubation period, 
fatigue testing etc.

Furthermore, the above two situations may occur jointly 
such that there are r^ smallest observations in a sample of n 
items which are missing plus r2 largest observations which are 
censored. This is termed as a doubly censored sample. For 
example, in certain studies of blood clotting, the speed of 
the reaction is such that r^ animals may respond almost 
spontaneously before individual measurements can be taken on 
them whereas some animals barely respond and may require a 
long waiting period. In such a situation, censoring on the
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left is by Type I whereas that on the right is by Type II.

The case where observations are missing from both extremes 

is the most general one and the first two- illustrations are 

special instances of it.
i

Sarhan and Greenberg [.513 and Davis Qt 6^] have stated 

that the common situations of censored samples encountered in 

practice are those which occur with samples drawn from either 

an Exponential or a Normal population. Hence in our investiga­

tion, we have studied only the two cases of Normal and 

Exponential populations. But other populations can be studied 

on the lines of this investigation.

7.3.2 Consider a doubly censored sample of size n with r^ 

smallest observations and Tg largest observations missing, 

and denote by y^^ the ith observation in ascending order of 

magnitude i=r.|+1, •.. ,n-r2» Lloyd [41]] has proposed best 

linear unbiased estimates of the location parameter yu and 

the scale parameters 6~ based on ordered observations of 

complete samples. It is well reproduced by him in Chapter 3 

of £53*3 • Later Sarhan and Greenberg [51,52,533 and others

used this technique of estimation for censored samples also. 

These estimates are linear functions of the available ordered

observations namely,
1
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n-p 0/a = r.2 w/ i=r.j+1 x

n-r?A ^ t

<r= 2- wi y(Di=r^4l
tThey have given tables for'W^ and w^ when parent population 

is Normal, Table 10.C.1 £533 a&d when it is Exponential £52 J
etc., for reasonable values of n and for r^=0,1,...,n and 
r^=0,1,2,...,n. It may be noted that the sample ceases to be 
a censored one for r^rg^O.

7.4 The Present Investigation :

7.4*1 The purpose of the present investigation, the results 
of which are incorporated in this chapter, is mainly to 
compare the Expected Value and the Quantile Methods of 
Probability Plotting. In the first two sections of this 
chapter, we have described these methods, with some comments 
and additions of our own. Before we go to the next section 
on the objectives and the plan of the present investigation, 
we would like to add a few more observations on the Probability 
Plotting Methods and our present investigation into them.

7.4.2 Probability Plotting Methods are simple graphical 
methods, which can be used quickly and by workers who may not 
have knowledge of Statistical Theory or Mathematics. It is true
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that these methods provide only rough approximations or 

tentative conclusions. But, in these days when statistical 

methods are applied in many fields by an increasing number 

of laymen in Statistics, such methods are in demand and are 

useful. They are useful even to statisticians, who may be 

generally using accurate statistical methods, by providing 

them quickly with tentative or preliminary conclusions, which 

often provide a basis for getting more accurate results.

A quick test, whether a sample comes from a Normal or an 

Exponential population has often to be made and hence the 

two Probability Plotting Methods considered here are useful 

in practical applications of Statistics. It is necessary that 

such simple types of statistical tools be studied and improved 

upon by research workers.

7.4.3 It may be argued by some that these methods are only 

rough methods and they cannot be compared. Some may think 

that both these methods are equally good or equally bad.

