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CHAPTER 10

USE OF A PRIORI KNOWLEDGE IN THE ESTIMATION COF A
PARAMETER FROM DOUBLE SAMPLES

10.1 TIntroduction

When there is no a priori information about the
value of the population parameter, then various methods
such as maximum likelihood, minimum variance etc., may
be used to estimate the parameter. We suppose here
that there exists an uniformly minimum variance unbiased
estimator of the population parameter. In practical
problems the experimenter possesses some guessed estimate
for the value of the population parameter. Using this a
priori information, Katti / 22_/ obtained a better
estimator of the population mean from double samples
than the estimator obtained from the pooled sample when
some guessed estimate for the value of the population
mean was available. Herg we generalise this method for
obtaining a better estimator of the parameter from

double samples when some guessed estimate of the value
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of the population parameter is available. The methed
developed here is applied to obtain a better estimator
for the variance of a normal population from double
.samples than the estimator obtained from the pooled
sample when some guessed estimate of the value of the
variance is available. The method consists in
constructing a region in the space of var&ance using

the guessed estimate, using the estimater based on the
single sample if the estimator belongs to the region

and drawing a second sample and using the estimatoer
based on both samples if the former estimator does not
belong to the region. This region has been termed a
preliminary test region (P.To region) and the resultant
estimator a preliminary test estimator (P.T. estimator)
by Katti /22 7. As pointed out by Katti /722 7, it is
to be noted that this approach differs from the Bajesian
approach in the sense that the guessed value is used
only in constructing the region. The rest of the
estimation procedure is free from the subjective
judgement behind the guess. It is to be further observed
that in such applications as agriculture, wherein samples
can be drawn in succession, an acceptance of the estimate

based on the first sample saves the second sample.

The procedure suggested here has some points of

similarity with the two-sample procedure due to Stein
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/752 7, in connection with determining the confidence
intervals of preassigned length and confidence
coefficients for the mean of a normal distribution with

the unknown variance.
10.2 Preliminary test region and estimator

A A
et © and ©

1 2
variance unbiased estimators (UMVUE) of the population

be the uniformly minimum

parameter © Tbased respectively on the first sample of
size ny and the second sample of size n,. Let

8 = a§1 + b8, where a+ b =1, be the best estimator
of © based on both samples, by best estimator it

being undeistood that it is uniformly minimum variance
unbiased estimator in the class of all unbiased
estimators of the type 181 + mag,
m > 0. ILet L be the parameter space of 6 and R' be

0

l+m=1, 1> 0,

A A
the region of eie R' will also be a region of 62.
and R!' are intervals of the real line. Because

A AL A A A
0 = ae1 + b92 is convex in 61 and 92 and only

gonvex sets on the real line are intervals, it follows

A
that © has the same range R'. The P,E. estimator

. LN
consists of choosing a region R in the 91 space and

A
accepting 91 as an estimate of 6 if 61 R, and

- IN ~ =
accepting the pooled estimate 6 if 618 R, where R

denotes the complement of R. The resultant P.T.
estimator will be denoted by GPO The goodness of the
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~ estimator will be measured by its expected mean square
(E.M.S’) ivoeb E(GP - 6)2.

A A
Let 91 and 62

A A
density functions pl(aﬂe) and pz(ezle). Let 6, bDe

have continuous probability

the guessed value of 6. Then if I "is the true

vglue of ©, +the E.M.S. of BP is given by
E.M.S. (67 ]8,)

- P N2 /A A A A
= é’ [ (07-85)p, (6,10,)0,(0,10,)a0, a6,

N
1 99

- 5. 0. )20 (5 2
= [ (8,-85)p (6 [65)a0,

A
91 € R

A 2 aS A A A
(10.2.1) J é (6-64)“p (8, 165)p,(8,16,)3d6, a0,

+
A —
818R 9

- PIA 2 A A
""A f (91 90) Pl (81 leo)del
9163 -

2 A 2.2 A A A
+ I [% (8,-85)"+b V(ezlee)]pl(elfeo)del
91€R - - .

= a%v(8, [o,)+%V (B, l0,) +
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£ [ [(1-®)(B,~0) b (8, 10,)]
8,€R ’

oA A
91(91190)%19

A A
where v(eileo) denotes the variance of 8, 1 =1,2,
if 90 is the true value of 6.

