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CHAPTER - TI

ESTIMATION OF THE FRACTION DEFECTIVE IN

CURTAILED SAMPLING PLANS BY THE METHCD OF MOMENTS

3

2.1 In this Chapter we introduce Curtailed Sampling Plans,
giving the scope for curtailment of inspection, the statements
of the plans. considered, the definition of réndom variables
associated with these plans,etc. Two situations associated
with reporting of the inspection results are described and

the estimates of the fraction defective by the method of

moments are obtained under the two Situations in these Elans.

2.2 The usual single sampling plan by attributes is
defined by three numbers (i) the lot size N, (ii) the sample
size n, (iii) the acceptance number ¢ and the decision

rule — accept the lot if the number of defectives in the
sample is equal to or less than the aceceptance number ¢,
otherwise reject it. In this plan the number‘of articles to
be inspected, for deciding whether a lot is %o be accepted
or rejected, is fixed. One may however know, at a certain
inspection stage, before all the units of the sample are
inspected, whether a 1ot is going to be rejectéd or adcepted.

This may happen at the end of a certain number of inspections,



which is less than the fixed size of the sample, irrespective
of the result of inspection of the remaining units, and we
may curtail the inspection earlier. The curtailing can be
done at the rejection stage or at the acceptance stage. Let
us consider a case~of curtailing at the rejection stage for
n=30, c=4. Suppose the fifth defective appears at the tenth
inspection, where the articles are inspected one by one. Then,
irrespective of the results thereafter, it is certain that
the 1ot is to be rejected and we can curtail inspection at
this stage. As our second example, we consider the case of
curtailing at the acceptance stage for the same values of n
and c as above._Suppoée there is no defective articie found
among the first twentysix articles inspected. Then oﬁe can
decide to accept the lot without inspecting the remaining

articles and we can curtail inspection at this stage.

The use of curtailed sampling is not always desirable.
In the case of 100% inspection of the rejected lots, the
question of curtailing at the rejection stage does not arise.
It may be desirable to use curtailed sampling when it is
necessary to know only whether a lot is to be accepted or

rejected or when the inspection is destructive or expensive.

Thus, we can have curtailment in the inspection at the
rejectlon stage or at both the rejection and acceptance stages.

The former situation is accounted in Plan 2 and the latter in
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Plan 3, The usual Singie Sampling Plan is defined as Plan 1.
We summarize all the above information in the following

statements of the plans.

2.2.1 Plan 1 : Inspect a random sample of n units from
the lot. Accept the lot if there are fewer than k defectives.

Reject the lot if there are k or more defectives.

Plan 2: Inspect randomly selected units of the lot
one at a time until either k defectives have been observed
or until n units have been inspected. Reject the lot if k
defectives are observed. Accept the lot if n units are
inspected, provided that the number of defectives observed

in them is less than k.

Plan 3: Inspect randomly selected units of the
lot one at a time until either k defectives have been obser-
ved or n~k+1 nondefectives have been observed. Accept the -
lot if there are n-k+1 nondefectives. Reject the lot if

there are k defectives.

In all these plans k-and n are predetermined numbers.
In general, k will be much less than n. k¥ is known as the
rejection number and isxrelated to the acceptance number ¢
by the relation c¢~=k~1. The minimum value of k¥ is 1 in Plans

1 and 2, and 2 in Plan 3. Plam 3 reduces to Plan 2 for k=1.



Patil [ 48 7] has shown that the determination of k
and n will be the same for all the three plans, for given
producer's and consumer's risks, since the prebability of

acceptance of a lot is the same for all the three plans.

2.3 We define the discrete random variables x,y,z, and i
in the following way:
x = number of defectives in an inspected articles.

y = number of articles inspected when the kth defec—
tive is found.

z = number of articles inspected when the (n-k+1)th
nondefective is found.

i = number of defectives found when sampling is
curtailed by the finding of the (n-k+1)th non-
defective.

