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APPENDIX 4,1

To show that a SRGD desigﬁ with parameters
b=v-m+r, v=2=2k, where k is an odd integer,

cannot exist.

Proof., As v = 2k, we have b 5'2r. Hence

substituting b =2r in b=v -m+ r, we get

i

v m + r., But for a SRGD design Vv = mn. Hence

r=mn(n - 1). Now rk - ﬁ'hz = 0. Hence A, = rk/v =

2

n(n-1)k/2k = m(n-1)/2.

Now v =mn =2k, As k is an odd integer,
therefore m and n cannot both be even. simultaneously.
Hence m or n must be a multiple of 2, but not of 2“,
where « 2 2; while the other must be odd. Thus, we have

two alternatives:

(1) m = 2t, where t is an odd positive integer

and n 1is odd, or

(ii) n = 2s, where s is an odd positive integer

and m is odd.
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Suppose (i) holds. Now k = cm = mn/2 = tn, so
that ¢ = n/2, Hence n must be an even integer, which
contradicts the requirement in (i) that n be odd.

Hence the given design cannot exist.

Next, suppose that (ii) holds. Substituting the
value of n = 25 in 22 = m(n-1)/2, we have 22 =
ms - (m/2). As m is odd, 22 is fractional which
is impossible. Hence the given design cannot exist.
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APPENDIX 4.2

To show that a triangular design with parameters
satisfying the relations rk - va, =n (r - %1)/2,

b=v-n4+r and v = 2k cannot exist.

Proofe As v = 2k, we have b = 2r. Substituting
b=2 in P=v-n+r, weget r=v -n=n(n-1)2
~ n = n({n-3)/2. Also v = 2k = n{n-1)/2 gives
k = n(n—-l)/ti. ) '

Putting the values of v, r and k¥ in terms of n
inrk - v, =n(r - %1)/2, and solving it for A,, we
get .Al = n(n~3)2/4(n-25.

Néw from k = n{n-1)/4, we see that if n is even,
it must be of the form 4t; (t a positive integer); while
if n is odd, n-1 must be of the form 4%, (t a positive

integer). Thus, we comnsider two alternatives for kE

(1) n is even and of form n = 4t, or

(ii) n is 0dd and of form n = 4t + i,

where +t 1is a positive integer.
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If (i) holds, then substituting n = 4t, in

A= n(n—?))g/&(n—z), we get ?\1 = 4t

- 4t + t/(at-2),
which is clearljr fractional for all positive integral

values of +t. Hence the given design cannot exist.

Next, suppose (ii) holds. Then substituting
n=4t+ 1 in 7\1 = n(n43)2/4(n-2), we get
7\1 = 4t® - 2t - (2t~1)/(4t-1), which is again fractional
for all positive integral values of t. Hence the given

design cannot exist.
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APPENDIX 4.3

To show that a L2 design with parameters
satisfying the relation v = 2k, where Xk is an odd

integer, cannot exist.

]

Proof. As k = v/2 32/2, it follows that s
must be even. Then, k is also even, which contradicts
the fact that k is an odd integer. Hence the given

design cannot exist.
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APPENDIX 4.4

To show that a rectangular design with parameters
satisfying relations 91 =0 = 62, b=p+r and

v = 2k, where k is an odd integer, cannot exist.

Proof., As v = 2k, therefore b = 2r. But
b=p+r, hence r = p. Also k = v/2 = v1v2/2. Using
this information, we have from Section 2.5 of Chapter 2,
Ay o= (vy-1) (vo-2)/2, -‘ 9\2 = (v1-2)(v2-1)/2 and
Ag = (vlv2 - v, -V, + 2)/2.

As k = v1v2/2 and k is an odd integer, it
follows that vy and Vo caﬁnot both be even. Also for
the same reason v, mnor v, can contain a factﬁr 2%
where a > 2. Hence, the following two alternatives are

possible:

(i) v, 1s even and v, = EV;, where v; and

Vo are both Gdd integeré, or

(i1) v, 1s even and v, = 2vé, where v, and

v, are both odd integers.
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Under alternative (i), Ay is integral but ),
and 9\2 are fractional, which is an impossible
situation; under alternative (ii), Aq is integral but
%2 and Aa are fractional, which is also an impossible

situation., Hence, the given rectangular design cannot

exist.
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