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CHAPTER - VIT

AN INVESTIGATION INTO EXPECTED VALUE AND QUANTILE

METHODS OF PROBABILITY PLOTTING BY SIMULATION

T.1 Expected Value Method of Probability Plotting :

7.1.1 In erder to test whether & given sample belongs to a
certain pre-assigned parent population, Folks and Blankenship
L 27 7 have proposed a practical method called Probability
Plotting Metnod with the use of an ordinary graph paper, for
Normal, Exponential and Weibull populations. According to
this method, if (y1,y2,...,yn) is a random sample from a
population, if y(i), i=1,2,¢..,8, are these observations
when ordered such that y“)s y(‘2‘)$ ,os ‘éy(n) and if X(i)

are the expected values of y(i) in the particular population,

X = B( (1) )

(1)
then, the n points [X(i), y(i)j’ i=1,2,¢00,0, wheg plotted
on an ordinary graph paﬁer, should fall almost along a
straight line. We shall refer to this methdd as the Expected

Value Method or Method I.

7+1+2 Por the Normel population N{(0,1), the expected values

of ordered observations, also called order statistics, have been



calculated for different values of n and are available in
Table XX of Fisher and Yates [ 25_] , or in Table 10.B.1 of
Sarhan and Greenberg [ 537 , or in Table 28 of Pearson and
Hartley [49] or in Table 9.1 of Rao, Mitra and Matnai [50] .
If X(i) is the expected value of the ith ordered observation
from N(O,?), the expected value of the ith orderes observa-

tion y;y from N(/u,6’2) will be

Bey) = A6
This 4f course is true for any population with location and
scale parameters Ve and 6 . If the points [X(i)’ y(i)] are
plotted on an ordinary graph paper, they should lie almost
along a straight line and the slope of the fitted straight
line and its intercept on the y-axis will provide estimates

of the parameters 6 and /u.

Te1+.% Por the standard Exponential pepulation dF=e-ydy,
04{y<W, the following expressions for the. expected value of
ith order statistic and its variance have been obtained by

Epstein and Sobel [23] ;

E (yy)) = lZ 1 vee(7.1)

i
Var (Y(:L)) = Z s H . ceo(7.2)

n being the size of the sample. 1t appears that these results



were earlier established by Gumbel [307]. In Section 1.4
below, we shall derive a similar expression for the rth
cumulant kr of the distribution of the ith order statistic

in the standard Exponential distribution, from whien the
above results followe It is easy to calculate X(i) from (7.1).
However, for n 410, ready-made tables, e.g. Table 11.4.1

of Sarhan and Greenberg [53] are available, which can be
used. For the general case, f(x}= %‘exp ( 53%), x 24, 70,
if I(i) is the ith ordered observation in a random sample of
size n from this population, its expected value will be equal
to A +akX(i), where X(i) is the expected value of the ith
ordered observation in a sample of size n from the standard
Exponential population, which can be calculated by using (7.1).
Here slso, if the points [X(i)’ y(ii} i=1,2,+..,0n are plotted
on an ordinary graph paper, the n points would lie almost
along a straight line and, the slope of the fitted straight
line and its intercept on the y-axis would provide estimates

of the parameters A and A.

»7.1.4 We sha}l now obtain an expression for kr [y(iij the

rth cumulant of the ith erder statistic in sample of size n
from the standard Exponential population. Let y be the standard
exponential variate with frequency density function f(y)=e“y,

y o -
0 <y<oo . Then F(y) = [ &7 ay=(1-e7¥). It y(i) 18 the ith
o}

order statistic in this distribution, the distributien of Y(1)



will be given by
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If the cumulant generating function is K(t) = log #(+t), the

rth cumulant kr of the distribution of y(i) is given by,

e xS o o) - a0 flmonl] g

)
Now E%“ log [z = V¥ (2) = = Y+(z2-1) 5%% TE:%7T5¥5)

(Higher Transcendental Functions, Vol.I, by Erdelyi A.et.el.,

1.7 p.15) | 21 ]
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. _ ' _ _ _ _ 2
Since k1 = /u1, k2 = /&2, k3 = /ua, k4 = /14 3/u2 etc.,
we can get the moments of the ith order statistic in the

standard exponential population,. and in particular s

' i 1
/u,} (y(l)) = %;1 -(—'——n-jﬂ) ’
)= % !
S V(i) T 421 (n_j+1)2 ’
i 21

7.2 Quantile Method of Probability Plotting:

7.2.1 1In order to test whether a given sample belongs to a
Normal population, Rao, Mitra and Mathai [50] have proposed

a Probability Plotting Method with the use of an ordinary

graph paper, by using quantiles (also called fractiles or
partitien values). In this method, if (y1,y2,...,yn) is a

random sample from a Normal population, if y(i), i=1,2,...,10

are these observations when ordered such that y(1)_é y(2)g'“é;y(n)
and if xp are certain quantiles in the standard Nermal

i

population N(O,1), p; to be obtained from i and n by p;= 1

H ]
then the points Expi, y(ij], i=1,2,+..,n when plotted on an
ordinary graph paper, should fall almost along a straight line,

if the sample comes from a Nermal population. A similar method



has been given by Epstein [ 227] for the Exponential population.

We shall refer to this method as the Quantile Method or Method IX.

Te2.2 We may mention here a very simple but a very important
property of a partition value namely that, 'it survives a
transformation’. Let x and u be two random variables such that
X is a certain transformation of u i.e. x:ﬂ(u). Let f(u) ve a
monotonic increasing funetion of u and let the inverse func-
tion x=¢~1(u) be single valued in the range of u. If the
probability differential of'x is f(x)dx, the probability
differential of u is f [@(u)] ﬁ'(u)du. Hence

9]

P

)
is equivalent to

£ (g g (wau = p

[

f(x)dx = Py

I~"M

P
00
where 1
%= ﬂ(up) or u= g (xp).