We note that i=g—-(n-k+1) eeef2.1)

Further, we define a discrete random variable s which
takes fhe values 0,1,..,k=1 when a lot is accepted and the
values k,k+1,...,n when a lot is rejected. In Plan 1, s is
associated only with x. In Plan 2, s 1s associated with x
for s=0,1,...,k-1 and is associated with y for s=k, k+1,...,ﬁ.
In Plan 3, s is associated with i for s=0,1,...,k-1 and is

associated with y for s=k, k+1,...,n.

We have assumed that the frazetion defective (p)
remains constant over the entire production run.Further,

we have assumed that the lot size is large (preferably N > 10m)



implying that the probability of any inspected article of
the lot to be defective is p. This applies to the Type B

situation of Dodge and Romig [19(b)] .

Then the probability distributions of the random

variable s in the respective plans are as follows:

Plan 1:
( i ) p¥ " X, 5=x=0, 1, +.,k=1
) f1(8)= ) --0(2.2)
(%) 0" 7%, s=x=lk,k+1,..yn.
Plan 2:
( ?C ) px q,n-xy S=X=O’1).,k-1
f2(5)= ‘ e (2.3)
g -k y-k S
(\.y”:]‘,) p Q . S—-y—k,k+1,'o,n-
Plan 32
( n—k+1 ) g n-k+1 pl’ 5=1=0,1, v Jk=1
f3(s)= ) N -.0(2.4)

1 -
(777 ot oI E, =y=k,k+1,..,n ,
where q=1-p and O £ p £ 1.

The first part of each of the fj(s) for j=1,2,3,
represents the situation associated with the acceptance of a

lot and the second part represents the situation associated
. k-1
with the rejection of a lot. Thus >_ f (s) for j=1,2,3
=0

gives the probability of acceptance of a lot and TZ; f (s)
s=k
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for j=1,2,3 gives the probability of rejection of a lot.,
Furthermore, since a lot will either be accepted or rejected

it follows that

k-1 n
S- f.(s)+ S f.(s) =1, §=1,2,3 e (2.5)
8=0Q J s=k 9

Then (2.5) satisfies the necessary condition for fj(s) to be
a probability function. Alternatively, {(2.5) is evident for
j=1, since it represents the sum of a binomial probability
function and for j=2,3, eguation (2.5) isﬁrue due to the
following identity between the binomial and inverse (negative)
binemial distributions.

n n - =
Z (TR 2 7=l gy E cee(2.6)
x= y= .

This equality was proved by Patil [ 47 7] and Morris L4471 .

2.4 We now consider the Situations A and B connected with

the mode of reporting of the results of sampling inspection.

2.4,1 Situation A: This Situation takes into consideration

the complete information of the results of sampling inspection
that one would have on hand legitimately. In Plan 1, the
complete information of the inspection is the number of defec-
tives in n inspected articles irrespective of the fact whether
a lot is accepted or rejected. In Plan 2, it is (i) thé

number of defectives in n inspected articles when a lot is



accepted and (ii) the number of articles inspected when the
inspection is curtailed by finding the kth defective. In

Plan 3, it is (i) the number of defectives found when the
inspection is curtailed by finding the (n-k+1)th nondefective,
and (ii) the number of articles inspected when the inspection
is curtailed by finding the kth defective. A lot is accepted

if (i) happens and is rejected when (11) happens.

2ede2 Situation B: This Situation takes place when censored

information of Type I is reported. Four cases arising from
four different modes of reporting the results of sampling
inspection associated with only curtailed sampling plans are

considered:

Case I: The inspector acting under Plan 2 reports
whether a lot is accepted or rejected as also the number of

defectives observed.

" Case II: The inspector acting under Plan 2 reports
whether a lot is accepted or rejected as also the number of

articles inspected.

Case 1II: This case is similar to Case I'except that

the inspection is carried out according to Plan 3.

Case TVs The inspector acting under Plan 3 reports
whether a lot is accepted or rejected as also the number of

nondefectives observed.



