
CHAPTER - III

MAXIMUM LIKELIHOOD ESTIMATES OF THE REACTION 

DEPICTIVE II CURTAILED SAMPLING PLANS

3-1 In this chapter we have obtained the maximum likeli

hood estimate of the fraction defective -under curtailed 

sampling plans for both the situations related to the 

reporting of the data discussed in the previous chapter.

We have further obtained the asymptotic variances of these 

estimates and compared their efficiencies.

3»2 Situation A:

3.2.1 As emphasized in Sectionj2.6, the estimation process 

is based on T observations on the random variable s from 

one of.the populations f.(s) (j=1,2,3). Recalling the
d

particulars of these T observations, we have the following 

likelihood functions based on them:

Plan 1
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Plan 2:
k-1 _
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;(t\ )pV-k]ry’2,

Plan 3:
k-1

*,-X [
i=0

( )au'k+V] a. „ x, 3 t p £ r;

y=k

Differentiating the above likelihood functions with 

respect to p and equating the derivatives to zero, we get 

the following expressions for estimating p :

Plan 1s

p1 =

k-1 n

T xax,i + ^^,1
x=0 x=k
n^Ta,1 + ®r,1^

Plan 2 s

T 2 + Mri 2
X=0

n
nIa,2+ E yry,2

y=fc

...(3.1)

...(3.2)

Plan 3*
k-1

i=0
ia. _ + k! ,i»3 - r,3

51 ia.>3+ (n-k+1 )Ta> 3+ £ yry, 3 

1=0 y_J£

.. .(3.3)
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Furthermore, since z= i+(n-k+l), equation (3*3) may "be

expressed as 
nY za „ -(n-k+1) T ,+ kl , +— z,3 a, 3 r,3

_ _ z=n-k+1
3 n

X
z=n-k+1

n
za _ + 2— yr _z,3 y=k y,3

(3.4)

Use (3*3) when the random variable i is observed 

and (3.4) when z is observed.

Now, it may be noted that

k-1
7~~ xa . = total number of defectives observed in 

n ’3 accepted lots under Plan j(i=1,2),

n
X

x=k
xrx, 1

total number of defectives observed in 
rejected lots under Plan 1,

n
*■***.}

y=k

total number of articles inspected in 
rejected lots under Plan j(j=2,3),

k-1
X
i=0

total number of defectives observed in 
accepted lots under Plan 3,

n
and za „ = ia. _ +(n-k+1) T ,

*— z,3 i,3 a, 3
z=m-k+1

_ total number of articles inspected in 
~ accepted lots under Plan 3.

The physical meaning of the expressions given above 

leads to an interesting observation that in all the three
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plans the estimate of p has one common feature, namely,

reported and (3.4) may he used when z is reported. The

estimating equations (3*3) and (3.4) are basically same. 

However such is not the case when the fraction defective is 

estimated by the method of moments (vide equations (2.21) 

and (2.25) of Section 2.7.1).

3.2.2 Variance of the Estimates:

We make use of the following expressions to obtain 

the expectations of the second derivatives of the likelihood 

functions:

Total number of defectives noted 
Total number of articles inspected

How we have stated that (3*3) may be used when i is

/

interesting property given above leads to the fact that the

k-1 n
E ( X xax -]+ X xrx t ) = np

x=Q x=k
...(3.5)

E (la,1 + Tr,1} = 1 ’ ..(3.6)

E ( YZ xa p + kT p)/T
k-1

= np B(p,n-1 ,k-2)+ k [l-B(p,n,k-1 )J = , (3.7)

=np B(p,n,k-1) + k £l-B(p,n+1 ,k)] =J2, (3.8)
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k-1

E ( 7Z ia , + KD JAi=0 r,:>

= (n-k+1) B(p,n+1 ,k-1 )/q.

-(n-k+1) B(p,n,k-l)+k jj-B(p,n,k-1 )}=J^, **.(3.9)

k-1 n
and pE C 1 ia. , + (n-k+1 )t -+ X yr O A 

j_~Q 2 *** ^ ' y=k **9 3

- (n-k+1 )p B(p,n+1,k-1 )/q. + k D-B(p,n+1 ,kQ =J^, ..(3*10)

where B(p,n,k) has been defined m (2.15) and the definitions 

of , Jg, and are clear from the expressions themselves.