We choose R such that E.M,S.(BP[GO) is minimum,

Minimising E.M.SQ(SPIGO), we get
(10.2.2) (1 -a®)@, -0.)% - vv(6 le.) =0
°se 1 0 270 :

Hence R is given by

(10.2.3) R:[;O-bfv(gzleo)/(l—az), 90+5J;(§2]90)/(1~32)}

and the P.T. estimator is given by

(10.2.4)

if @8_.ER.

A
= @ = gb 29 1

)
1 ¥ 5

10.3 Properties of P.T. estimator

(a) Efficiency of P.T. estimator. When % is

the true value of 6, then it follows from (10.2.1) that
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P

EM.S. of @ for the P.T., region is given by

E.M.S. (67 |0,)

(10.3.1) = V(gleo)-i-’(l-agl)\ (6,-6,)%p (8, |0 )6,
: 8 er

- sz(SziGOZ S v (6 ley)a8, .

8163

If however, eo is not equal to the true value

of 6, the E.M.S. of 8% is given by

E.M.S. (6% ]8)

(10.3.2) = V(8]e)+(1-a%) [ (6,-0)%p, (8, ]0)as,

)
Fa)
6, €er -

1

- bzv(azlez f pl(é\lie)dé\l.
e

1€R

P

The efficiency of @ relative to the best

unbiased estimator based on both samples will be measured

by

(10.3.3) E = [B.u.S.(8]0)]/[B.1u.5. (6% |0)].
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We give bounds for the efficiency E of the P.T.

estimator in the following lemma.

Temma 10+.3.1s The efficiency E of the P.T.
estimgtor SP relative to the best unbiased estimator

® based on both samples satisfies the inequality

-1
ML+ (1-a®)me - ©°BC]

-1
> Ey [+ (1-e®)me - voBC]

where A = b\fv(é‘zleo)/u-az), B = v(@zle),

A
¢= [ p(6,10)a6,/v(Ble) and 'm and M are

9163 :

respectively lower and upper bounds of the function
A A 2
f(elie) = (91 - 9) in the interval (60 - Ay 65 + ),

90 being the guessed value of 0.

Proof. The result of Lemms 10.3.1 immediately

follows from the following mean value theoremﬁ

" If B (x) be positive in the interval

“{a < x< b)) and f(x) is integrable, then

b b b :
nf plx)ax & [ plx)f(x)ax < M [ B(x)ax,

a a ~ . a
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where m and M are respectively lower and

, ‘ 1"
upper bounds of f(x) in the interval (a,b),

A A A A
and letting #(6,) = p,(8,18), <=8 le) = (&, - 6)%,

a = 60 - A and b= 80 + A.

We discuss below the efficiency of GP relative
to © for four cases: (i) @ < 0y - 4, (ii) 65 -4 %
6 < €y (i11) 85 £ 8 £ 05 + A, and (iv) 0, + 4 L8,
because for each case m and M are easily found. In

cases (i), (ii), (iii) and (iv), let

-1
[t + (1-8%) (04-4-0)%c - v°BC]

P
1

-1
Y = [1+ (1-0%) (e +a-0)%c - v¥8c]

-1
z = [1-0°BC] .

- A, then E satisfies

Case (i). If © < 0,

the inequality

(10.3.4) X>E>Y.

Case (ii). If 05 - A <0 < 0,, then E satisfies
the inequality ‘

(10.3.5) z

v
=
v
.
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Case (iii). If 8, < 0 & 6y + A, then E satisfies;
. ("(\//}‘ - J ®~ ,
the inequality NS &
IR e

(10.3.6) zZ>E>X.