Although Cases I and III look similar, the maximum
likelihood estimates of the fraction defective are not
similar, as will be seen later in Chapter III. On the other
hand, Cases II and IV yield similar maximum likelihoed
estimates, although there is no apparent similarity. In
the method of moments, the estimates of fraction defectiye

are different for all the Cases.

2.5 We shall now consider the probability functions of the
reported observational character in both the Situations A and

B.

2.5.1 Probability functiens under Situation & are the same

as those given earlier, namely, (2.2), (2.3), and (2.4).

2.5.2 In Situation B, the observationsl character reported
in each case is conveniently represented by a discrete randem

variable as follows:

£t = number of defectives observed in the sample when
inspection is carried out according to Plan 2,

u = number of articles inspected when inspectionlis
carried out according to Plan 2,

v = number of defectives observed in the sample when
inspection is carried out accoerding to Plan 3.

w = number of nondefectives obgerved in the sample when
inspection is carried out according to Plan 3.

t,u,v, and w appear respectively in Cases I, II, IIT and IV.



Recalling the physical meaning of k and n, the predetermined
constants of the sampling plans, we determine for the Situe~
tion B the various values attained by t,u,v, and w. 1 assumes
the values 0,1,..,k~1 when a lot is accepted and k when a lot
is rejected. u assumes the value n when a lot is accepted\
and the values k, k+1, ...,n when a lot is rejected. v assumes
the values 0,1,2,.¢,k-1 when a lot is accepted and k when a
lot is rejected. w attains the value n-~k+1 when a lot is
accepted and the vealues 0,1,¢..,0~k when a lot is rejected.

The probability functions of t,u,v, and w are as follows:

Case I
t -t
( I.tl )p q.n . t=0,1’ Otjk""}
g (‘t): < ...(2.7)
1 < y-1 y k vk *
Zk ( __1 )p q. ] tzk
y:
Case 1T = ,
kT n , x n-x
Z ( X )P q ’ =X
g2(u)= X:O ... (2.8)
( ﬁ:} ) o o%7E, u=k,k+1, .. 0.
Case T11:
(B gl o v=0,1, v 0 k=1
gj(v)= " 1 . «..(2.9)
(I E d"E, =

y=k



Case IV =
k=1 :
STOCMEL ST B, weneien
i=0 \
g4(W)= -..(2010)
Mo pe" w=0,1, .. 0k

The first part of each of the probability functions
represents the situation associated with the acceptance of a
lot and the second part represents the situation asseciated
with the rejection of a lot. This may clarify the ambiguity
regarding the repetition of u=n in gz(u)- One assigns the
probability given by the first part of gz(u) when it is
reported that u=n and the lot is accepted under Plan 2.
Furthermore, one assigns the probability given by the second
part of gz(u) when it is reported that u=n and the lot is

rejected under Plan 2.

2.6 In both the Situations, Situations A and B, our
estimation process is based on the inspection of several letis
(any number of lots will do). We assume that T lots have
undergone the inspection under one of the plans and the
information of the inspection supplied belongs to either
Situation A or B. Each accepted or rejected lot will give one
observation associated with x, y, or i in Situation A and
with t,u,v or w in Situation B. In Situation A under Plan 3,
the inspector may record either i1 or gz, since thése guantities

are related by linear expression (2.1).
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2.6.17 In Situation A, let the observed frequencies associated

with x,y,2z or i be as follows:

a, . = number of accepted lots under Plan j in which
»d the number of defectives in the sample was
x(j=1,2).
T = number of rejected lots under Plan 1 in which
’ the number of defectives in the sample was x.
r. . = number of rejected lots under Flan j in which
I9d the number of articles in the sanmple was
y(j=2’3)' H
aé 3 = mumber of accepted lots under Flan 3 in which.
14

the number of articles in the sample was z.
a. = pumber of accepted lots under Plan % in which
the number of defectives in the sample was i.
Then the total number of accepted lots, Ta j(j=1’2’3)’
b
and the total number of rejected lots T j(j=1,2,3) will be
14

in the respective plans

Plan 1 k-1 4 n
Ta,1 = 2 2g.1 Ty, 1 2_ Tx,1
x=0 X=k
Plan 2 k=1 n
Ta,2 = TZ: ax,2 Tr,Z - EZ; ry,2
x=0 y=k
Plan 3 k-1
:Z: a; = when the random variable
o0 '° 1 is recorded -
i= T, =Y T
Ta, 3= T3 y&x 3
b
‘j%: 5 when the random variable
g=n—k+] 222 % is recorded.