This means that, if up

distribution of u, such that p proportion of observations are

is a certain partition value in the

less than or equal 1o up, the corresponding partition value

xp in the distribution of x such that p prqpertion of observa-
tions are less than or equal to x,, is given by x?=ﬁ(up). We
saythat a partition value survives a transformation.vMeans;

moments etec. do not enjoy this property.



T.2.3 If yp ig a certain partition velue in a particular
population with location and scale parameters Ve and G’apd
if xp is the corresponding paertition value in this populatien
when standardized, then yp=/u + G“XP. Hence, in order to

test whether a given sample belongs to a particular population
or not, we can have a modified Probability Plotting Method
with the use of an ordinary graph paper, by using a certain
number of partition values, which may not necessarily be
"egui-distant® quantiles in which p2--p1 = p3~p2 = «eewD -D

r-1°
Let y K i=1,2,...,7, Be certain r partition values, calculated
from t;e glven n observations in the random sample of size

n, n>r, from a certain population with location and scale
parameter /u and 6 and let xpi_be the corresponding partition
values in this population when standardized. If these r points
Expi, yp;], i=1,2,...,7, are plotited on an ordinary graph
paper, they should fall almost aleng a straight line and the
slope of the fitted straight line and its intercept on the
y-axis would provide estimates of the parameters G“and/u.

This is a more general approach to the problem. But there are
various problems which will have to be solved. What value of
r should be selected i.e. how many partition values should be
used? How to obtain the pi’s from i and n 2 We do nof propo se

to discuss these questions here. Here, we shall consider only

the Quantile Method proposed by Rae, Mitra and Mathai for the



Normal and by Esptein for the Exponential populations,; in which
instead of a few partition values all the observations in the

sample are direct;y used.

T.2.4 As stated earlier, in the Quantile Method, the ordered
observations y(i), i=1,2,+..,0 obtained from the random sample
of size n namely (y1,y2,...,yn), are plotted against xpi,
which are certain quantiles of the standard parent population,
where p; are to be obtained from i and n in a certain way.Rao,
Mitra and Mathai have proposed to take’pisi/n. But, for i=n,
this will present difficulty and we consider pi=i/n unsuitable
for our purpose. Yhe ordered observations y(i), i=1,2,cceyn
may be looked upon as n quantiles partitioning the whole area
into n+1 equal parts, Just as the five sextiles partifion the
whole area under the frequency curve into six egual parts.
Instead of pi=i/n, it is preferable to take p;= i/(n+1). But,
there are other values for p, which may be preferable. For

our investigation, however, we shall consider only three
values of p; to choose from, namely (i) pi=i/(n+1), (i1)
p;=(i~%)/n and (iii) py= (i-3/8)/(n+%). Taking pi=i/(n+1)
appears to have been first proposed by Weibull (1939) ]:57]
and recommended by Gumbel (1954) [:31'] . Taking pi=(i—%)/n
appears to have been first discussed by Bliss (1937) [27] and
by Ipsen and Jerne (1944) [39t] .
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7.2.5 We shall give some details of Blom's work [3] on this
problem, which throws light on the two Probability Plotting
Methods being considered here and which also suggests a link

between them.Blom has proposed a general rule for Py namely

= 1=
Pi~mﬁ“, (o‘wFéT)

where ol and ?3 may be so chosen that

He has statedthat, in the Normal distribution, the rule

pi= iﬁ{g

n+g

i.e. taking o<=p=3/8, leads to a practically unbiased estimate
of 6 with a mean square deviation about 6 which is about the
same as that of the unbiased best linear estimate and that the

rule given by Chernoff and Lieberman (1954) [gj , namely,

s 1
= + -7
p. = =—FE

i n
i.e. taking =B = % leads to a biased estimate of 6 with
nearly minimum mean square deviation about‘ 6. Taking o =}3 has
been recommended as a working rule for any probability pletting
by Bernard and Bos-Levenbach (1953) [ 17] , who proposed to
take A =§=0.3 irrespective of the shape of the distribution.
4 similar problem is found in the work of Ogawa B5,46] in

connection with the spacing of quantiles and he suggests



Equi=~Probanle and Intuitive Plausible Spacings of quantiles
in which pi=i/(n+1) and pi=(i—%)/n are taken. Dave [15 ] also
has come acrﬁss a similar situation in his thesis on
"pransformations of Yariates" in which he wants to fit a
polynomial tramsformation of the standard normal variate on
non-normal data by using certain partition values which should
be "thimally spaced". The problem of choosiﬂg Py is an
important problem which needs further investigation. The
working rules suggestied for Py need also confirmation, In our
present investigation into this problem, we have confined
ourselves to the comparison of only three values of Py namely
pi=i/(n+1), pi=(i—%)/n and pi=(i - 3/8)/(n+%), considering
‘Normal as well as Exponential populations and considering

complete as well as censored samples.