This cannot be true. Both the methods may or may not be 

equally efficient and an investigation can be undertaken to 

compare them, of course on certain assumptions and under 

certain conditions. A theoretical investigation is difficult 

and we have made this investigation in a practical way, by 

using simulated sampling.
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7.4.4 A fundamental difficulty in this comparison is that 
the fitting of the straight line is supposed to he done by 
eye and objective evaluation of merits and demerits of such a 
procedure cannot be made. But, in Probability Plotting Methods, 
the fitting of a straight line need not be continued to be done 
by eye.Workers are now-a-days acquainted with more and more 
of statistical methods and the ancillary mathematical computa­
tion and many of them know how to compute means, standard 
deviations, correlation coefficients, fitting of straight 
line in the simple case when the observations are assumed to 
be independent with equal variances, etc. The present methods 
can be improved and if the points fall almost along a straight 
line, the straight line can be fitted, instead of by eye, 
by simple least Squares Method, obtaining estimates of V 

location and scale parameters more accurately. At least, for 
comparison purposes, we may do the fitting by the simple 
least Squares Method. +t is true that the expected values 
or the quantiles are correlated and the. simple least Squares 
Method is not adequate. It is possible to evolve and use a 
more exact method. In our present investigation by using 
simulated sampling, the use of an elaborate method would have 
involved us into a heavy amount of computational work and we 
have used only the simple least Squares Method. It is generally 
the experience of workers that the improvement made by using 
least Squares Method for the correlated case instead of the
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simple least Squares Method is generally slight, e.g.

Hahn and Shapiro and "the use of simple least Squares

in our investigation has, therefore, some support.

7*4.5 Even if we fit a straight line by simple least Squares 

Method, we have to alternatives; Minimising X(y-y; in which 

the sum of squares of vertical deviations is minimised, or 

minimising X(x-x; in which the sum of squares of horizontal 

deviations is minimised. It is shown by Eisenhart [203 that 

when x 4s the independent variable,we should minimis^ 'j(y-f) . 

Bdt is has been also shown by Krutchkoff ][_40Q , that this

is not so in his problem. We therefore decided to fit the 

straight line in both of these ways and see which way gives 

better results in our problem.

7.4*6 An important feature of these two Probability Plotting 

Methods is that they are applicable to censored samples.

In our investigation, therefore, we have compared the results 

given by these methods in the case of censored samples of 

Type II from Normal as well as Exponential populations. These 

methods are■applicable to other types of populations. But 

we have limited our investigation to the Normal and Exponential 

cases only.

7.4*7 We are here concerned with the comparison of the two 

Probability Plotting Methods. Methods, which are better and
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easier than Prohability Plotting Methods are of course 
available. For example, from the given set of ordered obser­
vations, it is possible to obtain best linear estimates for 
location and scale parameters, using certain ready-made tables 
of Sarhan and Greenberg, as cited in Seetion3«2. We shall 
therefore compare estimates obtained by Probability Plotting 
Methods with those obtained by Sarhan and Greenberg.

7.5 The Objectives and the Elan of the Present Investigation; 

7.5*1 The objectives of the present investigatioij&re :

(a) To compare the results due to taking
(i) p±=i/(n+1), (ii) pi=(i-i)/n and (iii)pi=(i-3/8))(n+i) 

in the Quantile Method. ' ‘
(b) To compare the Expected Value and the Quantile Methods 

of Probability Plotting.
(c) To compare the results obtained by minimising

(i) r(y-y)2, the sum of squares of vertical deviations
A. 2 vand (ii) i(x-x) , the sum of squares of horizontal

deviations.

7.5*2 The main points of the plan of the present investiga­
tion are given below:

(a) The investigation is confined to the Normal and 
Exponential populations. In the case of Exponential, the 
probability density function with only one parameter, namely, 
the scale parameter, called oC , is considered.
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(t>) For simulation, samples from three lormal and 

three exponential populations are taken.These populations 
are: normal, N(80,32), l(80,62) and l(80,82), Exponential,

E(d.=50), E(cA=125) and E(oC*250).

(c) 100 samples each of size 10 and 20 are drawn

from each of these six populations. In the case of the normal 
population H(^u,6~2), the random normal variate x is given 

by 6~R +yu where R is a random normal deviate fromn(0,l) 

which can he readily obtained from Table A;2 of Dixon and 

Massey . In the case of the Exponential Population,

the random exponential variate x having p.d.f. f(x; oO2 I e 
is obtained by using the relation x= - o(log(R/l 0000) where 

E is the usual random number with four digits. For this 

purpose usual tables of random numbers are used.