Note that T = Ta,§ + Tr,j for j=1,2,3%.



Further, in the notation of the classical theory of estimation
based on fixed sample sizes, we have T observations on the
random variable s from one of the populations fj(s) (3=1,23).
For example, in Plan 2 s takes the value x ax,ztimes and

it takes the value y r_,times, making a total ef T s's.

¥,2

2.,6.2 In Situation B, let the observed frequencies associa-

ted with t,u,v and w, variables be as follows:

i

a, 5 = number of accepted lots under Plan 2 where
’ the number of defectives in the sample is
t(4=0,1, 404,k=1),
T .0~ number of rejected lots under Plan 2 where
14

the number of articles inspected in the
sample is u(u=k,k+1,..,n),

a = pumber of accepted lots under Plan 3 where
the number of defectives in the sample is
V(V"*"O,'],o.-,k;‘]),

r = number of rejected lots under Plan % where
the number of nondefectives in the sample is
W(W‘—“O,'l,..)n-—k).

Furthermore, out of the T loits, Ta 3 and Tr . the number of
4 ?

accepted and rejected lots under Plan j (j=2,3,) have the

following relations;

k-1 ;
T= Ta,2+ Tr,z = ji: at’g + Tr,z ’ for Case Iz
=0
n
T= Ta,2+ Tr,z = Ta,2+ 2 ru,g, for Case II:
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k-1
P o= Ta,3+ Tr,3 = ;Eg av,3+ Tr,B ’ for Case 1113
n~k c
= = + . .
and T Ta,3+ Tr,} Ta,3 TZ% rw’3 , for Lase IV
W=

It may be then noted that the observed frequencies for
t=k, v=k, and w=n-k+1 are respectively Tr,2’ Tr,} and Ta,3

and for u=n under the acceptance of a lot, Ta 2:
b4

2.7 Estimation by Method of Moments:

2.7.1 Situation A: The first moment of the random variable

s in each of the plans is as follows:

Plan 1:
. k-1 n
2; s f1(s) + 5 s £,(s)
g8=0 s=k
k-1 n
' n ,\_x n-x n y. X n-x
2o x (D)™ T ox (2 ¥ g
x=0 x _x:k x

i

E(s)

it

=np eeo(2.11)
Plan 23

k-1 n
S s fz(s)-+ jz s f2(s)
s=0 s=k

!

E(s)

k-1 n |
_ n X n-x y=-1 k y-k
= 3 x{( e T+ Ty (3, )ra
x=0 y=

np B (p,n~1, k-2)+(k/p) [1-B(p,n+1,k)] ...(2.12)



Plan 3:

E(s) = 2_ s £,(s) + TZL s £,(s)
g=0 s=k
k-1 ’ . n
- - k y-k
- :ET i ( n k+1 )Qn e+ pl 5y ( )p y-
izO | y:k

(n-k+1) B(p,n+l,k-1)/q
+(x/p) [1-B(p,n+1,k) ] - (n-k+1)B(p,n,k-1)

i

=J4/p - (n-%k+1) B{p,n,k-1) . ee.(2.13)
where I, = (n-k+1)(p/qa) B(p,n+1,k-1)
+ k [1-B(p,n+1,k)] eeo(2.14)
and B(p,n,k)= %%: (% o )p%t* e..(2.15)
x=0

