CHAPTER - V

MISCELLANEOUS ASPECTS OF CURTAILED SAMPLING PLANS

5.1' In this chapter we have considered some miscellaneous
properéies of the maximum likelihood estimates of the fraction
defective in Curtailed Sampling Plans in Situation A only,
given in earlier chapters. They are: the relation between

ABN and the variance of these estimates, bias, sufficiency ete.

5.2 Average Sample Number :

It may be desirable to recall the definitions of the
random variables y,z and their probability functions from

Section 2.3 to derive the ASN for the various Planms.

Plan 1: ASN is obviously n in this Flan.
Plan 2: Since the sample number takes the value n
when a lot is accepted and takes the values associated with

y when & lot is rejected, the average sample number will be

k-1 n
ASN =n 2 (2 0% L y(y-1 )pg¥ ¥
=0 y=k k-1

it

nB(p,n,k~-1) + K [1-B(p,n+1,k)] /p

i

JQ/P = J,/p since J, = J, eee(5.1)



Plan 3: In this Plan, since the sample number takes
the values associated with z when a lot is accepted and takes
the values associated with y when a lot is rejected, we obtain

the following expression for the average sample number 3

n n
AST = S i—;) n-k+1pz-(n k+1)+ 5 y( ) ko y- ~k
z=n=-Xx+1 y=k

i

(n-k+1)B(p,n+1,k-1)/q+k C1-B(p,n+1,k)] /p

= J4/p = J3/p, since J, = J «e.(5.2)

4 =93

Expressions (5.1) and (5.2) are alternately derivable from

expressions (3.8) and (3.10) since

( nt, ot E; yry’z)/T

md ) /
C A ia; 5+ (n-k+1 Ta 5+ 2; yry’Bt] T

y=k

are the numbers of articles inspected per lot, respectively

in Plaqs 2 and 3.

-

Lemma 1 and 2 proved in Seection %.2.% lead to

Ast(plan %) £ ASN(Plan 2) < ASN(Plan 1) eee(5.3)

which is of course an obvious fact.

5.2.1 Relation Between ASN and V(MLE)

Comparing the expressions of the asymptotic variances

of the maximum likelihood estimate of p given by (3.15), (3.16),
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and (3.17) with those of ASN given by (5.1), (5.2) and (5.3)
we find that in all the plans the ASN has a cemmen feature,

namely,

ASN = §§%§) eee(5.4)

Thus, for fixed T and p, the variance of the estimate

is inversely proportional to the average sample number.

5.2.2 8aving in Inspection Versus Loss in Efficiency:

As one passes from Plan 1 to Plan 2 there 1s saving

in inspection. This saving, in per cent, may be defined as

ASN (Plan 1) - ASN (Plan 2) 100
ASW (Pian 17

= (1- J1/np)100 eeo(5.5)
Similarly, the percentage saving in the inspection as one
switches over to Plan 3% from Plan 1 will be defined as

ASN (Plan 1) - ASN (Plan 3)
AST (Plan 1)

100

= (1 - J3/np)100 vee(5.6)

i

Then recalling (3.21) and (3.22) which give the efficiencies
in estimation of Plans 2 and 3 with respect to Plan 1, we see
that the percentage loss in efficiencies in estimatiocn as one
rasses from Plan 1 to Plans 2 and 3 are
(1 - J,/np)100
and (1 - J5/np)100 .
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Thus one can state that loss in efficiency in
estimation is counter-balanced by saving in inspection. It
may be restated that the purpose of these plans is not to
estimate the fraction defective, but a reduction in inspec-
tion cost. One has always to pay a price for any reduction
in inspection and in this case, this price has been paid by

a decrease (reduction) in the efficiency of the estimate.

The above fact is numerically illustrated in the

Tables 5.1 and 5.2. Columns (3), (4) and (5) of Table 5.1
give ASN of Plans 142, and 3 for n=25, k=3. Columns (6), €7)
end (8) give the asymptotic variance of the maximum likeli~-
hood estimates for these plans. They are reproduced from
Table 3.4 just for ready reference. Golumms (9) and (10}
give saving in inspection or loss in efficiency in per cent.
An entry in Column (9) is

Colum (4)
(1 - CoTam (57 ) 100

6r
(1 - Gopmas) ) oo,

Table 5.2 is an additional example for n=80, k=5.

It is revealed from columns (9) and (10) that the
saving in inspection (and loss in efficiency) increaseg as p
increases. This is in accordance with expectations, since a

greater fraction defective means a greater probability of
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rejection and thereby curtailingof the inspection in a greater
number of cases. Purthermore, it is worth noting that there is
no appreciable saving in inspection if one administers Plan 3

instead of Flan 2.