Furthermore, using the recurrence-relation

B(p,n+1,k) = pB(p,n,k-1)+q. B(p,n,k), ...(3.11)
/

We find that J1 = Jg • ...(3.12)

and J5 = ... (3.13)

low the asymptotic variance of the maximum likelihood 

estimate of p is given by

Therefore using the above expectations (3.5) through (3.10) 

and (3.12) and (3*13) the asymptotic variance of the 

maximum likelihood estimate of the fraction defective in 

the'respective plans are :

V(p) = -1/E Cdlog 1/ C5P2) . ..(3.14)

Plan 1t ) = pq/fn

Plan 2: v(p2) = p2q/TJ1

Plan 3: V(p3) = p2q/TJ5

. ..(3.J6)

...(3.15)

...(3.17)
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It may, however, be noted that expression (3*15) is 

true for any I since nTp^ has a binomial distribution with 

index nT, giving the exact results E(nTp^ )=nTp and T(nTp^ ):

3.2.3 Efficiency of these estimates: 

lemma 1: To prove that 4=. zip.

Proof:
low 7 y(£"] )pk(iy“k=k(^l] )pkq.k-k+(k+1) ( 

y=k

. .(3.

>pNt?"£n(£;] )i

/• , k-1 \Js. k-1, /fc+1-1 \Jc k+1-k, /n-1 \ k n-k 4n( k-1)p q +n( k_1 }p q + •* *+n(k_1 jp q

4 H xy=k

^ n X. ( ?: )pxqn-x ^recalling (2.6)1 
x=k x

k-1
Therefore, adding n XL ( n )pXq

x=0 x

above inequality we have,

k-1 __ _ n

x n-x

n X (
x=0

n \ x n-x i y-1
)P q X y( t 1y=k

to both the sides of

)pV~k< n

i.e. n B(p,n,k-1) + k [1-B(p,n+1,k)] /p < n 

i. e. Jg/P

i.e. J1 ^ np , since J1 = .

:nTpq.

16)

k n-k> q

...(3.17)
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Lemma 2: To prove that • ...(3.18)

Proof:
Replacing z, the coefficient of ( Z“1 )^n“lc+'lpz“(:tt“k+1)»

H“"ic

nby n in the summation XI z( z~} )qn’”k:+1pz“^n“k+^
z=n-k+1 n“ic

we have

X Z(Z-1) n-k+1 z-(n-k+1)
z=n-k+1

< n

n-k

n /Z-1\ n-k+1 z-(n-k+1) 
4i~k'q pz=n-k+1

n , ,^n X ( + )q pn referring to (2.6) 
t=m-k+1

^ n X ( “ )pXtn'X 
x=0 z

Then adding y( )pkq.y-k to each side of the above

y=k
inequality we have,

n
z=n-k+1

„( z-1 \ n-k+1 z-(n-k+l) 1\ k y-kz( n-k » + y<k-1)p 1
y=k

k-1 n
4 * X ( l )pXqn~X+ X Hi'] )pV"kX=0 X y=k K~

i» e. J./ja ^ JD/p

.. .(3.19)

i.e.J4 ^J2

Or since = J2 and = J^.
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She above two lemma evidently prove the fact that

yCp^) 4v(p2) 4 v(p3) ...(3.20)

Therefore the efficiency of the estimate of the 

fraction defective based on the results of Plan 2 with 

respect to those based on Plan 1 is given by

V(p«)
----- L_ = —L <c 1
v(p2) np

..(3-21)

and that based on the results of Plan 3 with respect to 

those based on Plan 1 is given by

V(&,) 3
----- L_ = _2 < ' 1
v($3) np "

..(3*22)

The results are not far from expectations. The purpose 

of these plans is not to estimate the fraction defective but 

a reduction in the inspection cost, as the name and nature of 

the plans suggest. One has always to pay a price for any
I

reduction in testing and in this case, this price has been 

paid by an increase in the variance of the estimate.

3.2.4 A Numerical Example :

Consider all the plans with n=25, and k=3. In.standard 

notations,, these plans ensure the producer's and the consumer's 

risk as follows:
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P.J = 3f°, producer's risk - ck = &<f0 

pg = 10$, consumer's risk = p = 9$.

■Hv^cVl

let all the plans be administered on mtatS setj of 50 lots.