(d) Complete samples as well as censored samples 

of Type II, (as defined in Section 3 of this Chapter) are 

drawn from these populations. Two sizes of the complete 

samples namely 10 and 20 are considered.Censoring is done by

taking the first 60$ of the ordered observations of the 

complete samples. Thus, in the notations explained in 

Section 3-1 of this Chapter we have the right censored 

samples of Type II with

r^=0, 1*2=4, for n=10 

and r.j=0, **2=8, for n=20.
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(e) As the samples are actually drawn from particular 
populations, plotting on a graph paper (merely to verify 
whether the points cluster along a straight line) is not done, 
location and scale parameters are estimated not graphically, 
hut hy the use of simple least Squares Method, in the 
following two ways!

(i) Minimising and taking the fitted straight
line as y=y + b (x-x) [Obtaining Minimum Vertical Deviation 

yx i—
(MVD) Estimates U s

A AMVD Estimate of Seale parameter namely 6*j(orcAj )
= Slope of the fitted straight line 
= byx
_ Ky-y) (x-x) ixy - nxy ...(7.5)

-n2 ~ 2 -2X(x-x) Xx " ax
AMVD Estimate of location parameter namely yu^

= Intercept on y axis by the fitted straight line 
= I - X ... (7.6)

(ii) Minimising X(x-*x)2 and taking the fitted 
straight line as x=x + b^Cy-y) [^obtaining Minimum Horizontal 
Deviation (IHD) Estimates^] J

A AMHD Estimate of scale parameter namely 67, (or cAg)
= Reciprocal of the slope of the fitted straight line
= b-1 

xy
= I(y-y)2 = ly2 - ny2

I(x-x)(y-y) ixy - nxy
...(7.7)
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A
MHD Estimate of location parameter namely ^/Ug 

= Intercept on y-axis by tbe fitted straight line 

= y - b_1 x ...(7.8)

In the above expression x stands for X^j in Method I and

for x in Metnod II whereas y stands for y. in both the 
pi

Methods.

(f) From each set of 100 samples, we calculate the 

estimates of location and scale parameters and calculate 

further the mean and variance of these estimates, which we 

shall call the simulated mean and^imulated variance of the 

particular parameter for the particular population. In. the 

tables of our results, we shall give the simulated variances 

and in bracket the simulated means.

(g) We first take up the seale parameter, for each 

set of 100 samples from'the three Normal and the three 

Exponential populations, we have calculated the MVD and MHD 

estimates for the scale parameter 6~ (or oO ), using Method I 

which gives only one and Method II which gives three estimates 

corresponding to the three values of p^ considered here, 

considering each complete as well as censored sample. Thus 

for a given complete as well as a censored sample, there are 

eight estimates of the scale parameter, furthermore, the 

mean and variance of these estimates of scale parameters,
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tased on 100 estimates, hare been calculated.Then for each 

set of 100 samples from a population,, we have eight simulated 

means and eight simulated variances for the scale parameter. 

Simulated means and variances for complete samples from Normal 

and Exponential populations respectively for the scale 

parameter are given in columns (4) through (11) of Tables 7*1 

and 7*3 (with means given in brackets).Similar quantities for 

the censored samples are given in columns (4) through (11) 

of Tables7.2 and 7.4*

Eor the location parameter, MVD and MHE estimates are 

calculated only in the case of censored samples from the 

Normal Population.Simulated means and variances for this 

parameter (based on 100 estimates) are obtained and are given 

in columns (4) through (11) of Table 7*5. It may be noted 

that, as x's are expected values or quantiles in'the standard 

population and x=0 for a complete sample from a standard 

Normal Population, all eight estimates of location parameter 

will be identically equal to the sample mean,' which is evident 

from the expressions (1.6) and- (l.Q) given in (e) of this 

Section. Hence simulated means and variances based on complete 

samples for locatiorjparameter have not been calculated. In 

the case of the Exponential population, the problem of estima­

tion of location parameter does not arise, as we are consider­

ing this population only with one parameter, namely, the scale



; 124 :

parameter. Table 7*5 therefore is only for the location 

parameter of the lormal population in censored samples.

