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CHAPTER TIT

FRACTIONAL FACTORIAL DESIGNS OF THE TYPE 2%

2.7 INTRODUCTION

As the number of factors to be considered in a
factorial experiment increases yhe number of treatment
combinations increases very rapidly. Along with this
increase in the amount of experimentation comes an increase
in the number of high-order interactions. Suppose one is
interested only in main effects and two-factor interactions,
then naturally all the treatment combinations are not
needed. Then one has to choose a sultable fraction out of
the large number of assemblies, which will be just enough
to estimate the main effects and the two-factor interactions

providing a reasonable margin for estimating error.

A number of approaches have been made from different
directions to sol%e the problems of fractional factorial
designs of type 2™, In this chapter, a technique has been
developed to construct a fractional factorial design of

type 2™ with or without blocks, using orthogonal arrays
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where the main effect and the two-factor interactions
(assuming higher order interactions to be absent) can be
estimated economically by reducing the total number of runs.
It is expected that the use of this technique would result

in less complicated computation.

Further, an attempt has been made to construet Group
Balanced Fraciional PFactorial Design.(GBFF) of type o,
Here each group of main effects and/or some two-factor
interactions are estimated with the same variance. This
property of having the same variance per group reduces
conbiderably the computatiowal work. Such a design with

uniform variance group-wise 1s defined as GBFPF.

Also, in this chapter, a class of fractional’

1
-1
- 3p . . 2
designs for 2 factorial experiments is developed.
As is well known, Daniel [j?] the duplicated runs
provide an unbiased estimate of error variance and more
precise estimates of the effects. Hence, designs with two

levels are developed in which some of the treatment

combinations are duplicated.
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2.2 ESTIMABILITY OF MATIN EFFECTS AND THE TWO-FACTOR

INTERACTIONS OF A 2% FACTORIAL EXPERIMENT

(assuming interactions involving three or more factors

to be negligible).

It is known (Rao [35] ) that a subset of N assemblies
forming an array (N, m, s, d+k-1) yields a fractionally
replicated design from which all main effects and intefactions
involving k or less factors can be obtained when interactions
invelving d or more factors are absent. Expressions can be
obtained for main effects and the interactions from the
usual definitions by retaining only the treatment combinations
present in the array, the expressions belonging to different

contrasts being orthogonal.

1

Rao [35] has shown that assuming higher order intera-
ctions negligible, from an arrasy of strength 4, the main
effects and the two-factor interactions of s" factorial
experiment will be estimable orthogonally. It is possible
to reduce the number of assemblies, if the estimates are
allowed to be correlated. In the following a method in which
all main effects are ortbogonally estimated, but otherwise
thelr estimates are correlated with those of certain two-
~factor interacition is given. This method is developed in a

series of theorems 2.1, 2.2 and 2.3 and, 2.4.
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Theorem 2.1. Suppose that ar1x1 + ar2X2 + ees arme = 03

" form the setog?:1’2""’p’

largest possible number of linearly independent equations

in GF(2) whose solutions constitute an array of sirength 2
in B¢ (m,2).

Let U, = (arT’ 851 +ees arm) and W(Ur) = the number
of non-zero co-ordinates of Ur be defined as the weight of
vector Ur' Let Gp be the vector space generated by Ués. Then
in Gp, the number of vectors of weight 3 whose ith coordinate

is ul’ll‘by is é p,(i=1,2,ooc,m)t

In proving theorem 2.1, we use the following lemma.

Lemma 2.1. If U, , U, , «evy, U be the vectors of
—_—— r, Ty re

weight 3 in Gp whose ith coordinate is unity, then they are

all linearly independerit (i=1,2,...,m).

Proof ¢ If not, there exist constants b1, b2, ...,.bk
not all zero such that

.U+ b,U_ + +.. + Db ﬁ = 0
1 T4 2 Ty k Ty

This is possible since no two of the vectors U, , U, ;...

1 2
,Ur can have unity as coordinate at the seme place except ith.

k
For using & well known result
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W(V,+V,) = W(V1? +W(V2) - 2w(v,v,)

d

where V, = (a,.,d a, ), V (d vyl )

112%12r *orr Yp 2 T \Uoqsfoos crraton

end V,V, = (dy4851s Gqplony wev 5 Qqpdor)y

o T \&q%9 G0%00e

For, if possible suppose that two of the vectors, say Ur and

1
Ur2 have unities at 1% ang i’th places (i#i' = 1,2,...,m) and

the third unity occurs at different places, then

W(Ur1+ Urz) =% + 3 - (2%x2) = 64 = 2

which implies that the vector Ur + Ur does not belong to
1 2

Gp, a contradiction; since every vector in G_ has welght 2> 3.

p

Hence, the lemma.

