CHAPTER - III

MAXTIMUM LIKELTHOOD ESTIMATES OF THE FRACTION
DEFECTIVE IN CURTAILED SAMPLING PLANS

3.1 In this chapter we have obtained the maximum likeli-
hood estimate of the fraction defective under curtailed
sampling plans for both the situations related to the
reporting of the data discussed in the previous chapter.

We have further obtained the asymptotic variances of tﬁese

estimates and compared their efficiencies.

3o Situation A:

3¢2.1 As emphasized in SectionP.6, the estimation process
is based on T observations on the random variable s from
one of .the populations fj(s) (j=1,2,3). Recalling the
particuiars of these T observations, we have the following

likelihood functions based on thems
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Differentiating the above likelihood functions with
respect to p and equating the derivatives to zero, we get

the following expressions for estimating p :
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Furthermore, since z= i+{n-k+1), equation (3.3) may be

expressed as

n
3 za, 5 ~(n-kt1) T, o+ kD, o
= Z=n=-K+1 ) ~'~(3'4)
PB n n

a + r
z;§1k+1z Zy 3 ;Zi "y,3

Use (%.3) when the random variable i is observed

and (3.4) when z is observed.

Now, it may be noted that

k~1

2. xa_ . = total number of defectives observed in
£=0 ¥1d  accepted lots under Plan j(j=1,2),

n <7 . total number of defectives observed in
2 x, 1 rejected lots under Plan 1,
x=k

n r total number of articles inspected in
7; ITy,3 = rejected lots under Plan j(j=2,3),
y: .

H

ia _ total number of defectives observed in
2 18 5 % gocepted lots under Plan 3,

and 5 za, 5 = ia; 5 +(n-k+1) 7
z=n—-k+1

8, 3
- total number of articles inspected in
accepied lots under Flan 3.
The physical meaning of the expressions given above

leads to an interesting observation that in all the three



plans the estimate of p has one common feature, namely,

_ Total number of defectives noted
P = T5tal number of articles inspected

Now we have stated that (3.3) méy be used when i is
reported and (3.4) may be used when z is reported. The
interes%ing property given above leads to the fact that the
estimating equations (3.%) and {3.4) are basically same.
However such is not the case when the fractien defective is
estimated by the method of moments (vide equations (2.21)

and (2.25) of Section 2.7.1).

3.2.2 Variance of the Estimates:

We make use of the following expressions to obtain

the expectations of the secend derivatives of the likelihood

functions:

k-1 n

E( xax’1+ S er’1 ) =np , ...{3.5)
x=0 x=k

E (Ta,1 + Tr,j) =1, e (3.6)
k-1 .

E ( ;E% xay o + kTr,z)/T

= up B(p,n-1,k-2)+ k [1-B(p,n,k-1)] = J,, o (3,73

n
E (nTa’2+ > yr, ,)/T

y=k I
=np B(p,n,k-1) + k [1-B(p,n+1,k)] =J,, - ...(3.8)



E ( 1:7;_3_) ia, 5+ kTI,’B)/T
= (n-k+1) B(p,n+1,k-1)/q
~(n-k+1) B(p,n,k-1)+k [1-B(p,n,k-1]FI5, e (3.9)
k-1 n
and  pB E.;Zé izfa.i,3 + (n~k+1)Ta’3+ jzgkyry’ézl/m

= (n-k+1)p Blp,n+1,k-1)/q + k [1-B(p,n+1,k)] =3y «.(3.10)

where B{p,n,k) has been defined 1n (2.15) and the definitions

of J1, J2, J_5 and J4 are clear from the expressions themselves.

Furthermore, using the recurrence-relation

B(p,n+1,k) = pB(p,n,k-1)+q Blp,n, k), L eve(3.11)
We find that J, = J, veo(3.12)
and I3 =3, eea(3.13)

Now the asymptotic variance of the maximum likelihood
estimate of p is given by

v(p) = ~-1/E (’5’10g L/ bpz) e..(3.14)

Therefore using the above expectations (3.5) through (3.10)
and (3.12) and (3.13) the asymptotic variamce of the
maximum likelihood estimate of the fraction defeective in

the respective plans are :

Plan 1: V(p,) = pa/Tn ve (3.15)

‘Plan 3: v(f>3) = 1_:>2q/f13J3 oo (3.17)



It may, however, be noted that expression (3.15) is

true for any T since anx,l has a binomial distribution with

index nT, giving the exact results ]é)(n'.ljﬁ1 )=nTp and V(nTﬁ.} )=nTpq.