Furthermore, recalling the definitions of the observed

a, and r associated
i,3 ¥,3

with the random variables x,y, and i, the observed arith-

frequencies a r a X .
4 ¢ 391’ X’1’ X,Q’ “'3“2 !

metic mean () based on T ebservations in the respective

plans is as follows:

Plan 1:
T k~1 n , )
s = jzf xa, 4+ ;Zi er,1i] /T | ...(2.16
Plan 2:
k-1 n (
s ’-JL X&X’z + z yI‘y,z——[ /T s s 2.17)



Plan 3: k-1 n :
,—S i S L ) 2018
° L:‘Zg Yei,5 7 2.,: yry,B] /T ( )

Then equating the r.h.s. of equations (2.16), (2.17),
and (2.18) respectively to r.h.s of equations (2.11),(2.12),
and (2.13) we have the following equations to estimate the

fraction defective (p) :

Plan 1
k——:l n / ( \
p=L2 x4+ % xrx,1] /nt ...(2.19)
x=0 x=K .
Plan 2:
2 [1-B( J
p = BP TB(p,n-1,k-2) + kT [1-B(p,n+1,k el (2.20)
k-1 n
Xa + r
;_{% X, 2 %k Iy, 2
Plan 3:
T, - Tp(n-x+1) B{p,n,k=-1)
P = g = » eon(2021)
ia, + r
i?:—o i,3 yzk v Vs3

It is revealed from equations (2.20) and (2.21) that one
needs iteration to estimate p by the method of moments under
Curtailed Sampling Plans. It is stated in section 2.6 that
one can have choice of reporting either i or z when a lot

is accepted under Flan 3. It is then revealed from {2.21)
that this equation is to be used when i is reported. We give

now the estimating equation in case z is reported. In this



case the probability function will be of the following form:

z=1 n~k+1
£ () ( n—k) z—(n—k+1)’ s=z=n-k+1,n-k+2, ..;0
4 -
( iji} )pqu_k’ S’-"-y:k,k+1,...,n 'o.(2022)

The probability function of s is given by the first
part of f4(s) when it is known that the lot is accepted and
is given by the second part when it is known that the lot is
rejected. This removes the ambiguity regarding the overlapping
of the ranges of s. Overcoming of similar ambiguity in gg(u)
was discussed in section 2.5.2. Thus in this case the first

moment of s is

n n
B(s)= Y 2 ( 2-; ) n—k+1pz (n k+1)+ Sy ( ) k y—k
z=n-k+1 y=k

=(n-k+1)B(p,a+1,k-1)/q + (k/p) [1-B(p,n+1,k)]
=J4/p Icoo(2023)

Further the observed arithmetic mean of s in this case is

n
S~ za ,3* Ei yry ,
5 = _2=n-k+l y=k eo (2.24)

T
Therefore equating the r.h.s. of (2.23) and (2.24) we get

the following estimating equation:

n
=g /[ za_ .+ 3 yr ...(2.25)
z;zzk+1 Z,3 y=k y,3i] :

#,
It may be noted that (2.21) and (2.25) are not basically sSame.



Significance of this observation will be evident from the
fact that the estimating equations by the method of maximum
likelihood under such circumstances are similar, as shown

in Chapter III.

2+.7.2 Situation B :

Recalling the definitions of the random variables
t,u,v, and w and their respective probability functions
841 8o g3 and g4, we get the first moment of these random

variables as follows:

Case I
- k
E(t) = 2 t g1(t)
£=0
k-1 n
= 2 s (P ™ ek T (y-1 vk
m == k-1 'P 4
+=0 J
=np B(p,n-1,k-2) + k [1-B(p,n,k-1}] ee.(2.26)
Case 11:
n 9
B{u) = S u g2(u)
u=k

k-1 n .
n L (2 a7+ 5w u=t iUk
X=O . nu=k k-1

= n B(p,n,k-1) + (k/p) [1-B(p,n+1,k)] e.o(2.27)