We assume that the inspector gives the complete information 

„of the inspection results. It is tabulated in Tables 3*1, 

3.2 and 3*3. From these tables we find that in

Plan 1: Ta, 1 = 30, i-3

ve

= 20, pea = 39,
X, I i»x,r 75 -

Plan 2: T
a, 2 = 31, Tr, 2 = 19, zxax, 2= 40' xyr = 326 

o', ^

Plan 3* T1a, 3

t<"\

II 5k t 3 = 17, Xlali5= 41, ryry,3= 303

Hence using equations (3*1), (3.2) and (3.3) we find 

the following maximum likelihood estimate of p :

Plan 1: ^ = 0.0912

Plan 2: p2 = 0.0881

Plan 3: P? = 0.0834

How the hypothetical value of p used for obtaining 

the frequency distributions under discussion is 0.09. Using 

this hypothetical value of p the asymptotic variance can be 

calculated using (3*15), (3.16) and (3-17). The asymptotic 

variance, standard error and | p-p | /s.E. are listed below:
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v(p) S.E.(p) ]p-pJ /s

Plan 1 0.00006552 0.0081 0.15
Plan 2 0.00007482 0.0086 0.22
Plan 3 0.00007644 ' 0,0087 0.76

The entries below |p-p | /SE(p) lead^ to the conclusion 
that the difference between the estimate of p and the hypo
thetical value of p can be regarded as due to sampling 
fluctuations. In practice one may substitute the estimate 
of p in (3.15), (3.16) and (3.17) to compute the estimate 
of the asymptotic variance of p.

Furthermore, we have computed the asymptotic variance 
for all the plans for different values of p ranging from 0,04

4)

to 0.20. These variances are given in Table 3.4. It may^noted 
that T times the-variance is presented. This may help in 
using conveniently the same table for any value of T.

In the same table one can find the efficiencies of the 
maximum likelihood estimates in columns (b) and (7). These 
are calculated using (3.21) and (3.22). It is revealed from 
this table that the efficiency of Plans 2 and 3 decreases as 
p increases. This is in accordance with expectations, since a 
greater fraction defective means a greater probability of 
rejection and thereby curtailing of the sampling’in a greater 
number of cases.
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furthermore, it is worth noting that there is no 

appreciable loss in efficiency if one administers Plan 3 

instead of Plan 2 for larger value of p, where the probability 

of acceptance decreases.This is due to the fact that there is 

no appreciable reduction in inspection of the items as one 

passes from Plan 2 to Plan 3 for larger value of p. This fact 

will be evident when the relation between ASN and the variance 

of the estimate and reduction in ASP will be discussed in 

Chapter V.

Table 3*4 .has been prepared with the help of the 

Tables of the Cumulative Binomial Probability Distributions [55j

Table 3.1

Observed Data of ^lan 1

Number of 
defectives

X

Number of
accepted
lots

a „ x,1

Number of 
defectives

X

Number of
rejected
lots
rx, 1

(i) .. (2) (3) (4)

0 5 3 10

1 11 4 6

2 14 5 3

- - 6 1
Total 30 - 20
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Table 3»2
Observed Data of Plan 2

lumber of Number of Number of Number of Number of Number of
articles rejected articles rejected defectives accepted
inspected lots inspected lots lots

y ry, 2 y r oy.2
X ax,2

—01------- ctr (1) trr (.3) (4)
3 1 15 0 0 5
4 0 16 1 1 12
5 1 17 1 2 14
6 0 18 1
7 0 19 1
8 0 20 1
9 1 21 1
10 0 22 3
11 1 23 2
12 0 24 2
13 1 25 0
14 1 — —

Total - - 19 - 31

Table 3-3
Observed Data of Plan 3

Number of
articles
inspected

y

Number of 
rejected 
lots 

r ~y> 3

Number of
articles
inspected

y

Number ©f 
rejected 
lots 
r*»3

Number of 
defectives

i

Number of
accepted
lots

ai, 3

(1) (2) (1) ' (2; 13) (4;
3 0 15 1 0 6
4 0 16 0 1 13
5 0 17 1 2 14
6 1 18 0
7 1 19 1
8 0 20 1
9 0 21 2 *
10 0 22 2
11 0 23 2
12 1 24 2
13 1 25 0
14 1 — «

17_____________ -________33Total
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3,3 Situation B:

3.3.1 Recalling the particulars of 1 observations on the 
random variables t,u,v and w given in section 2.6.2, we 
construct the following likelihood functions based on them:

Case I:
k-1 at, 2 n T

l, = X [(% jpV* ] CWkl r, 2

t=0
..(3.23)

Case II:
r-k-1 _ Ta, 2 _n_ . v ru, 2

)pY x J* x=0 x u=kx[(Ll )Au-k] ..(3.24)

Case III:
a.k-1 V,3 Tr,3

1, - ic L(n;SXn_k+V3 [>1 <£]>Ay-k 3 ■■■ (3.av—0 y—k

Case IT: T.a’? W’3 

^ x=0- w=0 J .(3.26)