(fa) Variance of the best linear unbiased estimate for 

scale parameter for both the types of populations, from 

complete samples as well as censored samples are calculated 
by using tables of Sarhan and Greenberg; Table 10.C.2 of [53j 
in the case of Formal and Table II of Sarhan and Greenberg 

£523 in the case of the Exponential, are used for this 
purpose. However, in the case of the Exponential population 

considered here, it may be noted, that this variance can be 
readily obtained from c^/n in the case of complete samples 

and rf?/(a-r2) in the case of censored samples. This simpli- 

city is due to the fact that we are considering the exponen­
tial population depending upon only one parameter1 namely the 

scale parameter and right censoring of Type II. The above 
variances are given in column (12) of Tables 7.1 through 7.4.

(i) Variance of the best linear unbiased estimate* 

of the location parameter of Formal Population based on 

censored sample also has been calculated by using Table 
10.G.2 of Sarhan and Greenberg ^53~J • It is given in column1 
(12) of Table 7.5.

(j) The maximum likelihood estimate of the scale 

parameter of the lormal population and its variance are
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given “by

and

where

, p^ _ X(x-x) = sample standard deviationr= s TL

Y(s) = f2(n-1) - 2nc?l f2 
u dJ 2n

</I><
n-2 )!

( 2^> i

Since E(s) = , s is a biased estimate of 6T. Vie have
calculated Y(s), Y(s/cg) and E(s-0^ = V(s) + (Bias)2.

These quantities are given respectively in columns (15)»(14-) 

and (15> of Table 7.1.

(k) Asymptotic variances of the maximum likelihood

estimate of the scale and the location parameters of the

Normal population based on censored sample are calculated by

using the Table given by Gupta [32^ and are given in Column

(13) of Tables7.2 and 7.5»fhese could have been also calcula-
of

ted from Cohen's right hand part^/Table 3 of [l2^j .

(l) In the case of the Exponential population under 

study, best linear unbiased estimate and maximum likelihood 

estimate of the scale parameter are identical for both the 

complete and censored samples. Hence no additional calcula­

tions are needed and columns (12) and (13) of Tables 7.3 and 

7.4 are the same.
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(m) Table of X/.x and x are prepared for ready 
vi; pi

reference for i=1,2,...,n, n=10(1)30, These tables are prepared 

for both the Formal and the Exponential populations and are 

given in the Appendix (Tabxe A.1, Table A.2). In the case of 

the Formal population the values of X^^j are quoted from 

Table 28 of Pearson and Hartley ^49^ and the values of x^ 

are calculated by referring to Table 4 of Pearson and Hartley 

^49 3 • It may, however, be noted that the values of X^ for 

n = 27 and 29 are not available. In the case of the Exponential 

population, the values of X/. \ and x are computed by using
Pj_

(7.1) and (7.4).

(n) We may explain the details of calculation by an

example.Table 7*6 gives details of calculations for one

specimen of a complete sample with n=20 from the Normal
2population H(80,8 ) and one specimen of the censored sample 

for n=20, r^=0, rg= 8 from the Exponential population with 

c* =50.The observations are presented in ascending order.

Along with them are the columns of X(. \ and x obtained 

from TabL^ A.1 and A.2, In the case of censored sample from the 

Exponential population we have to refer to Table A.2 for n=20 

and pick out the values of X^^ and corresponding to the 

ordered values available in the sample (in this case, the 

first 12 values).