5.2.% A Remark on Craig's Result [141

Craig [147] has stated that Statistical Research
Group, Columbia University ([567] has considered ASN of both
the curtailed sampling plans of this text, namely, Plans 2 and
3, and adds that neither [56] nor Bury [5] , who has
considered ASN of these plans, has giveﬁ any numerical example.
It is. cléar from Craig's paper thaphe considers ASN of only
Plan 2 and ignores Plan 3, stating merely that the effect on
ASN of Plan 3% is small (but surprisingly he does not confirm it
numeriéally?. He then gives new formulas for the probability
of acceptance and ASN, which he claims are more convenient for
calculation, if sample sizes are 1arge and acceptance numbers

are small and the existing binomial tables are not adequate.

Firstly, we want to state that the formulas (5.2) and
(5.3) for ASN of Plans 2 and 3 and the formulas given by [56]
are basically the same. Patil [487 also has derived ASN of
Plan 3 which is basically the same as (5.3). But the presenta-
tion of the formulas givem by | 56 is rather clumsy.
Secondly we can calculate ASN of Plans 2 and % easily by using



(5.2) and (5.3) and the Tables of cumulative Binomial
probability Distribution, for all the typical examples he

@as worked out. At this stage, the importance of the
recurrence relation (3.11) giving B(p,n+1,k) in terms of
B(p,n,k) should be pointed out. It is very likely that,

for large values of n the binomial tables may not give the
cumulative probability at an unit interval for n. We have
used this recurrence relation (3.11) to over-come this
difficulty while calculating J2 and J4. Calculations of J2

and J4 are required to determine ASN and V(p). Table 5.3

gives the details of‘the cauculations of ASN for Plans 2 and 3
for n=100, c=2, k=%. This is one of typical examples considered
by Craig. The ASN of Plan 2 given in Column (6) of this table
tallys with that given by Craig. As explained earlier, the
reduction in inspection when one uses Flan % instead of Plan 2
decreases as p increases (or as probability of rejection of a

lot, given in Column (2), increases).

5% Bivariate Approach

The probability functions f, given by (2.2), (2.3),
(2.4) associated with the Plans given in Section 2.3 can be
thought as bivariate distributions. Let the number of defectives
in a group of inspected articles be denoted by X and the number
of itens inspécted be denoted by Y. Then the bivariate4proba~

bility functions associated with the plans are as follows:
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Plan 1 :

P (X defectives, Y items inspected)

(3 ™%, 0 4X & k-1, ¥=n
o, otherwise

Plan 2:

P (X defectives, Y items inspected)

( g )qun'X, 04X & k-1, Y=n
(LoP, Ik, k<Y <n .. .(5.8)
0, otherwise

Plan 3%:

P (X defectives, Y items inspected)

(2P pX 0 <x<k-1,  YEXmeksd
( ij JpigrE X=k, k<&Y<n ... .(5.9)
0 otherwise

In each of the above‘probability funétions, the first
part is associated with the acceptance of the 1ot and the
second part is associated with the rejection of the lote In
cases of Plans 2 and 3, the above functions assign probabilities

to po¥nts on two different lines, whereas in case of Plan 1,



1

the function assigns probabilities to points on a single line,

it being a degenerate case.

Furthermore, each accepted or rejected lot will give
rise to one observed pair (X,Y). Por instance, if Plan 2 is
administered on T lots, we will have T pairs of (X, Y) where
for accepted lots the pairs will be of the form (¥, n),

0 £X ¢ k~1, and for rejected lots the pairs will be of the
form (k, Y), kK ¢Y £ n. One can further proceed with these
pairé, as in Sections 3.2 and its subsections to obtain the
likelihqod functions, estimates of the fraction defective

and asymptotic variances. The results will be identical. It

is a matter of choice whether to regard the prebability
function as a bivanate probability function or as a univariate

probability function of a hypothetical variable s.

5.4 Bias :

Estimation of fraction defective under curtailed
sampling‘plans was introduced by Girshick, Mosteller and
Savage as early as in 1946 [28:] « They comsidered estimation
based on & single lot., Thelr main work was to determine an
unique unbiased estimate in a sequence of binomial trials. In
Section 3 of [ 287 , they have obtained the unquie unbiased
estimate when the inspection is of curtailed nature which
'resembles Plan 3 of our work. The estimate given by them may

be denoted by ﬁg‘which is as follows:
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N Number of defectives observed
pg One less than the number of articles inspected

, ...(5.10)
if a lot is accepted

)
and - N _ One less than the number of defectives observed
n pg One less than the number of articles inspected

if a lot is rejected.

This estimate in the present notations can be expressed as

L4

zi1 (= n-;+i)’ if a lot is accepted

e (5.11)

g ?
It

g -
§:% , if a let is rejected.