3e2e3 Efficiencx of these estimates:

Lemma 1: To prove that J1 4. Np.
}?roof' _
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e (3.16)

)kn—k

Therefore, adding n o ( 2 )px 17X to both the sides of

x=0
above inequality we have,

=1
n 710 QD) Sl U Z y( k,,} Y £ n
=

i.e. n B(p,n,k-1) + k [1-B{p,n+1,k)] /p < n

i.e. Jz/p {n

i
ey

i.e. I, < np , since J1

eeo (3.17)



Lemma 2: To prove that JB £d,. ... (3.18)

Proof:

Replacing z, the coefficient of ( g;{ )qn-k.+1pz-(n-k+1),

n
by n in the summation I~ z k: )gR K1 z—-(n—-k+1)
‘ ' z=n-k+1 n-
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The above two lemma evidently prove the fact that

v(py) £V(p,) & V() .+ (3.20)

Therefore the efficiency of the estimate of the
fraction defective based on the results of Flan 2 with

respect to those based on Plan 1 is given by

v(p,) J ‘
LA = T ¢1 = .. (3.21)
V(pz) p

il

and that based on the results of Plan 3 with respect to

those based on Plan 1 islgiven by

v{p,) J
A1 = ﬁ%- 41 e.ee(3.22)
V(p3)

The results are not far from expectations. The purpose
of these plans is neot to estimate the fraction defective but
a reductien in the inspecfion cost, as the name and nature of
the plans suggest. One has always to pay a2 price for any

reduction in testing and in this case, this price has been

paid by an increase in the variance of the estimate.

3+.2+.4 A Numerical Example ¢
Consider all the plans with n=2%, and k=%. In.standard
notations, these plans ensure the producer's and the coensumer's

risk as follows:



47 =

9

A = 8%

L]

p, = %%, producer's risk

B = 9%.

i

P, = 10%, consumer's risk

tel
Let all the plans be administered on-!iﬁb set, of 50 lots.
We assume that the inspector gives the complete information
of the inspection results. It is tabulated in Tables 3.1,

3.2 and 3.3%. From these tables we find that in

Plan 1: T, , =30, T, =20, yxa =39, 1xr .= T5
Plan 2: Ta,z = 31, Tr,z =19, X8y o= 40, iyry’2~ 326
Plan 3: T, 5 =33, T, 5=17, Yia; ,=41, ZyTy 5= 303

Hence using equations (3.1), (%.2) and (3.3) we find

the following maximum likelihood estimate of p 3

Plan 1: 51 = 0.0912
Plan 2: 52 = 0.,0881

Plan 3: 53 = 0.08%4

Now the hypothetical value of p used for obtaining
the frequency distributions under discussion is 0.09. Using
this hypothetical value of p the asymptotic variance can be
caleulated using (3.15), (3.16) and (3.17). The asymptotic

variance, standard error and ]ﬁ—p} /S.E. are listed below:



&
o

V() 5.E. ($) |o-p] /5.E.(5)
Plan 1 0.00006552 0.0081 ©0.15
Plan 2 0.00007482 0.0086 0.22
Plan 3 0.00007644 ~0,0087 0.76

The entries beiow ]%—p} /SE(P) leadf to the conclusion
that the difference between the estimate of p and the hypo-
thetical value of p can be regarded as due to sampling
fluctuations. In practice one may substitute the estimate
of p in (3.15), (3.16) and (3.17) to computé the estimate

of the asymptotic variance of .

Furthermore, we have computed the—asymptotic variance
for all the pléﬁs for different values of p ranging from 0,04
to 0.20. These variances are given in Table %.4. It may:ﬁoted
that T times the variance is presented. This may help in-

using conveniently the same table for any value of T.

