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CHAPTER - II

ESTIMATION OP THE REACTION DEFECTIVE IN 
CURTAILED SAMPLING PLANS BY THE METHOD OP MOMENTS

2.1 In this Chapter we introduce Curtailed Sampling Plans, 
giving the scope for curtailment of inspection, the statements 
of the plans, considered, the definition of random variables 
associated with these plans,etc. Two situations associated 
with reporting of the inspection results are described and 
the estimates of the fraction defective by the method of 
moments are obtained under the two Situations in these Plans.

2.2 The usual single sampling plan by attributes is 
defined by three numbers (i) the lot size N, (ii) the sample 
size n, (iii) the acceptance number c and the decision
rule - accept the lot if the number of defectives in the 
sample is equal to or less than the acceptance number c, 
otherwise reject it. In this plan the number of articles to 
be inspected, for deciding whether a lot is to be accepted 
or rejected, is fixed. One may however know, at a certain 
inspection stage, before all the units of the sample are 
inspected, whether a lot is going to be rejected or accepted. 
This may happen at the end of a certain number of inspections,
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which is less than the fixed, size of the sample, irrespective 

of the result of inspection of the remaining units, and we 

may curtail the inspection earlier. The curtailing can he 

done at the rejection stage or at the acceptance stage, let 

us consider a case of curtailing at the rejection stage for 

n=30, c=4. Suppose the fifth defective appears at the tenth 

inspection, where the articles are inspected one hy one. Then, 

irrespective of the results thereafter, it is certain that 

the lot is to he rejected and we can curtail inspection at 

this stage. As our second example, we consider the case of 

curtailing at the acceptance stage for the same values of n 

and c as above. .Suppose there is no defective article found 

among the first twentysix articles inspected. Then one can 

decide to accept the lot without inspecting the remaining 

articles and we can curtail inspection at this stage.

The use of curtailed sampling is not always-desirable. 

In the case of 100$ inspection of the rejected lots, the 

question of curtailing at the rejection stage does not arise.

It may he desirable to use curtailed sampling when it is 

necessary to know only whether a lot is to he accepted or 

rejected or when the inspection is destructive or expensive.

Thus, we can have curtailment in the inspection at the 

rejection stage or at both the rejection and acceptance stages. 

The former situation is accounted in'Han 2 and the latter in
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Plan 5. ^he usual Single Sampling Plan is defined as Plan 1. 
We summarize all the above information in the following 
statements of the plans.

2.2.1 Plan 1 : Inspect a random sample of n units from
the lot. Accept the lot if there are fewer than k defectives. 
Reject the lot if there are k or more defectives.

Plan 2: Inspect randomly selected units of the lot
one at a time until either k defectives have been observed 
or until n units have been inspected. Reject the lot if k 
defectives are observed. Accept the lot if n units are 
inspected, provided that the number of defectives observed 
in them is less than k.

Plan 3; Inspect randomly selected units of the 
lot one at a time until either k defectives have been obser
ved or n-k+1 nondefectives have been observed. Accept the - 
lot if there are n-k+1 nondefectives. Reject the lot if 
there are k defectives.

In all these plans k-and n are predetermined numbers. 
In general, k will be much less than n. k is known as the 
rejection number and is related to the acceptance number c 
by the relation e=k-1« She minimum value of k is 1 in Plans 
1 and 2, and 2 in Plan 3» Plan 3 reduces to Han 2 for k=1.
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Patil £48 3 has shorn that the determination of k 

and n will he the same for all the three plans, for given 

producer's and consumer's risks, since the probability of 

acceptance of a lot is the same for all the three plans.

2.3 We define the discrete random variables x,y,z, and i 

in the following way:

x = number of defectives in an inspected .articles.

y = number of articles inspected when the kth defec
tive is found.

z = number of articles inspected when the (n-k+1)th 
nondefective is found.

i = number of defectives found when sampling is
curtailed by the finding of the (n-k+1 )th non
defective.

