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CHAPTER - V

MISCELLANEOUS ASPECTS 01 CURTAILED SAMPLING PLANS

5.1 In this chapter we have considered some miscellaneous 

properties of the maximum likelihood estimates of the fraction 

defective in Curtailed Sampling 3?lans in Situation A only, 

given in earlier chapters. They are: the relation between

ASN and the variance of these estimates, bias, sufficiency etc.

5.2 Average Sample Number :

It may be desirable to recall the definitions of the 

random variables y, z and their probability functions from 

Section 2.3 to derive the ASN for the various Plans.

Plan 1: ASN is obviously n in this an.

Plan 2: Since the sample number takes the value n

when a lot is accepted and takes the values associated with 

y when a lot is rejected, the average sample number will be

ASN = n X ( “ )pXcLn~X+ I. y(y-1 )pk</~k 

x=0 * y=k k-1

= nB(p,n,k-l) + K [j-B(p,n+1 ,k)] /p

= J2/p “ J-)/p since J2 = J1 ...(5.1)
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Plan. 3: In this Plan, since the sample number takes

the values associated with z when a lot is accepted and takes 

the values associated with y when a lot is rejected, we obtain 

the following expression for the average sample number J 

n \ n
ASH

z=n-k+1 n_J£ y=k
•k

(n-k+1 )B(p,n+1 ,k-1 )/q+k Cl-B(p,n+1 ,k)t) /p

J4/p = J5/p, since J. = J, 4 3
.. .(5.2)

Expressions (5-1) and (5.2) are alternately derivable from 

expressions (3*8) and (3-10) since

n( ni 2+ yr 2)/l
» y=k ’

and j- ^ iai>3 + (n-k+1) T&^+ yr^^/fn
z.

y=k

are the numbers of articles inspected per lot, respectively 

in Plans 2 and 3.

lemma 1 and 2 proved in Section 3*2.3 lead to

ASH (pi an 3) 4 ASH (Plan 2.) ^_ASH(Plan 1) ...(5.3)

which is of course an obvious fact.

5*2*1 Relation Between ASH and Y(MLE) s

Comparing the expressions of the asymptotic variances 

of the maximum likelihood estimate of p given by (3-15), (3.16),
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and (3.17) with those of ASN given hy (5-1), (5.2) and (5.3) 
we find that in all the plans the ASI has a common feature, 
namely,

ASN = fffg) ...(5.4)

Thus, for fixed T and p, the variance ©f the estimate 
is inversely proportional to the average sample number.

5.2,2 Saving in Inspection Tersus loss in Efficiency!
As one passes from Plan 1 to Plan 2 there is saving 

in inspection. This saving, in per cent, may he defined as 
ASN (Plan 1) - ASN (Plan 2) „AA

jglp^jInT}
= (1- J.j/npJ'lOO ...(5.5)

Similarly, the percentage saving in the inspection as one 
switches over to Plan 3 from Plan 1 will he defined as

ASN (Plan 1) - ASN (Plan 3) ,nn 
ASK (Plan yj

= (1 - J„/np)lOQ . ..(5.6)
5

Then recalling (3.21) and (3.22) which give the efficiencies 
in estimation of Plans 2 and 3 with respect to Plan 1, we see 
that the percentage loss in efficiencies in estimation as one 
passes from Plan 1 to Plans 2 and 3 are

(1 - J1/np)100 
and (1 - J^/np)lOO .
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Klaus one can state that loss in efficiency in 

estimation is counter-balanced by saying in inspection. It 

may be restated that the purpose of these plans is not to 

estimate the fraction defective, but a reduction in inspec

tion cost. One has always to pay a price for any reduction 

in inspection and in this case, this price has been paid by 

a decrease (reduction) in the efficiency of the estimate.

The above fact is numerically illustrated in the 

Tables 5-1 and 5.2. Columns (3>, (4) and (5> of Table 5.1 

give ASS of Hans 1^2, and 3 for n=25, k=3* Columns (6), (7) 

and (8) give the asymptotic variance of the maximum likeli

hood estimates for these plans. They are reproduced from 

Table 3*4 just for ready reference. Columns (9) and (10) 

give saving in inspection or loss in efficiency in per cent. 

An entry in Column (9) is

( 1 . ) 100Column (37
0r

/ „ Column (6) \ „AA 
( 1 " Column C7) } 10°*

Table 5.2 is an additional example for n=80, k=5*

It is revealed from columns (9) and (10) that the 

saving in inspection (and loss in efficiency) increases as p 

increases. This is in accordance with expectations, since a 

greater fraction defective means a greater probability of
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rejection and. thereby curtailingof the inspection in a greater 

number of cases. Furthermore, it is worth noting that there is 

no appreciable saving in inspection if one administers Plan 3 

instead of Plan 2.