Case 111 : . )
B(v) = 3 vg3(v)
=)
k-1 n k+v n-k+1 y -1y, k y—k
= 3 v ( )a p'+ k L( )P
=() y—-—k
=(n~k+1) B(P,ﬁf1,k-1)/q - {(n-k+1) B (f,n,k-1)
+ k [1-B(p,n,k~1}] ... (2.28)
Case IV:
’ n-k
E(w) = (a-k+1) g, (n-kr1) + 3 we, (w)
w=0
= (n-—k+1) Z ( n—k+l ) n-k+1 pl

n-k
= k
£y w CRET e "
w=0

=(n-1+1)B(p,n,k-1) + (k/p) [1-B{p,n+1,k)]

-x [1-B(p,n,k-1)] ...(2.29)

Furthermore, recalling the definitions of the observed

frequencies at,z’ Tr,2’ r T T

u, 2’ “a,2’ av,3’ r,3’ rw,S‘and

Ta 3 assoclated with the random variables t,u,v and w, the
?
observed arithmatic means %,U,v and W based on T observations

in the respective cases are as follows:



Cagse T = ] .
. _ k"' . ‘
t=[ 2 tey v kT, L ]/T ...(2.30)
£=0
Case 11: n )
u =B@a’2+ 2i1uh’é]/m .. (2.31)
u:
Case IIT:
_ k-1 \
v =[ Zb va, 3 + kTr,B’j /T v (2.32)
v:
Case IV:
n-k
w= [(n-krt) T, 50+ 55% wro 5]/t ... (2.33)

Then equating the r.h.s. of equations (2.3%0), (2.31), (2.32)
and (2.3%) respectively to the r.h.s. of equations (2.26),

(2.27),(2.28) and (2.29) we have the following estimating

equationss

Case T :

k-1 _
Z ey {xr, o= kT [1-B(p,n,k-1)]] ,
= e (2.34)

P
n 7T B{p,n-1,k-2)

" Gase IT :

p= KI L1-B(p,n+1,k)]

e (2.35)

n
Eiuru’2 +{nTa’2 - nT - B(p,n,k~1)}
=



Case IIT

q= (n-k+1) T B(p,n+l,k-1)
k=1
S vav’3+(n~k+1)TB(p,n,k~1)+ {kmr’a—km [1-B(p,n,k—1)]}
e e..(2.%6)

Case IV =
kT L1-B{p,n+1,k)]
n-k
> wr_ +kT [ 1-B{p,n,k~1)] +{(n—k+1)T —(n-k+1)TB(p,n,k-1)}
w=0 W, 3 a,3
oo.(2037)

In Case III it is convenient to estimate q rather than p

p:

and then to estimate p by the relation p=1-q¢.

Since we have

E (Tr,g) = T [1-B(p,n,k-1)] vee(2.38)
E(r, ,) =1 B(p,n,k-1), --(2.39)
E(Tr,3) =7 [1-B(p,n,k-1)] , e..(2.40)

and  E(T_, .) = T B(p,n,k-1), eo(2.41)

We have the following approximations:

T, o *2[-B(p,n,k-1)}, .e(2.42)

Ta, 2 = 1T B(p,n,k-1), ...(2.43)

Tr’3 = ¢ [1-B(p,n,k=-1)] , ceo(2.44)
and T = 1 B(p,n,k-1). e..(2.45) .



Then using the above approximations (2.42), (2.43),
(2.44), and (2.45) the estimating equations (2.34), (2.35),

(2.36) and (2.37) may be approximated as follows:

Case 1 :
b
ta
_‘2: ’t.’:@ .t,2 o-~(2'4’6)
P = A7 B(p,n-1,k-2)
Case IT:
p o kI E;—B(p,nﬂ,kﬂ eo.(2.47)
Zk uru,Z
Case I1T:
> va + (n~k+1)T B(Pynsk"1)
v=0 V27
Case IV:
. kT [1—B(p’n+1’k)_] 00'(2'4‘9)
b= n-k

T wry, 5+ K [1-B(p,n,k~1)]
w::