We should mention here one practical point regarding 

the calculation of X^j and x^ for the case when a sample
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contains two or more observations of equal value, To 
illustrate this point, let us take the values of the sample 
from the Hormal population rounded off to the nearest one 

place of decimal. It is revealed from the column (3) of 
this table that the values 67*2 and 91*5 are repeated twice. 
The former corresponds to 3rd and 4th ordered observations 
and the latter corresponds to 17th and 18th ordered observa­

tions. Then, for y=67.2 we proposed to take x equal to the 
average of X^} and X^^. Beferring to Table A.1 we find 
that this average is -1.026. Similarly for y=91.5 we take

. Titus the total numberx=+1.026 averaging X^) and X (18)'
of pairs (X^, ^(i)^ i*1 'this case would be

18 instead of 20.

let us now consider the determination of x in thepi
case of ties. It may be observed, from the definition of x ,pi
that p^ represents the probability that a random variable x
is less than or equal to x . We find in our sample that therepi
are 4 observations which are less than or equal to 67.2.
Therefore p. and then x may be determined by substituting
i=4 * the expressions o! p± an, x^. The values of x% then,

for y^j = 67.2, are -0.878, -0.935, -0.919 for p^=i/(n+l),

p^Ci-D/n and p^Ci- 3/8)/(n+f). Similarly for y^=91.5
the values of x are 1.067, 1.150, 1.126 obtained by substi- pi
tuting 1=1^ in the corresponding expressions. Thus in this
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case too, there will be 18 pairs instead of 20 pairs for

further considerations such as plotting on the graph,

calculation of b etc. Under such circumstances
and yx need not be zero and the estimate of location Pi
parameter need not be equal to the sample mean, even if 

the sample is complete.

Estimates of the scale parameter and location parameter 

for the illustrative example are calculated and are given in 
Table,7.7* Estimates of the scale parameter of the Exponential 

population are also calculated from the example and are given 

in the same table.

It may be noted that in our work, we have taken y's 

correct to three places of decimals to avoid two or more y*s 

with equal value. Hence our sample sizes are always 20 or 

10 in complete samples.

7.6 Discussion and Conclusions :

7.6.1 MVP and MHD Estimates;
(a) Variance of the Scale Parameter; Let us first 

compare the UVD and the MHD estimates of the scale parameter 
from the variance point of view. On comparing the entries of 
simulated variances of the estimates of the scale parameters 
given in columns (8), (9), (10) and (11) with the correspond­

ing entries given'in columns (4), (5), (6) and (7), in
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Table 7.1 through 7*4, we find that, the simulated variance 
of the MHD estimates of the scale parameter is always 
greater than the corresponding simulated variance- of the 
M7D estimates of the scale parameter, in the cases of both 
the Normal and the Exponential populations, in complete as 
well as censored samples. We therefore conclude that the 
M7D estimate of the scale parameter is better than the WHT) 
estimate of that parameter from the variance point of view, 
in both Normal and Exponential populations.

(b) Bias of the scale parameter; (i) let us now 
compare the M7D and, the MHD estimates of the scale parameter 

from the Sbias' point of view. On comparing the entries of the 
simulated means of the estimates of the scale parameter given 
in brackets in columns (8), (9), (10) and (11} with the 
corresponding entries given in columns (4), (5)* (6) and (7), 
in Table 7*1 through 7*4, we find the same trend, which we 
observed in variances and we find that, the simulated mean 
of the MHD estimates of the scale parameter is always greater 
than the corresponding simulated mean of the MVD estimates 
of the scale parameter. We find this trend not only in the 
entries of the simulated means given in our Tables, but also 
in the detailed individual estimates of the scale parameter 
from which these simulated means are calculated, in the case 
of each sample. Though this result is an interesting one, it 
does not lead to any conclusion about bias.
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(ii) On compariag the absolute values of the bias, 

obtained from the simulated means, in Tables 7-1 and 7.2 

for the Hormal population, we find that, barring only one 

exception in Table 7»1 for 6=8, n=20, the MVD estimate of 

the scale parameter gives less bias than the MHD estimate 

of the scale parameter, in the eases of p^=(i-3/8)/(n+i), 

p^=i/(n+l) and Method Ij but for p^=(i—|-)/n, the MVD estimate 

of the scale parameter gives greater bias than the MHD esti­

mate of that parameter. In the Hormal population, we further 

find from Tables 7.1 and $.2 that the MHD estimates and the 

MVD estimate in the case of pi=i/(n+l) generally over­

estimate the scale parameter, giving a positive bias, while 

the MVD estimates for p^=(i-i)/n, p^=(i-3/8)/(n-Hb) and 

Method I under-estimate the scale parameter, giving a 

negative bias, which is greater in the case of p^=(i~i")/n 

than in the other two cases of p. (i-3/8)/(n+i-) and Method I,
i

where the magnitudes of bias are small and nearly equal.