T7.2.6 Thus in the Quantile Method, to determine whether a
samplg (yw,yZ,...,yn) comes from a Normal population N(/u,G'z),
corresponding to the ith ordered observation y(i), we obtain
X such that
Py
pd

p.
L 1

——
o /T

where p; may be obtained from i and n in any one of the ways

2
p:d

e

dx = p. e (743)

i b4

mentioned in Section 7.2.4 or any other way and X, then can
i

be calculated by using Normal Taples like Table I of Fisher
and Yates [25 ] or Table 4 of Pearson and Hartley [49] .
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. . Coht 14
If the n points {xpi , y(i)] lie almost along a straight line,
it is concluded that the sample comes from a Normal population

and the slope of the fitted straight line and its intercept on
the y-axis provide estimates for S'amﬂ./u. For the Exponen—

tial case, the method is similar. Here x, ' are to be obtained

i
from
Xp
i
-X
e dx = Py
0
We easily see that
‘ 1
x =1log -—m—— , ce e (T04)
B3 1Py

where pi's have to be suitably chosen. If we take

p.=i/(n+1), x_ = log (n+1)/(n~i+1) and so on.
i Dy

7.3 Censored Sampling @

7«31 While distinguishing between censoreé samplihg and
sampling from a truncated population, Gupta [32] has defined
two types of censored sampling; Type I when observations in
the sample below (or above) a given value t, of the variate
(also called a truncation point) may be censored, and Type II
when the r, smallest (or T, greatest) observations out of a
sample of size n in the sample may be censored In Type I
censoring, the number of observations cansoréd is a random

variable and the variate value, to, below (or above) which the



cbservations are censored is fixed; whereas in Type 11

censoring, the number of observations censored is fixed and

the variate value of the largest (or smallest) censored
observation is a random variable. Estimation of the parameters
from censored samples has been considered by Gupta [32] y
Ipsen [%8] , Gohen Y§,9,12] , Hald [34,35,36] , Halperin [57(3),
37(b)] , Epstein [21] , Epstein and Sobel [237, Sarhan and

Greenberg |51,52] and many others.

It would not be out of way if some examples of

censored sampling are cited here. Some examples from f52]

are quoted here. In Experimental Biolegy, a known number of
individuals might be exposed to a stimulus and‘the responses
of some may fall qutside the limits. Thus, if n animals are
injected with the same dose of an antigen and bleod samples
from each animal are tested for antibody response after a
period of time, there may be only n-r, of the animals with
measurable amounts, as Ty of the animals develop the antibody
to a level (say some fixed level) which cannot be measured by
the prevailing technique. Thus, of the n items, the smallest
r4 observations are censored because of fixed bounds. The
individual values of the variate of n-r, largest observation
are available for statistical study such as estimation of the
parameters of the population. This sample is called a singly

censored sample from the left and is of Type I.
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One may have n items drawn at randem from a population
and to save time and expense, the experiment is discontinued
before all items have actually developed the phenomenon being
observed. Such a decision to cut off the experiment is made as
soon as the first n-r, experimental units have responded and
the censoring is based upon fixed preportion of the observa-
tions. For example a biologist may perform an experiment on n
animals to determine the effect of exposure to a drug by
noting reaction time. Some animals may require an extremely
long time to react. The experiment might be stopped when a
fixed percentage have reacted.Thus, one would have the exact
data on the smallest n-r, items. This sample is termed a
singly censored sample from the right and is of Type II.

This situation may occur in life testing, incubation period,

fatigue testing etc.

Purthermore, the above two situations may oeccur jointly
such that there are Ty smallest observations in a sample of n
items which are missing plus rs largest observations which are
censored. This is termed as a doubly censored sample. For
example, in certain studies of blood clotting, the speed of
the reaction is such that ry animals may respond almost
spontaneously beforg individual measurements can be taken on
them whereas some animals barely respond and may require a

long waiting period. In such a situation, censoring on the



left is by Type I whereas that on the right is by Type 1I.
The case where observations are missing from both extremes
is the most general one and the first two illustrations are

special instances of it.
i

Sarhan and Greemberg [51] and Davis [16 ] have stated
that‘the common situations of censored samples encountered in
practice are those which occur with samples drawn from either
an Exponential or a Normal population. Hence in our investiga—'
tion, we have studied only the two cases of Normal and
Exponential populations. But other populations can be studied

on the lines of this investigation.

7.3.2 Consider a doubly censored sample of size n with T,
smallest observations and T, largest observations ﬁissing,
and denote by y(i) the ith observation in ascending order of
magnitude i=r,+1,...,n-r,. Lloyd [41] has proposed best
linear unbiased estimates of the leocation parameter /u and
the scale parameters 6 based on ordered observations of
complete samples. 1t is well reproduced by him in Chapter 3
of [53] . Later Sarhen and Greemberg [51,52,53] and others
used this techmique of estimation for censored samples also.
These estimates are linear functions of the available ordered

observations y(i), nanmely,



= W.y
/ i=r,+1 17(1)
n-~r
2
A 1
f: Z wi y(l)
i=r1¥1

They have given tables forfwi andg W; when parent population

is Normal, Table 10.C.1 [53] and when it is Exponential [52] ,
etc., for reasonable values of n and for r1=0,1,...,n and
ré50,1,2,...,n. It may be noted that the sample ceases to be

a censored one for r1=r2=0.

T4 The Present Investigation @

T7«4.1 The purpose of the present investigation, the results

of which are incorporated in this chapter, is mainly to

compare the BExpected Value and the Quantile Methods of
Probability Plotting. In the first two sections of this
chapter, we have described these methods, with some comments
and additions of our own. Before we éo to the next section

on the objectives and the plan of the present invesfigation,

we would like to add a few more observations on the Probability

Plotting Methods and our present investigation into them.

T.4.2 Probability Plotting Methods are simple graphical
methods, which can be used quickly and by workers who may not

have knowledge of Statisticel Theory or Mathematics. It is true



that these methods provide only rough approximations or
tentative conclusions. But, in these days when statistical
methods are applied in many fields by an increasing number

of laymen in Statistics, such methods are in demend and are
useful. Tﬁey are useful even to statisticians, who may be
generally using accurate statistical methods, by providing

. them quickly with tentative or preliminary conclusions, which
often provide a basis for getting mere accurate results.