We note that i=z-(n-k+1) ...(2.1)

further, we define a discrete random variable s which 

takes the values 0,1,..jk-1 when a lot is accepted and the 

values k,k+1,...,n when a lot is rejected. In Plan 1, s is 

associated only with x. In Plan 2, s is associated with x 

for s=0,1,...,k-1 and is associated with y for s=k, k+1,...,n. 

In Plan 3, s is associated with i for s=0,1,... ,k-1 and is 

associated with y for s=k, k+1,...,n.

We have assumed that the fraction defective (p) 

remains constant over the entire production run.further, 

we have assumed that the lot size is large (preferably I >10n)
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implying that the probability of any inspected article of 
the lot to be defective is p. This applies to the Type B 
situation of Dodge and Bomig [.19(b) J .

Then the probability distributions of the random 
variable s in the respective plans are as follows:

Plan 1 *

f-jCs):
r n \ ^x n-x a v 1^ x P ^ * s—x—0^ 1, • 1
/ H \ „ X H^X t n , a( yr ) P 9. » s—x—k,k+1,.. jn.

...(2.2)

Plan 2:

f2(s):
( “ ) PX 9n“X, s=x=0,. jk-1

r >-1 \ Pk“ 9y_k, s=y=k,k+1,. .,n.
K k-1 '

...(2.3:

Plan 3:
r i n-k+i \ n-k+1 i . „ . . „( « ) q p , s=i=0,1,.. ,k-1

f^( S)— . n-k

- ^ k-1 ^ pk s=y=k,k+1,. Mn ,
. ..(2.4)

where q=1-p and 0 < p 4 1.

The first part of each of the f. (s) for j=1,2,3>
represents the situation associated with the acceptance of a
lot and the second part represents the situation associated

k-1with the rejection of a lot. Thus ’X. f.(s) for 3=1,2,3s=0 3
ngives the probability of acceptance of a lot and ">~ f.{s)s=k 3
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for j=1,2,3 gives the probability of rejection of a lot.

Furthermore, since a lot will either be accepted or rejected

it follows that
k-1 n
H fi(s) + X fi<s> =1» 3=1,2,3 ...(2.5)
s=9 J s=k J

Then (2.5) satisfies the necessary condition for f. (s) to be
J

a probability function. Alternatively, (2.5) is evident for 

3=1, since it represents the sum of a binomial probability 

function and for j=2,3> equation (2.5) isjt'rue due to the 

following identity between the binomial and inverse (negative) 

binomial distributions.

nx (: )p3 n

x=k x. ()pV~k
y=k

...(2.6)

This equality was proved by Patil [_47 and Morris L44J •

2.4 We now consider the Situations A and B connected with 

the mode of reporting of the results of sampling inspection.

2.4.1 Situation A; This Situation takes Into consideration 

the complete information of the results of sampling inspection 

that one would have on hand legitimately. In Plan 1, the 

complete information of the inspection is the number of defec

tives in n inspected articles irrespective of the fact whether 

a lot is accepted or rejected. In Plan 2, it is (i) the 

number of defectives in n inspected articles when a lot is
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accepted and (ii) the number of articles inspected when the 
inspection is curtailed by finding the kth defective^ In 
Plan 3, it is (i) the number of defectives found when the 
inspection is curtailed by finding the (n-k+1)th nondefective, 
and (ii) the number of articles inspected when the inspection 
is curtailed by finding the kth defective. A lot is accepted 
if (i) happens and is rejected when (ii) happens.

2.4.2 Situation B; This Situation takes place when censored 
information of Type I is reported. Pour cases arising from 
four different modes of reporting the results of sampling 
inspection associated with only curtailed sampling plans are 
considered:

Case I; The inspector acting under Plan 2 reports 
whether^ lot is accepted or rejected as also the number of 
defectives observed.

Case II: The inspector acting under Plan 2 reports
whether a lot is accepted or rejected as also the number of 
articles inspected.

Case III; This case is similar to Case I except that 
the inspection is carried out according to Plan 3.