(iii) Referring to Tables7*3 and 7*4 for comparing 

the bias in the MVD and MHD estimates of the scale parameter 

of the Exponential population, we find the same trends as 

those found in the case of Hormal population, but less 

strongly and with several exceptions, with the notable 

difference that the MVD estimate even for' p^Ci—|-)/n gives, 

in general, less bias than the MHD estimate for the scale
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parameter of the exponential population,In the Exponential 

population, therefore, the MYD estimate of the scale para­

meter has generally less bias than the MHB estimate.

(o). Location Parameter in normal Population: Let us

now compare the MYD and the MED) estimates of the location 

parameter for which purpose we have to compare the entries 

given in columns (4), (5), (6), and (7) with those given 

in columns (8), (9), (10) and (11) in Table 7.5. only. Among 

the simulated variances of the location parameter in Type II 

censored samples from Normal population, we find generally 

the same trend: the simulated variance of the MVD estimates 

is less than ‘that of the MUD estimates, in four rows out of 

the six rows in Table 7*5? but'for, 6=6, n=20, r =0, r„=8
- "| C-

and for 6=3, n=10, r^=0, ^=4, the simulated variance of the 

estimates of location parameter of the Normal population is 

slightly less for the MED estimates than for the MYD estimates 

If we compare the simulated means for bias, we find a similar 

trend but with more exceptions.

(d) Conclusion; The results mentioned above suggest 

that, in general, we may prefer MYD estimates to MED estimates 

for the estimation of both the location and the scale 

parameters of the Normal and the scale parameter of the 

Exponential populations, in complete as well as censored 

samples.
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7.6.2 Variance of Estimates in Quantile Methods £

(a) Referring to columns (4) through (7) of the 

Table 7.1 through 7.5, we find that the simulated variance 

given in column (4) in which we take p^=i/(n+1), is always 

greater than the corresponding variance given in columns 
(5) to (7), in which we use p^Ci-iJ/n, Pi=(i-3/8)/(n+i) 

and the Expected Value Method i.e. Method I. Thus we find 

that the Quantile Method i.e. Method II, with p^=i/(n+l) 

gives less efficient estimates for both location and scale 

parameters, in the cases of the Normal as well as the 

Exponential populations, in complete as well as censored 

samples. Hence, from variance point of view, the rule 

p^=i/(n+1) has to be discarded in favour of one of the other

two rules for p. or Method I.1

(b) Comparing column (5) with columns (4) and (6)

in all the Tables 7*1 and 7.5, to study the differences due 

to taking P^Ci—D/n and V^=(l-3/8}/(n+i), we find that the 

simulated variance given in column (5) is always less than 

the simulated variance given in columns (4) and (6), except 

in one case of censored sample in Table 7.5 for 6^=3, n=20, 

r^=0, rg=8, where the simulated variance under column (5) 

is 0.56327 which exceeds the simulated variance under 

column (6) namely 0.56298 by a small quantity equal to 0.00029*
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(c) We may, therefore, conclude that, among the

three values of p. considered here for calculation of i ,
1 pi

p^=(i—|')/n leads to an estimate with the least variance for

both the location and scale parameters in the Normal popula­

tion and the scale parameter in the exponential population, 

for complete as well as censored samples.