A guick test, whether a sample comes from a Normal or an
Exponentigl population has often 30 be made and hence the

two Probability Plotting Methods considered here are useful
in practical applications of Statistics. It is necessary that
such simple types of statistical tools be studied ana improved

upon by research workers.

T.4.3 It may be argued by some that these methods are only
rough methodé and they cannot be compared. Some may think
that both these methods'areequally good or equally bad.

This cannet be true. Both the methods may or may not be
equally efficient and an investigation can be undertaken to
compare them, of course on certain assumptions and under
certain conditions. A theoretical investigation is\difficult
and we have made this investigation in a practical way, by

using simulated sampling.



Te4.4 A fundamental difficulty in this comparison is that

the fitting of the straight line is supposed to be done by

eye and objective evaluation of merits and demerits of such a
procedure cannot be made. But, in Probability Plotting Methods,
the fitting of a straight line need not be continued to be done
by eye.Workers are now-a—days acquainted with more and more

of statistical methods and the ancillary mathematical computa-
tion and many of them know how to compute means, standard
deviations, correlation coefficients, fitting of straight

line in the simple case when the obsefvations are assumed to
be independent with egual variances, etc. The present ﬁethods
can be improved and if the points fall almest aloné a straight
line, the straight line can be fitted, instead of by eye,

by simple Least Squares Method, obtaining estimates of &
location and scale parameters more accurately. At least, for
comparison purposes, we may do the fitting by the simple

Least Squares Method. it is true that the expected values

or the quantiles are correlated and the simple Least Squares
Method is not adequate. It is poessible to evolve and use a
more exact method. In our present investigation by using
simulated sampling, the use of an elaborate method would have
invelved us into a heavy amount of computational work and we
have used only the simple Least Squares Method. It is generally
the experience of workers that the improvement made by using

Least Squares Method for the correlated case instead of the



gimple Least Squares Method is generally slight, e.g.
Hahn and Shapiro [33] and the use of simple Least Squares

in our investigation has, therefore, some support.

7.4.5 Even if we fit a straight line by simple Least Squares
Method, we have to alternatives; Minimising 2(y-§)2 in which
the sum of squares of vertical deviations is minimised, or ~
minimising Z(x#ﬁ)g in which the sum of sguares of horizontal
deviations is minimised. It is shown by Eisenhart [20] that
when x d&s the independent variable,we should minimisé‘j(y-&)z.
But is has been also shown by Krutchkoff {40} , that this

is not so in his problem. We therefore decided to fit the
straight line in both of these ways and see which way gives

better results in ocur problem.

7+4.6 An important feature of these two Probability Plotting
Methods is that they are applicable to censored samples.

In our investigatign, therefore, we have compared the results
given by these methods in the case of censored samples of

Type II from Normal as well as Exponential populations. These
methods are-applicable to other types of populations. But

we have limited our investigation to the Normal and Exponential

cases only.

T.4.7 We are here concerned with the comparison of the two

Probability Plotting Methods. Methods, which are better and



easier than Probability Plotting Methods are of course
available. For example, from the given set of ordered obser-
vations, it is possible to obtain best linear estimates for
location and scale parameters, using certain ready-made tables
of Sarhan and Greenberg, as cited in Section?.2. We shall
therefore compare estimates obtained by Probability Plotting

Methods with those obtained by Sarhan and Greenberg.

Te5 ‘ The Objectives and the Plan of the Present Investigation:
7«51 The objectives of the present investigationére :

{(a) To compare the results due to taking
(1) py=1/(n+1), (i1) py=(i~%)/n end (111)B;=(i-3/8)|(n+})
in the Quantile Method.
(b) To compare the Expected Value and the Quantile Methods
of Probability Plotting.
(c) To compare the results obtained by minimising
(i) I(y—§)2, the sum of squares of vertical deviations

and (ii) in-f?z, the sum of squares of horizontal

deviations.

7.5.2 The main points of the plan of the present investiga-

tion are given below:

(a) The investigation is confined to the Normal and
Exponential populations. In the case of Exponential, the
probability density function with only one parameter, namely,

the scale parameter, called of , is considered.



(v) For simulation, samples from three Normal and
fhree exponential populations are taken.These populationsé
are: Normal, N(8O,32), N(8O,62) and N(8O,82), Exponential,
E(& =50), E(a =125) and B( K=250). '

(e) 100 samples each of size 10 and 20 are drawn
from each of threse six populations. In the case of the Normal
population N(/u,6—2), the random normal variate x is given
by 6 R + /2 where R is a random normal devizte fromN(O,1)
which can be readily obtained from Table A:2 of Dixon and
Massey [JB] . In the case of the Exponential Population,
the random exponential variate x having p.d.f. fx; ol )= % e~KAf
is obtained by wsing the relation x= - «1log(R/10000) where

R is the usual random number with four digits. For this

purpose usual fables of random numbers are used.