In the same table one can find the efficiencies of the
maximum likelihood estimates in colums (6) and (7). These
are calculated using (3.21) and (3.22). It is revealed from
this table that the efficiency of Plans 2 'and 3 decreasgs as
p increases. This is in accordance with expectations, since a
greater fraction defective means a greater probability of
rejection and thereby curtailing of the sampling in a greater

number of cases.



FPurthermore, it is worth noting that there is no
apprecisble loss in efficiency if one administers Plan 3
instead of Plan 2 for larger value of p, where the probability
of acceptance decreases.This is due to the fact that there is
no appreciable reduction in inspeection of the items as one
passes from Plan 2 to Plan 3 for larger value of p. This fact
will be evident when the relation between ASN and the variance
of the estimate and reduction in ASN will be discussed in

Chapter V.

Table 3.4 .has been prepared with the help of the
Tables of the Cumulative Binomial Probability Distributions [55} .

Table 3.1

]

Observed Data of Plan 1

Number of Number of Number of Number of
defectives accepted defectives rejected
lots lots
X a T
. X, 1 4 b4 X, 1
(1) (2) ) (4)
0 5 3 10
1 11 4 6
2 14 5 3 ‘
- - 6 1

Total 30 - 20
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Table 3.2

Qbserved Data of Plan 2

FNumber of Number of Number of

Number of Number of Namber of

articles rejected articles rejected defectives accepted
inspected lots inspected lots lots

v y,2 J Y, 2 * %%, 2

(1) t2) (1) (2) (3) {4)

3 1 15 0 0 5

4 0 16 1 1 12

5 1 17 1 2 14

6 0 18 1

1 0] 19 1

8 0 20 1

g 1 21 1

10 0 22 3

11 1 23 2

12 0 24 2

13 1 25 0

14 1 - -
Total - ~ 19 - 31

Table 3.3
Observed Data of Plan 3

Number of Number of Number of Number of Number of Number of
articles rejected articles rejected defectives accepted
inspected 1lots inspected lots ) lots

v I‘y’3 Y ry’B * ‘aia3

D) 2) (1] 2 ) @)

3 0 15 1 0 6

4 0 16 0 1 13

5 0 17 1 2 14

6 1 18 O

7 1 19 1

8 0 20 1

9 0 21 2 .

10 0 22 2

11 0 23 2

12 1 24 2

13 1 25 0

14 1 - -
Total - - 17 - 33
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3.3 Situation B:

%,%,1 Recalling the particulars of T observations on the
rendom variables t,u,v and w given in section 2.6.2, we

construct the following likelihood functions based on them:

Case T: . . T ’
a
k-1 _ t,2 _n r,2
1, = I [(%)p%" "] LS o’ ™7 .. (3.23)
£=0 y=k
Case 11
k-l oy xonex Ta’z 1 u-1 y.k u-k *u,2
L, =[xz=‘__"_o (2 %" ] 1%[( b4 )P :l . (3.24)
Case IT1:
, 3 . T, 3
Iy = IE [OSNE™ ] Tz e 7 ] (3.9
y:
Case IV: .
Ta;B K w rW93
L4 —~[Z (n;lle) n-k+1 1] I [(W+k-1 )piq ] .. (3.26)

Then equating to zeroe the first derivative of the
likelihood functions with respect to p we get the following

maximum likelihood equations to estimate p ¢

Cage I :
k-1
t; tat 5 ( |
I)m 1) L ] 3.27
nTa,z (n~ k+1)q/Tr,2




5% 2

Case 11 :
o kTr”2
n
gziuru’2+(n—k+1)¢ 'J.‘a’2
Case I1ls ¥§£
va,
_v=0 ME
p= &=1 )
(n-%+1) T,, 5 ;Zé vav,3—(n—k+1 W 5
Cage IV:
kT
_ r,3 )
P= X )
jgé wrw’3+ kTr’3+(n~k+1 ﬂTa,3

where Y= (200" /L 1-B(p,n,k-17]

1
= pk"1qn~k+1/ (n-k+1) J kT gy
aq

-1 n-k+1 ‘
g=1(,2 ) o512 /5(p,n,k-1)

a
= pk-1qn_k+1/(n—k+1) S :1c:1rl-k'(1--x)k”1 dx
0

v (3.28)

e (3.29)