7*6*3 Bias in the Estimates in Quantile Methods;

(a) Normal Population : On comparing the simulated

means given in brackets in the column (5) with the corres­

ponding means in the columns (4) and (6) in Tables 7.1, 7.2, 

and 7.5 for the Normal population, we find that the bias in 

the estimates of both the location and scale parameters 

generally increases as we take p^=(i-3/8)/(n+|-), pi=(i-|-)/n 

and p^=i/(n+1), except in a few cases. In the exceptional 

cases what we find is that the baas sometimes decreases as we 

pass from p^Ci-D/n to p^i/Cn+1). But the property that 

the bias increases as we pass from p^=(i-3/8)/(n+|-) to 

p^=(i—|^/n holds good for all the entries under consideration 

in the tables7.1, 7«2 and 7*5* In the exceptional cases, the 

bias in taking Pj_=i/(n+1) is never found less than that found 

in taking p^Ci-S/Sj/Cn+i). Hence we may conclude that, for 

Normal population Pi=(i-3/8 )/(n+i) gives estimates with the 

least bias, while p.(i—|)/n gives estimates with greater bias 

than those given by p^Ci-3/8)/(n+i) (but as seen above in
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Section 6.2 of this Chapter with the least variance) both 

for scale and location parameters.

Blom £31 had observed this for the scale parameter of 

Formal population. We confirm Blom and further find the 

result to be true for the location parameter of the Formal ' 

population also.

We find that taking pi=i/(n+l) is to be discarded, 

in favour of one of the other two values of p., from bias 

as well as variance points of view, for the estimation of 

any parameter of Formal population.

(b) Exponential Population : On comparing the

entries of simulated means given in brackets in the columns 

(5) with those in columns (4) and (6) in Table 7*3 and 7*4, 

for the scale parameter of the Exponential Population, we 

find that, for complete samples, pi=i/(n+l) gives estimates 

for scaleparameter with greater bias than those given by 

the other values of p^, but p^=(i~g-)/n generally gives the 

estimate for scale parameter of the Exponential population 

with less bias than that given by p^=(i-3/8)/(n+i-), except 

for o<=125» n=10. Hence from both bias and variance points 

of view, for complete samples from the Exponential popula­

tion, p^=(i—g-)/n appears to give the best estimate of the 

scale parameter. For censored samples, this trend cannot be
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confirmed by our results as far as bias is concerned, but 

from variance point of view, p^=(i-fr)/n has been already 

found to be preferable# Hence, for the estimation of the 

scale parameter of the Exponential population by Quantile 

Methods, we may generally prefer p^=(i-|-)/n to the other

two values of p..1

7.6.4 Methods 1 and II :

(a) In the case of the Formal Population, Method I 

and Method II with p^=(i-3/8)/(n+i) give very similar 

results, which can be seen v.ery clearly in the entries in 

columns (6) and (7) of Tables.7.1, 7*2, and 7.5#Thus Method 

II with p^=(i-3/8)/(n+|'') gives estimates for location and 

scale parameters of Formal population which are equally good 

as those given by Method I, from the points of view of bias 

as well as variance, for complete as well as censored samples.

(b) In the case of comparison of Methods I and II, 

the conclusions for the Exponential population are not the 

same as those for the Formal population. Comparing the simu­

lated variance for the estimates of the scale parameter of 

the Exponential population given in columns (6) and (7)

of Table 7.4, we find that, for censored sample, Method I 

is better than Method II with p^Ci-3/8 )/(n+i) and further 

comparing columns (5) and (7) of this table we find that
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Method I and Method II with pi=(i-i)/n are equally efficient 

from both bias and variance points of view. We may conclude 

that for the Exponential population the rule p^=(i~ir)/n 

generally gives as good results as those given by the 

Expected Value Method.

7.6.5 Summary of the Conclusions :

(a) MVP and MED Estimates : We may prefer in

general MVD estimates to MED estimates for both the loca­

tion and scale parameters of the Normal population and the 

scale parameter of the Exponential population for both 

complete as well as censored samples.

(b) Quantile Methods; Normal Population :

(i) Among the three values of pi considered here 

for the Quantile Method, p^=i/(n+l) should be discarded for 

the estimation of both the location and sdale parameters

of the Normal population for both complete as well as censo­

red samples, from both bias and variance points of view.