(d) Complete samples as well as censored samples

of Type II, (as defined in Section 3 of this Chapter) are
drawn from these populations, Two sizes of the complete
samples namely 10 and 20 are considered.Censoring is done by

taking the first 60% of the ordered observations of the
complete samples. Thus, in the notations explained in
Section 3.1 of this Chapter we have the Qight censored
samples of Type II with

r1=0, r2=4, for n=10

and r1=0, r,=8, for n=20,

2



(e} As the samples are actually drawn from particular
populations, plotting on a graph paper (merely to verify
whether the points cluster along a straight line) is not done.
Location and secale parameﬁers are estimated not graphiecally,
but by the use of simple Least Squares Method, in the
following two ways:

(1) Minimising Y(y-7)° and taking the fitted straight
line as y=y + b (%) [obtaining Minimum Vertical Deviation
(MVD) Estimates | ¢

~ M
MVD Estimate of Scale parameter namely 6}(orcﬁ‘)

Ui

Slope of the fitted straight line

=D
X

- Wy-¥) (x-%) _ IXy = nXy e . (7.5)
T(x-%)° 3x° - n%°

A
MVD Estimate of location parameter namely /u1

It

Intercept on y axis by the fitted straight line

=§-~be}( o.o(7o6j

(ii) Minimising ¥ (x-%)° and taking the fitted

straight line as X=X + bxy(y—§) [pbtaining Minimum Horizontal

Deviation (MHD) Estimates | :

A A
MHD Estimate of scale parameter namely Gé (or cAQ}
= Reciprocal of the slope of the fitted straight line
=b-1

Xy

y=5)2 342 _ o2
= Wy-y)t . ZyC - ayt e (727D

Ux-%) (y-5) IXy - nxy



A
MHD Estimate of location parameter namely /u2

i

Intercept on y-axis by the fitted straight line

I
”‘y"bxyx .o'(7’8)

In the above expression x stands for X(i) in Method I and
for xpi in Metnod II whereas y stands for vy in both the
Methods.

(f) Prom each set of 100 samples, we caleculate the
estimates of location and scale parameters and calculate
further the mean and variance of these estimates, which we
shall call the simulated mean and%imnlated variance of the
particular parameter for the particular pepulation. In the
tables of our results, we shall give the simulated variances

and in bracket the simulated means.

(g) We first take up the scale parameter. For each
set of 100 samples from the three Normal and the three
Exponential populations, we have calculated the MVD and MHD
estimates for the scale parameter 6 (or ok ), using Method I
"which gives only one and Method II which gives {hree estimates
corresponding to the three values|of Py considered here,
considering each complete as well as censored sample. Thus
for a given complete as well as a censored sample, there are
eight estimates of the scale parameter. Purthermore, the

mean and variance of these estimates of scale parameters,



based on 100 estimates, have been calculated.Then fgr each

gset of 100 samples from a population, we have eight simulated
ﬁeans and eight simulated variances for the scale parameter.
Simulated means and variances for complete samples from Normal
and Exponential populations respectively for the secale
parameter are given in columms {4) through (11) of Tables 7.1
and 7.% (with means given in brackets).Similar quanfities for
the censored samples are given in columns (4) through (11)

of TablesT.2 and T.4.

For the location parameter, MVD and MHD estimates are
calculated only in the case of censored samples from the
Normal Population.Simulated means and variances for this
parameter (based on 100 estimates) are obtained and are given
in columns (4) through (11) of Table 7.5. It may be noted
that, as x's are expected values or quantiles in the standard
population and X=0 for a complete sample frém a standard
. Normal Population, all eight estimates of location parameter
will be identically equal to the sample mean, which is evident
from the expressions (7.6) and (7.8) given in (e) of this
Sectiﬁn. Hence simulated means and variances based on complete
samples for locafio%éarameter have not been calculated. In
the case of the Exponential pepulation, the problem of estima—
tion of location parameter does not arise, as we are consider-

ing this population only with one parameter, namely, the scale



parameter. Table 7.5 therefore is qnly for the location

parameter of the Normal population in censored samples.

(h) Variance of the best linear unbiased estimate for
scale parameter for both the types of populations, from
complete samples as well as censored samples are calculated
by uéing tables of Sarhan and Greenberg; Table 10.C.2 of [53]
in the case of Normal and Table II of Sarhan and Greenberg
[527] in the case of the Exponential, are used for this
purpose. However, in the case of the Exponential population
considered here, it may be noted, that this variance can be
readily obtained from d?/n in the case of complete samples
and d?/(n-rz) in the case of censored samples. This'simpli—
city is due to the fact that we are considering the exponen-
" tial population depending upon only one parameter namely the
scale parameter and right censoring of Type II. The above

variances are given in column (12) of Tables 7.1 through 7.4.

(i) Varience of the best linear ungiased estimates
of the location parameter of Normal Population hased on
censored sample also has been calculated by using Table
10.C.2 of Sarhan and Greenberg [53] . It is given in column
(12) of Table 7.5.

(j) The meximum likelihood estimate of the scale

parameter 6 of the Normal population and its variance are
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e
-8

given by
- ~_ . _ Z(X—i)z = sample standard deviation
6 =8 =]~
2 2
and v(s) = [?(n—1) ~ 2ncy ] 6
‘ 2n
2 n-2 yy
where . _ (ng)( 2 A
2 ( 11*3) N
'2' *

Since E(s) = 026”, s is a biased estimate of 6§ . We have
calculated V(s), V(s/cg) and E(s-672 = v(s) + (Bias)z.
These quantities are given respectively in columms (13),(14)

and (15) of Table 7.1.

(k) Asymptatic variances of the maximum likelihood
estimate of the scale and the location parameters of the
Normal population based on censored sample are calculated by
using the Table given by Gupta [3Z] and are given in Column
(13) of Tables7.2 and 7.5.These could have been also calcula-
ted from Cohen's right hand partégi'ble 3 0f [12] .

(1) In the case of the Exponential population under
study, best linear(unbiased estimate and maximum likelihood
estimate of the scale parameter are identical for boeth the
complete and censored samples. Hence no additional calcula-
tions are needed and columns (12) and (13) of Tables 7.3 and

T.4 are the same.