We can combine cases (ii) and (iii) to obtain wider

bounds on E as

-1 -1
[ -1v%c] » B> [1+42%(1 - a®)c - v°B]]

whenever |6 - eoi £ A.

Case {(iv). If O, + A £ 6, then E satisfies the

0
inequality

(10.3.7) Y > E> X.

Corollary 10.3.1., If © = 99, i.e., when the
guessed value 60 is equal to the true value 8, then

E satisfies the inequality

This follows from (10.3.5) or (10.3.6) by putting.
® = 0, and noting that (1 - a%)2® = bZs,

Corollary 10.3.2. The asymptotic efficiency E,

when © - + o is equal to unity.
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This follows from (10.3.4) and (10.3.7) by noting’
that BC - O and C(8y A-0)°~0 as 0 - + .

(b) The probability of aveoiding the second sample

and the expected percentage of overall sample saved.

If we use P.T. estimator, then the probability of

avoiding the second sample is given by

BO+A
A A A
(10.3.8) P = Pr(6,€R) = [ p, (0, ]6,) a8,

eG<A :

and the expected percentage of overall sample saved is
(10.3.9) [n,/(n, + n,)]? x 100,

when 6 = eo is true.

Kattits éf22;7 results {3), (5) and {6) about the
estimation of mean from double samples follow from the
results (10.2.4), (10.3.1) and (10.3.3) of the present
chapter. However, the results (5) and (6) of Katti / 22 7

contain error or misprint; there should be 1/?2¥u in

place of 1/VIxw.

10.4 Application to the estimation of the variance of

a normal popﬁlation
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Let X4y, (L1 =1, 2y eeey nl) be the first sample
and Xpj, (i =1, 2, eeey nz} be the second sample. It
is assumed here that x ' 8 are all independently
normally distributed with variance vg. Let ‘Tg be

the guessed estimate of ¢2.

n

. = 12 2 _
421 (Xli - xl) / (n1-1) and 52 =

NF

2

N M
!._.\

i

(XZi - ;2)2 / (n2 - 1) be uniformly minimum variance
unbiased estimators of 62 based respectively on the first

and second samples.
Let s2 = (n -1)52 + {(n —1)32 / (n,+n,-2) be
1 1 2 2 1772

the best estimator of o~ based on both the samples. Let
the preliminary test (P.T.) estimator of o® be denoted

2 : :
by op » Noting that a = (n1~1)/(n1+n2-2), b = (ng_l)/
(ny+n,-2) and V(s or'"g) =205 / (n,-1), it follows from

»(10@203) and 110.2.4) that the P.T. region and P.T.

estimator are given by

(10.4.1) R= [og(l-rﬁ/(znl;nz-z)) , o"g (1+v17(2n14n2—3)):| ,

op = 8y, if s

m
=)

(10.4.2)

i
w
ot
l,.b
w
R SR N
™
~
*
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(a) Efficiency of @% when (rg is the true value

of .

When crg is the true value of the variance, then

it follows from (10.3.1) that RE.M.S. of c{é is given by

(10.4.3) E.M.S.(o-%i cr'g) = [20% / v1(1+u)] x T
where

T =

{Q(t |v1+4) - Q(t +4)}

i: u(u+2) (Vv +2)
1+
2(u+1)

(u+2)V2 . .
- {Q{tllvl+2) - QF"’z"’l‘"@}

uf2V "+ V -
g(u " 1) {Q(tllvl) Q(t, IVQ}J

g =yl Yy o= no-1, u = vz/vl, ty = vl[ Vz/(zv 2)]
2 vll‘[mi 2/(2v1+v2) and

<t
it

ol

A |v) = 2""/2((’?72)'12 { %) o= X/2q x2 ,

which is tabulated in / 32_7,

Noting that the variance of the best estimator s2



A % 185

based on both the samples is 2¢ré / (n1 + g - 2), when

. 2
cg is the true value of 6‘2, the efficiency E(a%lab)

of c*% when o*g is the true value of 0__2 is from

(10.3.3) given by
(10.4.4) ' B( o-gl o-§) = 1/t,

where T has the same meaning as in (10.4.3).