Proof of Theorem 2.1

Since the k vectors of weight 3 in G are linearly

p
independent, the space generated by them is &a subspace of Gp.

Hence, k is & p.

As an extension of Theorem 2.1, we have the following

theorem.

Theorem 2.2. In Gp, the number of vectors of weight 4

th

whose ith and i’ coordinates are both unity is £ b,

(i i' = 1,2,...,m).
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Proof : The proof is exactly similar to that given in
Theorem 2.1 for vectors of weight 3 in Gp, since in this
case, no two vectors of weight 4 can have unities as co-

ordinates at the same places except 1 and i'th.

Theorem 2.3 : Let /\(k x k)= (( Xj})) 5 351,20 00,K;

£=1,2,.+.+,k be a non-singular matrix in GF(2).

Let Pk x k) =((pjl)) 5 3= 1,2, 00,k 11,2, 000 ,K,
denote a (k x k) matrix with elements in the real field

where

H

pjl 0 if %jl = 0 is the element of GF(2)

i

pj) = 1 if Nig= 1 is the element of GF(2)

If P*( k x k) = (( c()\jl) )) where G(0)= -1 and

¢(1) = 1, then the matrix

1 1 J
K -3 P¥
1 K

where i(kx1) 15 & column vector of unities, is non-singular

in the real field.

Proof : It is clear that P is non-singular. The value of

the determinant



1 1 l 3
k S
1 k

is oF |P| which is non-zero since P is non-singular.

Hence, the theorem is proved.

Congider the p linear independent forms

Lr = ar1 X1 + arz X2 + ees arm Xm H

r=1,2,...,p in GF(2).

Let S denote the set of treatments (X1,X2,...,Xm) which

satisfy the equations
L. = e = 1,2,0e4,p

wnere er's are elements of GF(2> and all operatlons are
in GF(2). For any linear form L, the corresponding treatment

comparison will be denoted by T(L). For example if L=X+Xs,

(L) will mean the interaction AyA,. The estimate of L)

2.
from the fraction of the 2% experiment containing only the

treatments of 8 is given by

/\
; _ 1 't
(L) = T [( 1T

]

17N s)-(§1;=o}ﬂs)]’

We now prove the following theorem which provides an unbiased
estimate of T(L) from the fraction of the ol experiment,

containing only the treatments of S.



36

We now prove the following theorem.

Theorem 2.4.

N d: a d
E[r@] =Zw-1" ol _>_\' e) A,ﬁ A22 ceo a "

where the summation is over all the 2p vectors

I
A= (Ns Moy wees )\p) , 4, is the coefficient of
Xi(iz3,2,...,m) in the linear form
L+ ()45 + %2L2 + e +wApr), w is the weight of
the same linear form or of the corresponding coefficient

vector (d,,d,, +--, dm) and

i ( _
b.‘?.: 1€ +)\282+ +)\pep and C(A_e_) = =1 if

( i r
Ne=0 and o(Ae) =1 if Ae=1.

Proof : The expectation of the observed response

F4C S SPRPPI xm) of the treatment (XTXZ...Xm) is
given by
m .
B [Y(X,l,Xz,...,Xm)]: Eﬁ [1 + c(xt) Aj] e.(2.2.1)
which follows from (1.7.6), With the help of this expecta-
tion equation, we shall determine the coefficient of

d d d

1 2 m A
A0 AT ... A" in the expectation of T(L) for any arbitrary

linear form

d1X1 + d2X2 + ees + dmxm.
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Pirst we notice that if the linear form

d1X1 + d e A dem is not of the form

oto

Lo+ (A 4Dy # ApBy + eov + A\ By), then in the coefficient
d a d

of A11 A22 cen Amm, there will be 20 P~ plus signs and

om-P=1 L inus signs end hence, the required coefficient is

zero. Consider a linear form

d N R S . W )\2L2 +...+/\pﬁp)

L oo

1

f
case (1) ¢+ Ae=0

Let the weight of the linear form d1X1+d2X2+..+dem is
W. Por the sake of definiteness, suppose d1=d2= ...:dW=1.
The remaining d's are zero. Then for any treatment

(X1,X2,...,xm) belonging to {L = 1Y 0N s, we shall have

X1+‘)<_2+X5 + eee + Xw = 1, So among %y9%o, -+, X an odd

number say, 2¢9-1, would be equal to 1. Therefore, from

(2.2.1) it follows that the contribution to the coefficient
d1 d2 dm d1 d2 dw N

ot &, &2 o a = at e o a " an E [1(5)]from the

Tesponse Y(X1,X2,...,Xm) of any treatment (X,,%,,..-X )