5.2.3 A Remark on Craig’s Result Li43 :

Craig CHI has stated that Statistical Research 

Group, Columbia University [563 has considered ASH of both 

the curtailed sampling plans of this text, namely, Plans 2 and 

3, and adds that neither [563 nor Bury [5 3 > who has 

considered ASH of these plans, has given any numerical example. 

It is, clear from Craig's paper thajjhe considers ASF of only 

Plan 2 and ignores Plan 3, stating merely that the effect on 

ASF of Plan 3 is small (but surprisingly he does not confirm it 

numerically). He then gives new formulas for the probability 

of acceptance and ASF, which he claims are more convenient for 

calculation, if sample sizes are large and acceptance numbers 

are small and the existing binomial tables are not adequate.

firstly, we want to state that the formulas (5.2) and 

(5*3) for ASF of Plans 2 and 3 and the formulas given by [56] 

are basically the same. Patil [483 also has derived ASF of 

Plan 3 which is basically the same as (5.3). But the presenta

tion of the formulas given by £ 563 is rather clumsy.

Secondly we can calculate ASF of Plans 2 and 3 easily by using
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(5.2) and (5.3) and the Tables of cumulative Binomial 

probability Distribution, for all the "typical examples he 

has worked out. At this stage, the importance of the 

recurrence relation (3* 11) giving B(p,n+1,k) in terms of 

B(p,n,k) should be pointed out. It is very likely that, 

for large values of n the binomial tables may not give the 

cumulative probability at an unit interval for n. We have 

used this recurrence relation (3*11) to over-come this 

difficulty while calculating Jg and J^. Calculations of J^ 

and are required to determine ASET and V(p). Table 5*3 

gives the details of the cauculations of ASH for Plans 2 and 3 

for n=100, c=2, k=3* This is one of typical examples considered 

by Craig. The ASH of Plan 2 given in Column (6) of this table 

tallys with that given by Craig. As explained earlier, the 

reduction in inspection when one uses Blan 3 instead of Plan 2 

decreases as p increases (or as probability of rejection of a 

lot, given in Column (2), increases).

5*3 Bivariate Approach :

The probability functions f. given by (2.2), (2.3),
t)

(2.4) associated, with the Plans given in Section 2.3 can be 

thought as bivariate distributions, let the number of defectives 

in a group of inspected articles be denoted by X and the number 

of items inspected be denoted by Y. Then the bivariate proba

bility functions associated with the plans are as follows:
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Plan 1 :
P (X defectives, Y items inspected)

' ( | )pxq.n”x, 0 Y=n

— i

( l )pV"X, k4X4n, Y=n ...(5-7)

0, otherwise

Plan 2:

P (X defectives, ■ Y items inspected)

// n x X n-X ( x )P q , 0 4 X 4 k-1, Y=n
.

/Y-1 \ k Y-k(k_-|)p q » X=k, k 4 Y 4 n ...(5.8)

otherwise

3:

P (X defectives, Y items inspected)

/ f n-k+X\„n-k+1_X( n_k )q P 0 4X4k-1, Y=X+n-k+1

= 1
( Y-1 \_k Y-k( fc_, 4 X = k, k 4 Y 4.n ....(5.9)

0 otherwise
V.

In each of the above probability functions, the first 

part is associated with the acceptance of the lot and the 

second part is associated with the rejection of the lot® In 

cases of Plans 2 and 3» the above functions assign probabilities 

to points on two different lines, whereas in case of Plan 1, '
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the function assigns probabilities to points on a single line, 
it being a degenerate case.

Furthermore, each accepted or rejected lot will give 
rise to one observed pair (X,Y). For instance, if Elan 2 is 
administered on 1 lots, we will have 1 pairs of (X, Y) where 
for accepted lots the pairs will be of the form (X, n),
0 4 X £■ k-1, and for rejected lots the pairs will be of the 
form (k, Y), k ^ Y ^ n. One can further proceed with these 
pairs, as in Sections 3.2 and its subsections to obtain the 
likelihood functions, estimates of the fraction defective 
and asymptotic variances. The results will be identical. It 
is a matter of choice whether >to regard the probability 
function as a bivanate probability function or as a univariate 
probability function of a hypothetical variable s.

5.4 Bias :
Estimation of fraction defective under curtailed 

sampling plans was introduced by Girshick, Mosteller and 
Savage as early as in 1946 [28J . They considered estimation 
based on a single lot. Their main work was to determine an 
unique unbiased estimate in a sequence of binomial trials. In 
Section 3 of £ 28 ] , they have obtained the unquie unbiased
estimate when the inspection is of curtailed nature which 
resembles Elan 3 of our work. The estimate given by them may 
be denoted by p which is as follows:

o
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A _ Number of defectives observed
^g One less than the number of articles inspected

...(5.10)

if a lot is accepted
*

and ’ n = ®ne less than the number of defectives observed 
ana Pg one less than the number of articles inspected

if a lot is rejected.

