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APPENDIX 4.1

lo show that a SRGD design with parameters 
b=v-m+r, v = 2k, where k is an odd integer, 
cannot exist.

Proof. As v = 2k, we have b = 2r» Hence 
substituting b = 2r in b = v - m + r, we get 
v = m + r. But for a SRGD design v = inn. Hence 
r = m(n - 1). Now rk - v = 0. Hence => rk/v = 
m(n-l)k/2k = m(n-l)/2.

Now v = mn = 2k. As k is an odd integer, 
therefore m and n cannot both be even, simultaneously. 
Hence m or n must be a multiple of 2, but not of 2a, 
where a > 2; while the other must be odd. Thus, we have 
two alternatives:

(i) m = 2t, where t is an odd positive integer 
and n is odd, or

(ii) n = 2s, where s is an odd positive integer 
and m is odd.
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Suppose (i) holds® Now k = cm = mn/2 = tn, so 
that c = n/2. Hence n must he an even Integer, which 
contradicts the requirement in (i) that n he odd.
Hence the given design cannot exist.

Next, suppose that (ii) holds. Substituting the 
value of n = 2s in = m(n-l)/2, we have =
ms - (m/2). As m is odd, ^g is fractional which 
is impossible. Hence the given design cannot exist.
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APPENDIX 4.2

To show that a triangular design with parameters 

satisfying the relations rk - v?^ = n (r - 7\^)/2, 

h = v - n + r and v - 2k cannot exist.

Proof. As y = 2k, we have b = 2r. Substituting 

b«2r in b=v-n+r, we get r = v - n = n(n-l)2 

- n = n(n-3)/2. Also v = 2k = n(n-l)/2 gives 

k « n(n-l)/4.

Putting the values of v, r and k in terms of n 

in rk - v = n(r - J\^)/2, and solving it for we
get = n(n-3)2/4(n-2)".

Now from k = n(n-l)/4, we see that if n is even, 

it must be of the form 4t, (t a positive integer); while 

if n is odd, n-1 must be of the form 4t, (t a positive 

integer). Thus, we consider two alternatives for k:

(i) n is even and of form n = 4t, or

(ii) n is odd and of form n = 4t + 1, 

where t is a positive integer.
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If (i) holds, then substituting n = 4t, in 
^ = n(n-3)^/4(n-2), we get ^ - 4t2 - 4t + t/(4t-2), 

which is clearly fractional for all positive integral 
values of t. Hence the given design cannot exist.

Mext, suppose (ii) holds. Then substituting
9n = 4t + 1 in = n(n-3) /4(n~2), we get 

^ ^ = 4t^ - 2t - (2t-l)/(4t-l), which is again fractional 

for all positive integral values of t. Hence the given 
design cannot exist.
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APPBIBIX 4.3

To show that a Lg design with parameters 
satisfying the relation v = 2k, where k is an odd 
integer, cannot exist.

Proof. As k = v/2 = s2/2, it follows that s 

must be even. Then, k is' also even, which contradicts 
the fact that k is an odd integer. Hence the given 
design cannot exist.
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APPENDIX 4.4

To show that a rectangular design with parameters 
satisfying relations 9^ = 0 = 0g, b = p + r and 
v ss 2k, where k is an odd integer, cannot exist.

Proof. As v = 2k, therefore h = 2r. But 
h = p + r, hence r = p. Also k = v/2 = v^Vg/2. Using 
this information, we have from Section 2.5 of Chapter 2,

= ^^^1 ^2 = (vi“2)and
A3 = (vlT2 - V1 - va +. 8)/2-

As k = "vyVg/2 and k is an odd integer, it 
follows that v^ and vg cannot Both be even. Also for 
the same reason v1 nor vg can contain a faetor 2a 
where a >_ 2. Hence, the following two alternatives are 
possible:

(i) v1 is even and v1 = 2v*, where v^ and
Vg are both odd integers, or

(ii) Vg is even and vg = 2vg, where vg and
are both odd. integers.
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Under alternative (i), is integral but ^

and % 2 are fractional, which is an Impossible 
situation; under alternative (ii), ^ ^ is integral but
P\g and ^ are fractional, which is also an impossible 
situation. Hence, the given rectangular design cannot 
exist.
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