(m) Table of X(i) and Xpi are prepared for ready
reference for i=1,2,...,n, 0n=10(1)30, These tables are prepared
for both the Normal and the Exponential populations and are
given in the Appendix (Table A.1, Téble A.2). In the case of
the Normal popula%ion the values of X(i) are guoted from
Table 28 of Pearson and Hartley [49] and the values of xpi
are calculated by referring to Table 4 of Pearson and Hartley
149:} . It may, however, be noted that the values of X(i) for
n = 27 and 29 are not availaltle. In the case of the Exponential
population, the values of X(i) andtxpi are computed by using
(7.1) and (7.4).

(n) We may explain the details of calculation by an
example.Table 7.6 gives details of calculations for one
specimen of a complete sample with n=20 from the Normal
population N(80,82) and one specimen of the censored sample
for n=20, r1=0, ro= 8 from the Expenential population with
A =50.The observations are presented in ascending order.

Along with them are the columns of X(i) and Xpi obtained

from Taﬁﬁk A.1 and A.2, In the .case of censored sample from the
Exponential population we have to refer to Table A.2 for n=20
and pick out the values of X(i) and Xpi corresponding to the

ordered values available in.the sample (in this case, the

first 12 values).

We should mention here one practical point regarding

the calculation of X(i) and xp‘ for the case when a sample
i



contains two or more observations of equal value., To
illustrate this point, let us take the values of the samplé
from the Normal population rounded off to the nearest one
place of decimal. It is revealed from the column (3) of
this table that the values 67.2 and 91.5 are repeated twice.
The former corresponds to 3rd and 4th ordered observations
and the latter corresponds to 17th and 18th ordered observa-
tions. Then, for y=67.2 we proposed to take x equal te the
average of X(3) and'X(4). Referring to Table A.1 we find
that this average is -1.026. Similarly for y=91.5 we take
x=+1.026 averaging X(17) and X(18)' Thus the total number

of pairs (X(i)’ y(i)) to be plotted in this case would be

18 instead of 20.

Let us now consider the determination of xpi in the
case of ties. It may be observed, from the definition of xpi,
that By represents the probability that a random variable x
is less than or equal to xpi. We find in our sample that there
are 4 observations which are less than or equal to 67.2.
Therefore Py and then Xpi may be determined by substituting
i=4 in the expressions of Py and xpi. The values of xpi then,
for y(yy = 67.2, are -0.878, -0.935, -0.919 for pi=i/(n+1),
pi=(i-%)/n and piz(i— 3/8)/(n+%). Similarly for y(i)=91.5

the values of x_ are 1.067, 1.150, 1.126 obtained by substi-

P;

tuting i=19 in the corresponding expressions. Thus in this



case tod, there will be 18 pairs instead of 20 pairs for
further considerations such as pleotting on the graph,
calculation of byX etc. Under such circumstances E:X(i)
and ZX@ need not be zero and the estimate of location

i
parameter need not be equal to the sample mean, even if

the sample 1s complete.

Estimates of the scale parameter and location parameter
for the illustrative example are calculated and are given in
Table,?.?. Estimates of the scale parameter of the Exponential
population are also calculated from the example and are given

in the same table.

It may be noted that in our woerk, we have taken y's
correct to three places of decimals to avoid two or more y's
with equal value. Hence our sample sizes are always 20 or

10 in complete samples.

T.6 Discussion and Conclusions

T«6.1 MVD and MHD Estimates:

(a) Variance of the Scale Parameter: ILet us first

compare the MVD and the MHD estimates of the scale parameter
from the variaﬁce point of view. On comparing the entries of
simulated variancesg of the estimates of the scale parameters
given in columns (8), (9), (10) and (11) with the correspond-

ing entries given in columms (4), (5), (6) and (7), in
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Table 7.1 through 7.4, we find that, the simulated variance
of the MHD estimates of the scale parameter is always
greater than the corresponding simulated variance of the
MVD estimates of the scale perameter, in the cases of both
the Normal and the Exponential popﬁlations, in complete as
well as censored samples. We therefore conclude that the
MVD estimate of the scale parameter is better than the MHD
estimate of that parameter from the variance point of view,

in both Normal and Exponential pepulations.

(b) Bias of the scale parameter: (i) Let us now

compare the MVD and the MHD estimates of the scale parameter
from the #bias' point of view. On comparing the entries of the
'similated means of the estimates of the scale parameter given
in brackets in columns (8), (9), (10) and (11) with the
corresponding entries given in columms (4), (5), (6) and (7),
in Table 7.1 through 7.4, we find the same trend, which we
observed in variances and we find that, the simulated mean
of the MHD estimates of the scale parameter is always greater
than the corresponding simulated mean ef the MVD estimates

of the scale parameter. We find this trend not only in the
entries of the simulated means given in our Tables, but also
in the detailed individual estimates of the scale parameter
from which these simulated means are calculated, in the case
of each sample. Though this result is an interesting one, it

does not lead to any comclusion about bias.



(ii) On comparing the absolute values of the bias,
obtained from the simulated means, in Tables 7.1 and 7.2

for the Normal population, we find that, barring only one

exception in Table 7.1 for 6=8, n=20, the MVD estimate of
the scale parameter gives less bias than the MHD es%imate
of the scale parameter, in the cases of pi=(i—3/8)/(n+%),
pi=i/(n+1) and Method I; but for pi=(i—%)/n, the MVD estimate
of the scale parameter gives greater bias than the MHD esti-
mate of that parameter. In the Normal population, we further
find from Tables 7.1 and &.2 that the MHD estimates and the
MVD estimate in the case of pi=i/(ﬂ+1) generally over-
estimate the scale parameter, giving a positive bias, while
the MVD estimates for p,=(i-})/n, p,=(i-3/8)/(n+}) and
Method I under-estimate the scale parameter, giving a
negative bias, which is greater in the case of pi=(i-%)/n
than in the other two cases of pi(i—3/8)/(n+%) and Method I,

where the magnitudes of bias are small and nearly equal.