Case IV: The inspector acting under Plan 3 reports
whether a lot is accepted or rejected as also the number of 
nondefectives observed.
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Although Cases I and III look similar, the maximum 

likelihood estimates of the fraction defective are not 
similar, as will be seen later in Chapter III. On the other 

hand, Cases II and IT yield similar maximum likelihood 

estimates, although there is no apparent similarity. In 

the method of moments, the estimates of fraction defective 

are different for all the Cases.

2.5 We shall now consider the probability functions of the 

reported observational character in both the Situations A and
B.

2.5*1 Probability functions under Situation A are the same 
as those given earlier, namely, (2.2), (2.3), and (2.4).

2.5*2 In Situation B, the observational character reported 

in each case is conveniently represented by a discrete random 

variable as follows:

t = number of defectives observed in the sample when 
inspection is carried out according to Plan 2,

m = number of articles inspected when inspection's 
carried out according to Plan 2,

v = number of defectives observed in the sample when inspection is carried out according to Plan 3*
«e

w = number of nondefectives observed in the sample when inspection is carried out according to Plan 3*

t,u,v, and w appear respectively in Cases I, II, III and IV.
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Recalling the physical meaning of k and n, the predetermined 

constants of the sampling plans, we determine for the Situa

tion B the various values attained by t,u,v, and w. t assumes 

the values 0,1,..,k-1 when a lot is accepted and k when a lot 

is rejected. u assumes the value n when a lot is accepted 

and the values k, k+1, ...,b when a lot is rejected, v assumes 

the values 0,1,2,k-1 when a lot is accepted and k when a 

lot is rejected, w attains the value n-k+1 when a lot is 

accepted and the values 0,1,®..,n-k when a lot is rejected.
i

She probability functions of t,u,v, and w are as follows:

Case I :

g-l(t)= .
'<?)p t n-t t=0,1, ,._,k-l

n
21 C l:] >p* ay'k, t=k
y=k

Case II :
k-1

•

r < n m-xx )P 4 , u=n
gg(u)= x=0

( U“1 
u k-1

) P* m=k,k+1,..,n.

Case III:
{ n-k+v j n-k+1 v
v n-k * *

v=0,1,...,k-1

g3(v)= ■
nn ( y-_] )pi v=k

L y=k

...(2.7)

...(2.8)

...(2.9)
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Case IY
(

(2.10)

w=0,1,...n-k

'-Che first part of each of the probability functions 

represents the situation associated with the acceptance of a 

lot and the second part represents the situation associated 

with the rejection of a lot. This may clarify the ambiguity 

regarding the repetition of u=n in ggCu). One assigns the 

probability given by the first part of ggCu) when it is 

reported that u=n and the lot is accepted under Plan 2. 

Furthermore, one assigns the probability given by the second 

part of gg(u) when it is reported that u=n and the lot is 

rejected under Plan 2.

2.6 In both the Situations, Situations A and B, our 

estimation process is based on the inspection of several lots 

(any number of lots will do). We assume that T lots have 

undergone the inspection under one of the plans and the 

information of the inspection supplied belongs to either 

Situation A or B. Each accepted or rejected lot will give one 

observation associated with x, y, or i in Situation A and 

with t,u,v or w in Situation B. In Situation A under Plan 3, 

the inspector may record either i or z, since these quantities 

are related by linear expression (2.1).
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2.6.1 In Situation A, let the observed frequencies associated 

with x,y,z or i be as follows:

a . = number of accepted lots under Plan 3 in which x’^ the number of defectives in the .sample was 
x( j=1,2).

r . = number of rejected lots under Plan 1 in which 
the number of defectives in the sample was x.

r . = number of rejected lots under Plan j in which 
the number of articles in the sample was 
y(j=2,3)• 1

a ,, = mumber of accepted lots under Plan 3 in' which.
2.5 the number of articles in the sample was z.

a. _ = number of accepted lots under Plan 3 in which1.5 the number of defectives in the sample was i.