...(3.30)

oo (3.31)

veo(3.32)

.. (3.33)

co.(3.34)

Maximum likelihood equations (3.27), (3.28),(3.29) and

(3.30) can be solved by iteration and do not present any diffi-

culty, since the binomial distribution is extensively tabulated

in [17] and [557] . The tables in [ 17_] give both the

individual probabilities and cumulative probabilities of the



binomial- distribution. However in this era qf computers, it
maﬁnot be necéssary to use these tablLes. Purthermore, Tr,j/m
and Ta,j/T (3=2,3) wh;ch estimate respectively the denominator
of the r.h.s of equations (3.%1) and (3.33) may help in
assessing the initial ¥alue of p and thereby the initial value

of Y and @, to start the iteration.

2¢3.2 Variance of the Estimate s

Using the formula for asymptotic variance of the
%
maximim likelihood estimate, namely v(p)= ~1/E( dlog L/ dp°)
the asymptotic veriance of the maximum likelihood estimate of

the fraction defective in the respective Cases will be as

followss
Case I v(p) = (pq)z/TH1 ] «.(3.35)
Caser TI&IV ~ v(p) = (pch)Q/&r.‘}zit:2 , _ eee(3:36)
Case III v(p) = (PQ)z/TH3 ) e (3.37)
where
H, = np(a-p)B(p,n-1 ,k-2)+np"B(p,n,k-1)-(n-k+1)Wp

J(x=1)q+p i1-(n—k+1 Ya+w) ] L1-Blpyn,x=1)]  ...(3.7%8)

s
It

o = (n=k+1)pf [ (k~-1)a+p {1-(n-k+1)(1-g)} ] B(p,n,k-1)
+k(g-p) [1-B(p,n,k-1)] +kp [1-B(p,n+1,k}) e..(3.39)



Hy = (n-k+1 )a [ B(p,n+1,k-1) - aB(p,n,k-1)]
+(n-k+1)p2B(p, 0, k-1)-(n-k+1 );}\y
e-1)a+p.§ 1-(n-ker1) (1+¥)} ] [1-B{p,n,k-1) ] v e (3.40)
The expression for the asymptotic variance for Cases
IT and IV is the’same. It may further be noted that the

maximum likelihood equations (3.28) and (3.30) are the same

except for the second suffix, since w=u-k for u=k,k+1,...,1.

3.4 Comparison Between Situations A and B

with Respect to Censored Sampling*

)

3.4.1 All the cases ceonsidered in Situation B can be regarded
as particular cases of censored sampling of Type 1 as defined
by Gupta [32] . For instance T observations on the random
variable v of Case III can be regarded as a censored sample

on the random variable s of the population f3(s) defined by
(2.4) in Chapter II, right hand tail of the sample being
censored. In other words the exact value of s is available if
s £k-1 and the exact value of s is not available if k £s < n;

for in the latter case it is only reported that s lies in that

* Definition of censored sampling and the distinction between
Type I and Type II censoring is explained in Section 3 of

Chapter VII.
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range. Had the exact value of s in the range k £ 8 € n been
known, the reporting would belong to Situation A.Similar dis-
cussion holds for the remaining Cases. Case I can be regarded
as a censored sample from fz(s) defined by (2.3) with the
right hand tail being censored. Case II can be regarded as a
censored sample from fg(s) defined by (2.3) with the left hand
tail being censored. Lastly Case IV can be regarded as a
censored sample from f3(s) defined by (2.4) with left hand

tail being censored.

%3.4.2 QComparison of Variances

Since it is expected from realistic point of view that
the estimate based on censored sample should be less efficient
than that based on complete sample, the asymptotic variance
of Cases I and II respectively given by Z3.35) and (3.36) will
be greater than the asymptotic variance of Pran 2 under
Situation A, given by (3.16), namely pzq?TJ1. Similarly the
asymptotic variance of Cases III and IV ;espectively given
by (3.37) and (3.36) will be greater than the asymptotic
variance of Plan 3 under Situation A gigen by (3.17), namel&
pzq/TJ3. Furthermore, since it has been established that
J54J, in Section 3.2.3 and that the asymptotic variances of
Cases II and IV are equal, we have the #esult that the

asymptotic variance of Cagse II is greatér than ﬁzq/TJB.
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Thus the lower bound of the asymptotic variance of Case II is

increased. These results are well exhibifed in Table 3.6.