Ihen equating to zero the first derivative of the 
likelihood functions with respect to p we get the following 
maximum likelihood equations to estimate p :

Case I

p=

k-121t=o
tat, 2

nTa, 2“(n“k+1 ^Tr,2 ...(3.27)
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Case II :
kTr, 2

EL
21ur +(n-k+l)$ T 9 

u=k u’2 a’^

...(3.28)

Case III: k-1
va

v=Q v,3
k-1

(n-k+1) T ,+ X va -(n-k+l)y/T ,a» ■> v=o Y,:> *p

...(3.29)

Case IV:
kgr,5_________________________ ...(3.30)

n-k
X wrW)3+ klri3+(n-k+l)«fla>3

where V = ( ^ )pfc"V‘i:+1 /L 1-B(p,n,k-1 Q ...(5.31)

= p^V"**1/ (n-k+1) [ x^O-x)*'1 dx ...(3.32)

q.

0 = ( )pk”1qn_k+1/B(p,n,k-l) ...(3.33)

= pk-1dn-k+1/(n-k+1) I xn”k(1~x)k“1 dx ...(3*34)

0

Maximum likelihood equations (3.27), (3*28),(3.29) and 

(3.30) can he solved hy iteration and do not present any diffi

culty, since the binomial distribution is extensively tabulated 

in Hl73 and [.55 3 . The tables in £17.3 give both the 

individual probabilities and cumulative probabilities' of the



: 54 s

binomial- distribution. However in this era of computers, it
mayjnot be necessary to use these tables. Furthermore, Tr ../l

and T ./T (j=2,3) which estimate respectively the denominator 
a> 3

of the r.h.s of equations (3*31) and (3«33) may help in 

assessing the initial value of p and thereby the initial value 

of \jJ and 0, to start the iteration.

3.3-2 Variance of the Estimate :

Using the formula for asymptotic variance of the 

maximum likelihood estimate, namely v(p)= -l/l(Blog L/~dp ) 

the asymptotic variance of the maximum likelihood estimate of 

the fraction defective in the respective Gases will be as 

follows*

Case I v(p) = (pq)2/®^ ,

Gases II&IY v(p) = (pq)2/TH2 ,

Case III v(p) = (pq)2/TH5 ,

where
H.j = np(q-p)B(p,n-1 ,k-2)+np2B(p,n,k-1 )-(n-k+1 )^p 

.[(k-1)f+p |l-(n-k+1)(1 + ^)}3 L1"B(p,n,k-1)]

--(3.35)

-.(3.36)

..(3.37)

..(3*38)

H2 = (n-k+1 )p0 C(k—1 )f+p ^1-(n-k+1 )(l-.0)]3 B(p,n,k-1)

*k(q-p) £l-B(p,n,k-1Q +kp p-B(p,n+1 ,k)"] ...(3.39)
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= (n-k+1 )q[B(p,n+1,k-l) - qB(p,n,k-1 )j 

+(n-k+1)p2B(p,n,k-1)-(n-k+1}pvp

.[.(k-1 )q+p.{ 1-(n-k+1 )(1 + ^ )}3 [1-B(p,n,k-1)] ...(5.40)

The expression for the asymptotic variance for Cases 

II and IT is the same. It may further he noted that the 

maximum likelihood equations (3*28) and (3.30) are the same 

except for the second suffix, since w=u-k for u=k,k+1,.. .-,n.

3.4 Comparison Between Situations A and 1 

with Respect to Censored Sampling*

3.4.1 All the cases considered in Situation B can he regarded 

as particular cases of censored sampling of Type I as defined 

hy Gupta . for instance T observations on the random

variable v of Case III can he regarded as a censored sample 

on the random variable s of the population f^(s) defined by 

(2.4) in Chapter II, right hand tail of the sample being 

censored. In other words the exact value of s is available if 

s ^k-1 and the exact value of s is not available if k 4s ^ n; 

for in the latter case it is only reported that s lies in that

* Definition of censored sampling and the distinction between 
Type I and Type II censoring is explained in Section 3 of
Chapter VII.
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range. Had the exact value of s in the range k 4. s ^ n been 
known, the reporting would belong to Situation- A.Similar dis
cussion holds for the remaining Gases. Case I can he regarded 
as a censored sample from fgts) defined by (2.3) with the 

right hand tail being censored. Case II can be regarded as a 
censored sample from fg(s) defined by (2.3) with the left hand 
tail being censored, lastly Case IV can be regarded as a 
censored sample from f^(s) defined by (2.4) with left hand 
tail being censored.