fhen the total number of accepted lots, T . (j=1,2-, 3),
a* 3

and the total number of rejected lots T . (j=1,2,3) will be 

in the respective plans :

Plan 1 k-1

x=0
x, 1

n
n
x=k

rx, 1

Plan 2
Ta,2

k-1

x=0
Tr, 2

y=k Ly»2

Plan 3 k-1
( T a. -

i=0
• aJ1 a

z=n-k+1 z,3

when the random variable 
i is recorded

when the random variable 
z is recorded.

n
T ~= ~y r ,r’3y=E

Note that T = I - + T . for j=1,2,3r,3 d
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Further, in the notation of the classical theory of estimation 

based on fixed sample sizes, we have I observations on the 

random variable s from one of the populations f. (s) (j=1,%3).
tl

For example, in Plan 2 s takes the value x a Qtimes andX, d

it takes the value y r „times, making a total of T s’s.

2.6.2 In Situation B, let the observed frequencies associa

ted with t,u,v and w, variables be as follows:

a, „ = number of accepted lots under Plan 2 where 
’ the number of defectives in the sample is 

t(t=0,1,...,k-1),

r number of rejected lots under Plan 2 where
u’ the number of articles inspected in the 

sample is u(u=k,k+1,..^n),

a , = number of accepted lots under Plan 3 where 
v*5 the number of defectives in the sample is 

v(v~0,1,,..,k-1),

r , = number of rejected lots under Elan 3 wherew *5 °ty the number of nondefectives in the sample is 
w(w=0,1,..;n-k).

Furthermore, out of the T lots, T . and 1 . the number of

accepted and rejected lots under Plan j (j=2,3») have the 

following relations;

T Ta,2+ rr,2 XL at,2 + Tr,2 ’
t=0

for Case I:

n
T = T „+ Ta, 2‘ Ar,2 5a, 2+ X ru,2’

u=k
for Case II:
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1 = Ta,3+ Tr,
k-1

q, 4" T _ .v,3 r,3 ’ for Case III;
v=0

n-k
I x a, 3 + r - ,Z_ w, 3 for.Case IY.

w=0

It may be then, noted that the observed frequencies for 
t=k, v=k, and w=n-k+1 are respectively Tr g* Tr ^ and ^ 
and for u=n under the acceptance of a lot, I 0m*d f <Z.

2.7 Estimation by Method of Moments:

2.7*1 Situation A: She first moment of the random variable
s in each of the plans is as follows*

Plan J :

E(s) = k-1 nr * ^(b) + t: b Ms>
s=0 s=k
k-1 n,, f XI \ JL xr~ ( 11 \„-S- -tX ( Y }p q + 2_ * ( )p q
x=0 x x=k

-np ...(2.11)
Plan 2:

l(s) = k-1 n
H S f2(s) + T. S f2(s)
s=0 s=k
k-1

x(;)pVx+ Ij (iz] JpV*x=0 y=k
np B (p,n-1, k-2)+(k/p) [1-B(p,n+'1 ,k)j[ ...(2.12)
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Plan 3i

E(s)
k-1 nXI s f,(s) + X S f*(s) 
s=0 5 s=k p

k-1
rv f1 ( n-k
i=G

nn-k+i % n-k+1 i . ,, e)« p + X y * k-i

< y=k

y-i )pk(1y“k

= (n-k+1) B(p,n+l ,k-1 )/q

+(k/p) D-B(p,n+1 ,k) j| - (n-k+1 )B(p,n,k-1)

=J4/p - (n-k+1) B(p,n,k-1) . ...(2.13)

where = (n-k+1)(p/q) B(p,n+1,k-l)

+ k Cl-B(p,n+1,kD ...(2.14)
and l(p,n,k)= 4^- ( ^ )pXqn-X ...(2.15)

x=0

Furthermore, recalling the definitions of 

frequencies aX(1> rx>1, a^, t^2-, a.j3 

with the random variables x,y, and i, the 

metic mean (s) based on 1 observations in 

plans is as follows:

the observed

and r _ associated y»3
observed aritil

th e respective

Plan 1s
k-1 n

s =L X xa , + x XT* nl A
„_n ' -v=v -*-> ' A

x=0 x=k

Plan 2:

°=lT *ax,2 + T *ry,2l /!t
x=0 - y=k

.. . (2.16)

...(2.17)
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Plan 3?

s
k-1

tri=0
n

+
y=k It 3 1 /T .. . (2.18)

Then equating the r.h.s. of equations (2.16), (2.17), 

and (2.18) respectively to r.h.s of equations (2.11), (2.1 2), 

and (2.13) we have the following equations to estimate the 

fraction defective (p) :

Plan 1:
k-1 n

p = £ > xa 1 + y xr 1_] /nT ...(2.19)
x=0 x=k

Plan 2:

P = np2 TB(p,n-1,k-2) + kT jj~B(p,n+1 ,k)l
k-1 n :
H xa 9 + 7Z yr ? 
x=0 x’ ^ y=k

. .. (2.20)

Plan 3? 

P
TJ^ - Tp(n~k+i) B(p,n,k-1) 
__ _
2_ ia. , + i=0 1,^ H yry=k y,3

... (2.21)

It is revealed from equations (2.20) and (2.21 ) that one 

needs iteration to estimate p by the method of moments under 

Curtailed Sampling Plans. It is stated in section 2.6 that 

one can have ehoice of reporting either i or z when a lot 

is accepted under Plan 3. It is then revealed from (2.21) 
that this equation is to be used when i is reported. We give 

now the estimating equation in case z is reported. In this
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case the probability function will be of the following form: 
{ Z-1V n-k+1 Z_(n_v+1)
1 pz K+|;, s=z=n-k+1 ,n-k+2,. .>n

f4(s)J n-k;

s=y=k,k+1,...,n ...(2.22)

The probability function of s is given by the first 

part of f4(s) when it is known that the lot is accepted and 

is given by the second part when it is known that the lot is 

rejected. This removes the ambiguity regarding the overlapping 

of the ranges of s, Overcoming of similar ambiguity in gg(u) 

was discussed in section 2.5*2. Thus in this case the first

moment of s is
n

*(«)- r *( h»-*+v-(n-k+1 h z y (iz] >pV'kz=n-k+1 1 K y-k *

=(n-k+1 )B(p,n+1 ,k-1 )/q + (k/p) tl-B(p,n+1 ,k)]

: J4/P .. . (2.23)

[Further the observed arithmetic mean of s in this case is

s =

n n
X za>7 X yr.z=n-k+1 z’3 ^ '*7.3

T
.(2.24)

Therefore equating the r.h.s. of (2.23) and (2.24) we get 

the following estimating equation:

p = T J./[ X za * + T jr “1 ...(2.25)
4 !7.=n—lr-f-1 Z’:> y=k

It may be noted that (2.21) and (2.25) are not basically same.
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Significance of this observation will he evident- from the 

fact that the estimating equations by the method of maximum 

likelihood under such circumstances are similar, as shown 

in Chapter III.

2.7-2 Situation B :
Recalling the definitions of the random variables 

t,u,v, and w and their respective probability functions 

g-j» §2* §3 aad g^, we get the first moment of these random 

variables as follows:

Case I :
E(t) = H t g1 (t) 

t=0 '

= i: t ( ; )p* + k •£_ ( y
t=o ■ k

=np B(p,n-1,k-2) + k fJ-B(p,n,k-1 J]

nXT e2^u=k *

n IT ( * )PX qn"X + Z u ( U"1 )pkqU-k 
x=0 x • u=k k"1

n B(p,n,k-1) + (k/p) [ 1-B(p,n+1 ,k)3 ...(2.27)