(iii) Referring to Tables7.3 and 7.4 for comparing

‘the bias in the MVD and MHD estimates of the scale parameter

of the;Exponential population, we find the same trends as
those found in the case of Normal population, but less
strongly and with several exceptions, with the notable
difference that the MVD estimate even for‘pi=(i—%)/n gives,

in general, less bias than the MHD estimate for the scale
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parameter of the exponential population In the Exponential
population, therefore, the MVD estimate of the scale para-

meter has generally less bias than the MHD estimate.

(¢) Location Parameter in Normal Population: Let us

now compare the MVD and the MHD estimates of the location
parameter for which purpose we have to compare the entries
given in columms (4), (5), (6), and (7) with those given

in columns (8), (9), (10) and k11) in Table 7.5 only. Among
the simulated variances of the location parameter in Type II
censored samples from Normal population, we find generally
the same trend: the simulated variance of the MVD estimates
is less than that of the MHD estimates, in four rows out of
the six rows in Table 7.5; but for, 6=6, n=20, r1=0, r,=8

and for 6=3%, n=10, r,=0, r,=4, the simulated variance of the
estimates of location parameter of the Normal population is
slightly less for the MHD estimates than for the MVD estimates.
If we comparevthe simulated means for bias, we find a similar

trend but with more exceptions.

(d) Conclusion: The results mentioned above suggest
that, in general, we may prefer MVD estimates to MHD estimates,
for the estimation of both the location and the scale
parameters of the Normal and the scale parameter of the
Exponential populations, in complete as well as censored

samples.



T7.6.2 Variance of Estimates in Quantile Methods ¢

(a) Referring to columns (4) through (7) of the
Table 7.1 through 7.5, we find that the simulated variance
given in column (4) in which we take pi=i/(n+1), is always
greater than the corresponding variance given in columms
(5) to (7), in which we use p;=(i~%)/n, Pi=(i-3/8)/(n+%)
and the Expected Value Method i.e. Methed I. Thus we find
that the Quantile Method i.e. Method II, with pi=i/(n+1)
gives less efficient estimates for both location and scale
parameters, in the cases of the Normal as well as the
Exponential populations, in complete as well as censored
samples. Hence, from variance point of view, the rule
pi=i/(n+1) has to be discarded in favour of one of the other

two rules for p; or Method I.

(b) Comparing column (5) with columns (4) and (6)
in all the Tables 7.1 and 7.5, to study the differences due
to taking pi=(i~%)/n and pi=(i—}/8)/(n+%), we find that the
simulated variance given in colum (5) is always less than
the simulated variance given in columns (4) and (6), except
in one case of censored sample in Table 7.5 for 6=3, n=20,
r,=0, r,=8, where the simulated variance under colum (5)
is 0.56327 which exceeds the simulated variance under

column (6) namely 0.56298 by a small quantity equal to 0.00029.
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{c) We may, therefore, conclude that, among the
three values of By considered here for calculatien of xpi,
pi=(i—%)/n leads to an estimate with the least variance for
" both the location and scale parameters in the Normalagopula-
tion and the scale parameter in the exponential‘population,

for complete as well a8 censored samples.

7.6.% Bias in the Estimates in Quantile Methods:

(a) Normal Population : On conmparing the simulated

means given in brackets in the column (5) with the corres-
ponding means in the columns (4) and (6) in Tablres 7.1, 7.2,
and 7.5 for the Normal population, we find that the bias in
the estimates of both the location and scele parameters
generally increases as we take p;=(i-3/8}/(n+}), p,=(i-%)/n
and pizi/(n+1), except in a few cases. In the exceptional
cases what we find is that the bias sometimes decreases as we
pass from pi=(i~%)/n to pi=i/(n+1). But the property that

the bias increases as we pass from pi=(i—3/8)/(n+%) to
pi=(i-%&/n holds good for all the entries under consideration
in the tablesT7.1, 7.2 and 7.5. In the exceptional cases, the
bias in teking pizi/(n+1) is never found less than that feund
in taking pi=(i~3/8)/(n+%). Hence we may conclude that, for
Normal population p;=(i-3/8)/(n+i) gives estimates with the
least bias, while pZﬁi—%)/n gives estimates with greater bias

than those given by pi=(i—3/8)/(n+%) (but as seen above in

=



Section 6.2 of this Chapter with the least variance) both

for scale and location parameters.

Blom [37] had observed this for the scale parameter of
Normal population. We confirm Blom and further find the
result to be true for the location parameter of the Normal

population also.

We find that taking pi:i/(n+1) is to be discarded,
in favour of one of the other two values of Pys from bias
as well as variance points of view, for the estimation of

any parameter of Normal population.

(b} Exponential Population : On comparing the

entries of simulated means given in brackets in the columms
(5) with those in columns (4) and (6) in Table 7.3 and 7.4,
for the scale parameter of the Bxponential Population, we
find that, for complete samples, pi=i/(n+1) gives estimates
for scaleparameter with greater bias than those given by
the other values of p;, but pim(i-%)/n generally gives the
egtimate for scale parameter of the Exponential population
with less bias than that given by pi=(i~3/8)/(n+%), except
for & =125, n=10. Hence from both bias and variance points
of view, for complete samples from the Exponential popula-
tion, piz(i—%)/n appears to give the best estimate of the

scale parameter. For censored samples, this trend cannot be
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confirmed by our results as far as bias is concerned, but
from variance point of view, pi=(i~%)/n has been already
found to be preferable. Hence, for the estimation of the
scale parameter of the Exponential population by Quantile
Methods, we may generally prefer pi=(i-%)/n to the other

two values of pi.