This estimate in the present notations can be expressed as

z-1 0 n-k+i
A

P =
k-1
y-i ’

), if a lot is accepted 

if a lot is rejected.
...(5.11 )

"Following their theory, the unique unbiased estimate of the 

fraction defective in the remaining plans, namely, Plans 1 and 2 

can be obtained. Before we give these estimates we would like 

to mention that the theory developed in [28]] is well explained 

in Reliability Management, Methods and Mathematics £42]]

Their treatment is lucid.Then the unique unbiased estimates 

of Plans 1 and 2, are as follows:

Plan 1:

b = Number of defectives in n inspected articles 
*g Number of articles inspected

x '
n

Plan 2:

c = Number of defectives in n inspected articles 
pg Number of articles inspected

(5.12)

if lot is accepted
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and p = less than the number of defective observed
■^g One less than the number of articles inspected

if lot is rejected

* J ^ if lot is accepted
i.e. p = \ .. .(5.13)o V_1

[—=- if lot is rejected 
«/ *

How we have noted that the maximum likelihood estimate of the 

fraction defective derived in Section 3.2.1 has a common 

feature, namely,

r> = ffotal number of defectives noted 
p Total number of articles inspected

irrespective of the fact whether a lot is accepted or rejected

and valid for any number of lots inspected.

Therefore, if a single lot is inspected, the above 

formula leads to the following maximum likelihood estimate 

in the respective plans:

Plan 1

. C5.14.)

Plan 2s

p=

' 5 
n
k

.y

if a lot is accepted 

if a lot is rejected
...(5.15)

Plan 3:
A (or n-kVifcT" ^ if a lot is accepted

...(5.16)
k
y

* if a lot is rejected
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Comparing (5-. 15) and (5.16) with (5*12) and (5.11) and remem

bering the property of the uniqueness of the unbiased estima

tes of the latter, we conclude that the maximum likelihood 

estimates given by (5*14) and (5.15) are biased. Unique un

biased estimate and the maximum likelihood estimate are 

obviously identical in Han 1.

5-5 Sufficiency :

The usual criterion for a sufficient statistic is 

as follows:

Let xi, x0, , x be a random sample of size n from

the density f (x;9), a ^ x <b, where a and b do not involve 9, 

and let the joint density of these n random variables be 

g(x1,x2,...,x ;9) = f(x1;9). f(x2;9)..f(xn;9) If this density 

factors as
A

g (x^, Xg, •.. x^ } 0) = h(9 j 9). k( x.|, x2,. •., x^) ...(5.17)

where k (x^,Xg,...,kn) does not involve the parameter 9, then 

0 is a sufficient statistic for 9.

Now, likelihood function for Han 1 

Section 5*2.1 can be expressed as
A

L1 = Const pnTp1 nT-nTpi q. 1

given in

where is the maximum likelihood estimate of p as given in ' 

(3.1).
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It may be remembered that T in the above expression repre
sents size of the sample which is fixed. Thus, we find that p^ 
is a sufficient statistic for p, which is otherwise obvious.

likelihood functions Ig, 1^ for Plans 2 and 3 given in 
the same section, namely, Section 3.2.1 can not be factorized 
as desired in (5.17); for instance the likelihood function lg 
for Plan 2 can be expressed as

12 = const p
(nlaxj2+iyry)2)i2 CnZaI>2+ 2yry>2Kl-P2)

* <3- ...(5.18)
where Pg is the maximum likelihood estimate given by (3*2).

Comparing (5.18) with (5*17) we find that’the factor of 
(5.18), namely,

(n iaT 9+ lyr^ 9)p9 (nlav 0+ £yr^r 5)(1-Pg)x, 2 y,2'*2 x, 2 ^ y, 2'

Acannot be expressed as h (9; 9) i.e. as a function of a 
statistic and the parameter. Hence the maximum likelihood 
estimate Pg of Plan 2 is not a sufficient statistic for p. 
Same is true in case of Plan 3* Thus maximum likelihood 
estimates namely Pg, p^ of p under Curtailed Sampling Plans 

are not sufficient.

5.6 Minimum Variance Bound (MVB) :
let us verify whether the minimum variance bound un

biased estimator of p exists in the respective plans. If the
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likelihood function L can he expressed as

Jiogj. = KM rE.^p)i ...(5
^ 0 (p) L J

where (i) H is a statistic,

(ii) 0(p) is some function of p such that E(H)=J#(p), 
and (iii) I(p) = Amount of information = -iC'iFlog Ii/~dP^)/T 

then H is the minimum variance hound (MVB) unbiased estimator 

of 0(p).

We observed that in all the plans I(p) = (ASlJ/pq..

In Plan 1 condition (5*19) is fulfilled if we take 

$(p)=p* H=p^= the maximum likelihood estimate of p given by 

(3.1)« Thus, MVB unbiased estimator of p exists in Plan 1 and
A

is given by the maximum likelihood estimate p^. Such is not 

the case in Plans 2 and 3*

19)