. In Table 10.4.1, the efficiency B( °'%l °‘§) of

0‘§ when c-g is the true value of the variance, is

given for various values of u and Vl. That the
efficiency is greater than 1 follows from the corollery
10.3.1. Table 10.4.1 confirms this proved result. This
shows that when the guessed value ag is the true value
of 62, then the P.T. estimator c{% is better than the
best estimator s2 based on both the samples. The
efficiency is maximum in the neighbourhood of u = 2.5
and the maximum average value of efficiency is near to
1.211 which implies that for maximum efficiency one should
plan the siges of the first and second samples in such a
way that the degrees of freedom for the unbiased estimator

of population variance in the second sample is nearly 2.5

times that in the first sample.
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We also note that the efficiency remains fairly
constant for fixed value of wu. From (10.4.4), it
follows that the efficiency tends to 1 as u - «, The

- pumerical results of Table 10.4.1 confirm this result.

{b) The probability of avoiding the second
sample and the expected percentage of overall sample

saved.

When the guessed value ‘Tg is equal to the true
value wz, the probability of avoiding the second sample
and accepting si a5 the estimate of Gj% is obtained

from (10.3.8) and (10.4.1) as
Ty
pr(s € R) = [ p,(s?| c2)as®
1 A 1 1
. . l - .

. K
i

(10.4.5) !

1l

Q(tllm - Q(tglvl?,

where tl, tz, Q and Vl have the same meanings as in
(10.4.3). The expected percentage of overall sample in

saved in this case is from (10.3.7) given by
(10.4.6) [(w, + 1)P x 100] / E\Tl'(n + 1) + 2],

where V, and u have the same meanings as in (10.4.3)

in Table 10.4.2, we give the expected percentage of
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overall sample saved for various values of wu and Vl,

if P.?. estimator is used.

From Table 10.4.2, we observe that if P.T.
estimator is used, then the expected percentage\of
overall sample saved (i) remains fairly constant for
fixed value of u and (ii) is largest when u is in the
neighbourhood of 3. This implies that if it is possible
to take a sample of sige 102, then for best results, one
should take a sample of size 26 to start with, followed
by another of size 76 only if the preliminary test rejects

the guessed value.

(¢) Efficiency of o-% when q~§ is /%not the

true value of 02.

When wg is not the true value of the variance,

then from (10.3.2), we obtain E.M.S. of c{g as

¢ 2] 2 )
(10.4.7) EoMoS.{ c-P! ) =2t/ V1(1+u)IT',

where

' u(u+2) (V,+2) (

(u+2)72
plrevey -{ Q(tlkivl+2)-Q(t2k{v1+2)} +
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u(2V 47 ,-2)
TcTEy {Q(tlklvl?“a(tzkwl)} ] !

where Vl’ V2, tl, tz, u and Q have the same meanings
28 in (10.4.3) and k= of /oF. Noting that the
variance of the best estimator 32 of 62 based on
both the samples is 2 oF / (nl + n, - 2), the
efficiency E( o-%l 0-2) of 0*% when rg is not the true

value of variance is from (10.3.3) given by
t
(10.4.8) E( c-% | o) =1/",

where T' has the same meaning as in (10.4.7).

The behaviour of the funection E(«r% I cg) for
various values of k = Gﬂ? /o--2 and V1 = 6, 10 and 20

was studied through graphs and it was found that the
efficiency is greater than unity as k - o, In all the
three cases, there is an‘interval within which if k
lies the bad guess will result in a heavy loss. It is
believed that these observations will be true in the

general case as well.