7.6.4 Methods I and ITI :

(a) In the case of the Normal Population, Method I

and Method II with pi=(i~3/8)/(n+%) give very similar
results, which can be seen very clearly in the entries in
colums (6) and (7) of Tables7.1, 7.2, and 7.5.Thus Method
‘II with pi:(i—B/B)/(n+%) gives estimates for location and
scale parameters of Normal population which are equally good
as those given by Method I, from the points of view of bias

as well as variance, for complete as well as censored samples.

(b) In the case of comparison of Methods I and IT,

the conclusions for the Exponential population are not the

same a8 those for the Normal pepulation. Comparing the simu-
lated variance for the estimates of the scale parameter of
the Exponential population given in columms (6) ana (7

of Table 7.4, we find that, for censored sample, Method I

is better than Method II with p,;=(i-3/8)/(n+) and further

comparing columns (5) and (7) of this table we fimd that



Method I and Method II with pi=(i—%)/n are equally efficient
from both bias and variance points of view. We may conclude
that for the Exponential population the rule pi=(i—%)/n
generally gives as good results as those given by the

Expected Value NMethod.

T.6,5 Summary of the Conclusions :

(a) MVD and MHD Estimates : We may prefer in

general MVD estimates to MHD estimates for both the loca~
tion and scale parameters of the Normal population and the
scale parameter of the Exponential population fer both

complete as well as censored samples.

(b) Quantile Methods; Normal Population :

(1) Among the three values of p; considered here
for the Quantile Method, pi=i/(n+1) should be discarded for
the estimation of both the location and sdale parameters
of the Normal population for both complete as well as ceunso-

red samples, from both blas and variance points of view.

(1i) p;=(i~3/8)/(n+}) gives estimates for both the
‘location and scale parameters of the Normal population
foﬁboth complete as well as censored samples with the least
bias; but pi=(i—%)/n gives these estimates with the least

variance.



(¢) Quantile Methods: Expenential Population :

(1) Among the three values of P, pi=i/(n+1) should
be discarded for the scale parameter of the Exponential

Population in complete as well as censored samples.

(ii) p;= (i-%)/n gives better estimates for the scale
parameter of the Exponential population in complete samples,
than those given by the other two values of Dy from both
the points of view of bias and variance. For censored
samples, in the Exponential population, pi=(i-%)/n is
preferable, at least from variance point of‘view.\Generally,
for the estimation of the scale parameter of the Exponential

population by Quentile Methods, we may use p;=(i-%)/n.

(d) Comparison of the two Methods @

(1) For both the location and scale parameters of

the Normal population, in complete as well as ceunsored

samples, the Expected Value Method gives as good results as
the Quantile Method with‘pi=(i~3/8)/(n+%).

(ii) For the scale parameter of the Exponential

population, the Quantile Method with pi=(i—%)/n generally
gives results, which are equally good as those given by the

Expected Value Method.



Te7 A REMARK =

Comparing columms (12), (13), (14) and (15) of Table
7.1 an interesting property of the usual sample standard
deviation, s, as an estimate of the scale parameter of the
Normal population is observéd. We note that these entries |
are not based on simulation, their basis being already
described in Sectionb5.2 of this Chapter. Now we find that
V(s) is less than the variance of the best linear estimate
for all values of n and 6 considered here. Furthermore,
neither V(s/cz) nor E(s~632 exceeds the variance of the best
linear estimate. Thus, this usual estimate is better than
the best linear te%@mate for estimating the scale parameter
of the Normal population based on complete sample. Here, s
is a nonlinear estimate. By an example, Godambe and Joshi
[29] have shown that the general feeling that corresponding
to every nonlinear estimate there exists a linear estimate
having a smaller variance %han the nonlinear estimate is
wrong. Here, perhaps is another example, supporting the-

statement of Godambe and Joshi [29] .

7.8 An Application t0 a Geological Problem:

Situations arise in practice where Method II may be
found more suitable. Geologists are often interested in deter-
mining the distribution of size of sediments. An outline of

data sheet for size analysis by sieving is of the following type:



Material held on Raw Percent Correlated Cumulative
Mesh Mm 44 weight aggregate weight weight in
percent

(1) (2) _(3) _{4) (o) (6) {(7)

The pattern of cumulative weight given in columm (7)
changes as the material to be sieved changes.The usual prac-
tice is to plot ﬁ ( which is log mesh-sizeland the percent
cumulative weight on Normal probability paper with £ on
arithmatic scale and the percent cumulative weight on
probability scale. If the points lie close to a straight line
further statistical constants such as quartile, mean ete. are
obtained from this graph. The above data sheet, the descri-
ption of the expériment and the determination of statistical

constants are given by Robert L. Folk [26] .

In statistical language what follows from the above
experiment is that, @ nas a normal distribution. Further-
more, what is directly observed is the cumulative probability.
In the notations used here, column (7) of the above data sheet
gives p;. The experimenter observes p, and plots (ﬁi, pi)
with f, on arithmatic scale and p; on the probability scale
of the special normal probability paeper. If now one wants to

use ordinary paper, one has only to determine X, such that
i



: S dx = P;s the observed propor-—
_Jen tional cumulative
e weight.

As explained earlier xp can readily be read from Table 4

i
of Pearson and Hartley [49] . Hence if we plot (xp ,ﬁi)
i
with xp along x~axis and ﬁi along y-axis, this graph too
i .
will help in determining whether the pattern of variation

is normel and the uwsual statistical coustants.
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