(ii) pi=(i-3/8)/(n+|-) gives estimates for both the 

location and scale parameters of the Normal population 

foxjboth complete as well as censored samples with the least 

bias; but p^=(i—|-)/n gives these estimates with the least

variance.



s 13? :

(c) Quantile Methods: Exponential Population :

(i) Among the three values of p^, p^=i/(n+l) should 

he discarded for the scale parameter of the Exponential 

Population in complete as well as censored samples.

(ii) p^= (i—|)/n gives better estimates for the scale 

parameter of the Exponential population in complete samples, 

than those given by the other two values of p^, from both 

the points of view of bias and variance. For censored 

samples, in the Exponential population, p^=(i-§)/n is 

preferable, at least from variance point of view. Generally, 

for the estimation of the scale parameter of the Exponential 

population by Quantile Methods, we may use pi=(i-§-)/n.

(d) Comparison of the two Methods :

(i) for both the location and scale parameters of 

the Normal population, in complete as well as censored 

samples, the Expected Value Method gives as good results as 

the Quantile Method with ’p^=(i~3/8 )/(n+^).

(ii) For the scale parameter of the Exponential 

population, the Quantile Method with p^=(i—|-)/n generally 

gives results, which are equally good as those given by the 

Expected Value Method.
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7.7 A REMARK :
Comparing columns (12), (13), (H) and (15) of Table 

7.1 an interesting property of the usual sample standard 
deviation, s, as an estimate of the scale parameter of the 
Normal population is observed. We note that these entries 
are not based on simulation, their basis being already 
described in Section5»2 of this Chapter, low we find that 
7(s) is less than the variance of the best linear estimate 

for all values of n and 6~considered here. Furthermore, 
neither nor E(s-6") exceeds the variance of the best
linear estimate. Thus, this usual estimate is better than 
the best linear yesimate for estimating the scale parameter 
of the Normal population based on complete sample. Here, s 
is a nonlinear estimate. By an example, Godambe and Joshi 
£293 have shown that the general feeling that corresponding 
to every nonlinear estimate there exists a linear estimate 
having a smaller variance than the nonlinear estimate is 
wrong. Here, perhaps is another example, supporting the- 
statement of Godambe and Joshi £29j .

7*8 An Application to a Geological Broblem:
Situations arise in practice where Method II may be 

found more suitable. Geologists are often interested in deter­
mining the distribution of size of sediments. An outline of 
data sheet for size analysis by sieving is of the following type:
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Material held on Raw Percent Correlated Cumulative
Mesh Mm 0 weight aggregate weight weight in 

percent
(1) (2) (3) (4i 15) (6) (7)

The pattern of cumulative weight given in column (7) 

changes as the material to be sieved changes.The usual prac­

tice is to plot 0 ( which is log mesh-size)and the percent 

cumulative weight on Normal probability paper with 0 on 

arithmatic scale and the percent cumulative weight on 

probability scale. If the points lie close to a straight line 

further statistical constants such as quartile, mean etc. are 

obtained from this graph. The above data sheet, the descri­

ption of the experiment and the determination of statistical 

constants are given by Robert L. Polk [26Q •

In statistical language what follows from the above 

experiment is that, 0 has a normal distribution. Further­

more, what is directly observed is the cumulative probability. 

In the notations used here, column (7) of the above data sheet 

gives p^. The experimenter observes p^ and plots (jZL, p^) 

with 0£ on arithmatic scale and p^ on the probability scale 

of the special normal probability paper. If now one wants to

use ordinary paper, one has only to determine x such that
pi
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p., the observed propor- 1 ttonal cumulative
weight.

As explained earlier x can readily be read from Table 4pi
of Pearson and Hartley [49^ • Hence if we plot (xp
with x along x-axis and 0. along y-axis, this graph too 

pi •
will help in determining whether the pattern of variation 
is normal and the usual statistical constants.
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