Following their theory, the unique unbiased estimate of the
fraction defective in the remaining pleamns, namely, Plans 1 and 2
can be obtained. Before we give these estimates we would like

to mention that the theory developed in {28] is well explained
in Reliability Management, Methods and Mathematies [42] .
Their treatment is lucid.Then the unique unbiased estimates

of Plans 1 and 2, are as follows:

Plan 1:

A Number of defectives in n inspected articles
pg Number of articles inspected

ee.(5.12)

|
Bl

Flan 2

% ~ Number of defectives in n inspected articles
g Number of articles inspected

if lot is accepted



and ~ _ One less than the number of defective observed
pg One less than the number of articles inspected

if lot is rejected

R z if lot is accepted
i.e. P, = .o (5.13)
%E% if lot is rejected

Now we have noted that the maximum likelihood estimate of the
fraction defective derived in Section 3.2.1 has a éommon

feature, namely,

A - Totel number of defectives noted
P Total number of articles inspected

irrespective of the fact whether a lot is acceptéd or rejected

and valid for amy number of lots inspected.

Therefore,‘if a single lot is inspected, the above
formula leads to the following maximum likelihood estimate

in the respective plans:

Plan 1:
chx. 000(5014’)
Plan 2:
r§ if a lot is accepted
o= 1 . e (5.15)
; if a lot is rejected )
Plan 3%: i ( i )
= AOr T if a lot is accepted
n - ¢ ’
p=)? n-ktid .o (5.16)
% ’ if a lot is rejected




Comparing (5.15) and (5.16) with (5.12) and (5.11) and remem-
bering the property of the uniqueness of the unbiased estime~
tes of the latter, we conclude that the maximuam likelihood
estimates given by (5.14) and (5.15) are biased. Unigue un-
biased estimate and the maximum likelihood estimate are

obviously identical in Flan 1.

5.5 Sufficiency :

The usual criterion for a sufficient statistic is

as follows:

\

Let X190 Xy eee gn be a random sample of size n from
the density f (x;6), a £ x <b, where a and b do not involve 6,
and let the joint density of these n random variables be
B(Xyy Xy 00 ey 30) = £(x,58). £(x,50)..£(x,30) If this density
factors as

A .
g(x1,x2,...xh;9) = h(e; ©). k(x1,x2,...,xn) eee(5.17)

‘where k (%ys%py+ -,k ) does not involve the parameter 9, then

~ .
@ is a sufficient statistic for O.

Now, likelihood function L, for Plan 1 given in
Section %.2.1 can be expressed as

4 nT-nTﬁ
L, = Const pnTp1 q . 1

1
where ﬁ} is the maximum likelihood estimate of p as given in -

(3.1).



It may be remembered that T in the above expression repre-
sents size of the sample which is fixed. Thus, we find that §1

is a sufficient statistic for p, which is otherwise ebvious.

Likelihood functions &,, L, for Plans 2 and 3 given in

3
the same section, namely, Section 3.2.1 can not be factorized
as desired in (5.17); for instance the likelihood function L,

for Plan 2 can be expressed as

~ A
(n‘zax’2+iyry,2)p2 (n Zay, ot zyry,g)(T-Pz)

L2 = const p . q
000(5018)

, ;
where 52 is the maximum likelihood estimate given by (3.2).

Comparing (5.18) with (5.17) we find that the factor of
(5.18), namely,
~ ~
(n 28, ot Zyry’Q)p2 (n.Zax’2+ zyry’z)(1—p2)
P + g
N
cannot be expressed as h (0; ©) i.e. as a function of a
gtatistic and the parameter. Hence the maximum likelihood
estimate %2 of Plan 2 is not a sufficient statistic for p.
Same is true in case of Plan %. Thus maximum likelihood
estimates namely 52, %3 of p under Curtailed Sampling Plans

are not sufficient.

5.6 Minimum Variance Bound (MVB) :

Let us verify whether the minimum variance bound un-

biased estimator of p exists in the respective plans. If the



likelihood function L can be expressed as
Vlog L TI{p)
Llog Lo IR) Ty o g (p) .+ (5.19)
2P ,@(p) I: ]

where (i) H is a statistic,

(ii) @(p) is some function of p such that E(H)=@(p),
and (iii) I(p) = Amount of information = -E(?szlog L/?)pz)/m
then H is the minimum variamce bound (MVB) unbiased estimator

of #(p).
We observed that im all the plans I(p) = (ASN)/vq.

In Plan 1 condition (5.19) is fulfilled if we take
#(p)=p, H=§1= the maximum likelihood estimate of p given by
(3.1). Thus, MVB unbiased estimator of p exists in Plan 1 and
is given by the‘maximum likelihood estimate %1. Such is not

the case in Plans 2 and 3.