3.4.2 Comparison of Variances :

Since it is expected from realistic point of view that 
the estimate based on censored sample should be less efficient 
than that based on complete sample, the asymptotic variance 
of Cases I and II respectively given by (3.35) and (3.36) will 
be greater than the asymptotic variance of Plan 2 under 
Situation A, given by (3.16), namely p^qj/lJ-j. Similarly the 

asymptotic variance of Cases III and IV respectively given 
by (3*37) and (3*36) will be greater than the asymptotic 
variance of Plan 3 under Situation A given by (3.17), namely 
P q/TJj* Purthermore, since it has been jestablished that

in Section 3*2.3 and that the asymptotic variances of 
Cases II and IV are equal, we have the result that the 
asymptotic variance of Case II is greater than p q/TJ^.



s 57 :

Thus the lower hound of the asymptotic variance of Case II is 

increased. These results are well exhibited in Table 3«6.

3*5 Method of Moments and MLE : ' *

Circumstances do occur in practice where the estimates 

by the method of maximum likelihood and those by the method of 

moments are identical. In ease they differ one may prefer 
the maximum likelihood estimates as they |are more efficient in 

the class of such estimates even if they !involve computational 

difficulties. Unlike that in the usual situation we find here 

that the estimates by the method of maximum likelihood are 

simpler than those by the method of moments, so far the point 

of computation is concerned. In Situation A it is found that 

the maximum likelihood estimate is just the ratio of two 

statistics whereas one needs iteration if one desires to 

estimate it by the method of moments. In.Situation B both 

the methods require iteration but in case of the method of 

maximum likelihood the estimating equation is somewhat simpler. 

The purpose of introducing Section 2.7 is certainly not to 

encourage the method of moments so far the question of 

estimating the fraction defective under curtailed sampling 

plans is concerned, but the purpose is just to study the 

nature of these estimates under this method.
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3.6 A Numerical Example J

We shall illustrate Case II by a numerical example.

We consider the same value of n and k as considered in the 

numerical example of 3»2.4» namely, n=25 and k=3* Suppose an 

inspector administers Plan 2 with n=25 and k=3 and reports 

only the number of articles inspected and the information 

regarding the acceptance or rejection of the lot. Table 3«5 

gives the distribution of 50 observations associated with the 

inspection of 50 lots.

Table 3»5

Number of Number of Number of Number of Number of Number of
articles rejected articles rejected articles accepted
inspected lots inspected lots inspected lots

(11 (2) (11 w ^7- (#)

3 0 15 , 2 25* 35
4 0 16 0
5 0 17 0
6 1 18 0
7 0 19 0
8 1 20 0
9 0 21 2
10 1 22 1
11 1 23 1
12 0 24 1
13 2 25 2
14 0 - -

Total - _ 15 - 35
* Acceptance of a lot under Han 2 implies that the number of 

articles inspected is n.
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From the above table we find that
25

Ta,2=35> Tr,2=t5- u^"«,2'252 “4

Referring to the tables of Cumulative Binomial Probabi
lity Distribution C 55 3 for n=25 and k=3 we find the following
by inspection;

P 0.07 0.08 0.09
1-B(£,n,k-1) 0.25344 0.32317 0.39370
B(p,n,k-1) 0.74656 0.67683 0.60630

Therefore we take the initial value of p as 0.08 to
start the iteration. The following are the results of iteration;

Initial value of p Yalue of p from equation (3»28)
0.08 0.0766592
0.07659 0.078381
0.07838 . 0.077446

0.07776 0.077770
0.07777 ^ 0.077766

Hence we take the estimate of p as '0.07777. The 
hypothetical value of p used for obtaining the above frequency 
distribution is 0.09. ^or this hypothetical value of p the 
asymptotic variance of the estimate of p using equation (3.36) 
is 0.00009088. Therefore, S.E. (f>)=0.OO95. Absolute difference 
between the estimate of p and the hypothetical value of p i.e.
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\ 0.07777-0.091 = 0.01223 may be attributed due to sampling
fluctuations since it is merely 1.29 times the S.E.(p). 

Furthermore, in practice, one may substitute the estimate of 
p in (3*36) to compute the estimate of the asymptotic variance.

Furthermore, we have calculated the asymptotic variance

for all the cases for different values of p ranging from 0.04 

to 0.20, These results along with the asymptotic variance 
under complete information ii.e,. p q/lJ^ and p q/TJ^) are 

presented in the Table 3*6. It may be noted that here also I 

times the variance is presented for the same reason explained 
against Table 3*4. For this purpose also we have used the
Tables of the Cumulative Binomial Probability Distribution £55J .

/
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