3e5 Method of Moments and NLE :

Circumstances do occur in practice where the egtimates
by the method of maximum likelihood and those by the method of
moments are identical. In case they differ one may prefer
the maximum likelihood estimates as they?are more efficient in
the class of such estimates even if theyfinvolve computational
difficulties. Unlike that in the usual situaxion we find here
that the estimates by the method of maxiﬁum ;ikelihood are
simpler than those by the method of mome@ts, so far the point
of computation is concerned. In Situatioé A it is found that
the maximum likelihood estimate is just fhe ratio of two
statistics whereas one needs iteration if one desires to
estimate it by the method of mements. In:Situation B both
the methods require iteration but in case of the method of
maximum likelihood the estimating equatién is somewhat simpler.
The purpose of introducing Section 2.7 is certainly not %o
encourage the methed of moments so far the question of
estimating the fraction defective under curtailed sampling
plans is concerned, but the purpose is jﬁst to study the

nature of these estimates under this method.



%346 A Numericel Example ¢

We shél} illustrate Case II by a numerical example.
We consider the same value of n and k as considered in the
numerical example of 3%.2.4, namely, n=25 and k=3%. Suppose an
inspector administers Plan 2 with n=25 and k=% and reports
only the number of articles inspected and the information
regarding the acceptance or rejection of the lot. Table 3.5
gives the distribution of 50 observations associated with the

inspection of 50 lots.

Table %.5

Number of Number of Number o6f Number of Number of Number of
articles rejected articles rejected articles accepted

inspected lots inspected lois inspected lots
(1) (2) () (2) 3) (4)
3 0 15 2 25% 35
4 0 16 0
5 0 17 0
6 1 18 0
7 0 19 0
8 1 20 0
9 0 21 2
10 1 22 1
11 1 23 1
12 0 24 1
13 2 25 2
14 0 - -
Total - - 15 - 35

¥ Acceptance of a lot under Flan 2 implies that the number of
articles inspected is n.



From the above table we find that

25

5, > ur 2=252 and T

= T=Oon
2"t oy, a,? 7

T =35, T

a, e

Referring to the tables of Cumulative Binomial Probabi-
lity Distribution [ 551 for n=25 and k=% we find the following

by inspection:

p 0.07 0.08 0.09
1-B(9,n,k-1) 0.25344 0.32317 0.39370
B(p,n,k-1) 0.74656 0.6768% - 0.60630

Therefore we take the initial value of p as 0.08 1o

start the iteration. The following are the results of iteration:

Initial value of p Value of p from eguation (%.28)
0.08 0.0766592
0.07659 , 0.078381
0.07838 0.077446
0.07776 0.077770
0.07777 & 0.077766

Hence we take the estimate of p as 0.07777. The
hypothetical value of p used for obtaining the above frequency
distributien is 0.09. For this hypothetical value of p the
asymptotic variance of the estimate of p using equation (3.3%6)
" is 0.00009088. Therefore, S.E.(ﬁ)=0.6095. Absolute difference

between the estimate of p and the hypothetical value of p i.e.



| 0.07777-0.09] = 0.01223 may be attributed due to sampling
fluctuations since it is merely 1.29 times the S.E. (D).
FPurthermore, in practice, one may substitute tbé egtimate of

p in (3.%6) to compute the estimate of the asymptotic variance.

Furthermore, we have calculated the asymptotic variance

for all the cases for different vaiues of p ranging from 0.04
to 0.20. These results aleng with the asymptotic variance
under complete information (i.e. paq/TJ1 and p2q/TJ3) are
presented in the Table 3.6. It may be noted that here also T
times the variance is presented for the same reason explained
against Table 3.4. For this purpose also we have used the

Tables of the Cumulative Binomial Probability Distribution.[ﬁB] .
/
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