Case II:
E(u) =

: )p>

(2.26)
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Case III :
k

E(v) = X v%(v) 
v=0

k-1 n
r v (nnSv pT+ k r C11 >Ay_k
v=0 y'k

= (n-k+l) B(p,m+1 ,k-1 )/q. - (n-k+1) B (§fn,k-1)

+ k Il-Btp,n,k-1 )] ...(2.28)

Case IY:
n-k

E(w) = (n-k+1) gA (n-k+1) + XI wg.(w)
4 w=0 4

= (n-k+1) )qn-k+1 P1

i=0
n-k , w+k-1 \ k w + > w ( . 1 )p q.
w=o

:(n-k+1 )B(p,n,k-1) + (k/p) jj-B(p,n+1 ,k)]

-k [1-B(p,n,k-1)] ...(2.29)

SHirthermore, recalling the definitions of the observed 

frequencies a^g, Trj2, **u>2, T&,2, a^, Tr,y rw,3 ^

I associated with the random variables t,u,v and w, the 
a, j

observed arithmetic means 1i,u,v and w based on T observations 

in the respective cases are as follows!
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Case I :
* =[ IT tat,2 + k Tr,2T/!E

t=0

Case II:
^ = [nTa, 2+ u^. ^u, 2^

Case III:

* “lr vav,3 + kTr,3l /T
v=0

Case IY:
' 5"[U-w)*at3 + g«w>3]/*

. .. (2.30)

.. (2.31)

...(2.32)

...(2.33)

Then equating the r.h.s. of equations (2.30)> (2-31)* (2.32) 

and (2.33) respectively to the r.h.s. of equations (2.26), 

(2.27),(2.28) and (2.29) we have the following estimating 

equations:

Case I

P=

k~1 . _,
IE tat,2+ |kTr,2" kT tl~B(p,n,k-1 )Jj

n T B(p,n-1,k-2)

Case II' :
kl Cl-B(p,n+1 ,k)3

n
I

u=k

nlur „ +lnf „ - nT • B(p,n,k-1 ) [ 
i=v u, ^ 1 a, d. 4

...(2.34)

...(2.35)
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Case III :
_ (n-k-t-1) f B(p,n+1tk-1 )
q k-1

Y2 vay 5+(n-k+1)TB(p,H,k-1)+ ^kg^ ^-kg n-B(p,n,k-1)] j
v=0 ...(2.36)

Case IY :

P=
kg tl-B(p,n+1 ,k)l

JZ wr „+kg £1-B(p,n,k-1)] +{(n-k+1)g ~-(n-k+1)lB(p,n,k-1)}

...(2.37)

In Case III it is convenient to estimate q. rather than p 
and then to estimate p by the relation p=1-q.‘

Since we have
E (fr>2) = T Ll-B(p,n,k~1)] ...(2.38)

E(l g) = I B(p»n,k-1 ), ...(2.39)

E(gr>5) = g Ll-B(p,n,k-1)] , ...(2.40)

and E(go ,) = g B(p,n,k-1).
»} J

. .. (2.41)

We have the following approximations:

Tr,2 t*D-B(p,n,k-1 )}, .. .(2.42)

Ta,2 “ T B(p,n-,k-1), ... (2.43)

Tr,3 " T Cl-B(p,n,k-1)] , . .. (2.44)

and Ta,3 ~ T B(p,n,k-1). ...(2.45)
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Then using the above approximations (2.42), (2.43), 
(2.44), and (2.45) the estimating equations (2.34), (2.35), 
(2.36) and (2.37) may he approximated as follows!

Case I :

•p =

k-1X ta
t=0 ...(2.46)nT B(p,n-1,k-2)

Case II:

P =
kT E 1-B(p,n+1 ,k)l ...(2.47)n

u=k

Case III:

•9 =
(n-k+1) T B(p,n+1,k-1) 
k-1X va * + (n-k+1 )T B(p,n,k-1) v=0 5

.. .(2.48)

Case IV:

n -
kT [1-B(p,n+I,k)j ...(2.49)

■
P X wr + kT [1-B(p,n,k-1)]

w=0 w’7