-\
belonging to %'L={} N s in ™(L) would be

1 -(29-1) _ __1 [
+——2-5-__-§(-1>W e ~—2—ﬁ:—50<2.\. e) (-1,
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Similarly, for any treatment (X1,X2, ...,xm) belonging
to {L=OE(\ S, we have X1+X2+ ceet X 0= 0. Hence, an even
number of X's say 2q would be 1. This means that the response

of any treatment belonging to 5 =04 N S would attribute,

— f
- ,5%5 (=1)72% ‘6%5” c( N e)(-1)", to the coefficient
2 2

4 &

1
of A1 AZ

there are 27 P treatments in S, we obtain C(.Aie)(—i)w
d ¢ a- -
as the required coefficient of A,]1 Agg v AWW
)
expression for the expectation of T(L).

d A ,
vee AWW in the expectation of T(L). Finally

in the

{
case (2) ¢+ Ae =1

d
The coeificient of A1

d
-2
derived by arguments exactly similar to that in case (1).

d

1 ... 4" in this case can be

A 2

This completes the proof.

Corollary 2.4.1

If all interactions involving (%+1) or more factors
are assumed to be zero and the linear form L is not aliased
with any main effect or interaction involving t or less

N\
factors, then B [ T(L)] = T(L).

Gorollary 2.4.2

Tf all interactions involving (t+1) or more factors



are assumed to be zero and for every ()\1,)\2, ...,)\p),l-
(0, 0, ..., 0), the weight of 7\117';.1 +)\232 + oeen +)\pr
is at least (2t+1), then for any linear form L of weight
not greater than t(which represents a main effect or an

interaction involving t or less factors).

A\
® [2@) [ = 2(@)

This is the same as Rao's [35] Theorem. In this case the
fractiowal replication based on the set S is actually an

orthogonal array of strength 2t.

Theorem 2.5

Let p linearly independent forms

Lr = ar1 X1 + 8L, Az o B Xm 3

r = 1,2,0c0,D,
generate a class of arrays Aﬁlz in BG(m,2) each of strength

2. There are oP arrays in this class. Let S1 ,S2,.. 'S be

p+1
(p+1) arrays which correspond to the linear forms equated to

v —y

O 1 O O * v . O
0 0 1 0 .o 0
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column-wise. Then the fractional replicate of the o
experiment consisting of the assemblies belonging to these
(p+1) arrays will estimate the main effects and the two-
-factor interactions (assuming inferactions involving three

or more factors to be negligible).

Proof ¢ Denoting the (1+1)th column vector by

-

¥
PN
i

5113 “

i -
where 5ir = 0,(1#r, £=0, 1,2, «eey, D3 T=1,2,¢.4,0)
and &y4 = 6;2 = vu. = é;p = 1, the array S, , (1=0,1,2,..,D)
correspond to the linear forms Lr(r=1,2,...,p) equated to 551.

P
Let 5§ = U §,,4 be the required fractional replicate
1=0

consisting of (p+1) 2™ P assemblies of the o™ gesign.

Since each is an array of strength 2, the fraction S
obviously estimates all the main effects. Consider the

two-factor interaction T(L). There may be three cases 3

case (1) : T(L) is not aliassed with any main effect or

two-factor interaction.
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\
In this case from corrdlary (2.4.1) it follows that

T(L) is estimable.

case (2) : T(L) is aliased with 2 main effect A, .
1

Suppose T(L) = A. A. . Then there exists
i7ig

(‘)\119 >\12y ooy )\1p) such that
Lo+ AqBy + Nglp + eee Mgy = Xy

s0 A11L1+ %12L2 b oo )ﬁ L = X i + Xi + Xi

Suppose the interactions A, A, , A. A. ,...,A. A,
o ts e M Lok Lok
are also aliased with A, . Then from lemma {2.1..), it follows
1

that gll the indices i2’ 13, .oy i2k+1 are distinct and

k<L p.
Suppose
AoqBq * Nooly + ee )\QPLP = X.Li + xi4 + x..15
%31 52 ot eee ABPLP = xi1+ Xi6 + Xi7
}\k.]:[x,l +)\k2h2 F oean +)\kp b = X 1~x~ X. 2+ Xy Loean”

Then from lemma (2.1..), the linear forms



X- +X~ +X- y X- +X- + )‘x- ’.vo}X- +X. +X-
14 i R ] 15 14 Lox Lokt

are mutually independent. So the matrix.
/\(x xp) =((Nyp0) s 3 = 142,000k 21,2, 00000
is of rank k. Without less of generality we shall assume

that the (k x k) principal minor /\Al is non-singular.

Suppose T1+1 denotes the estimate of Ai based on the
1
fraction of assemblies given by the array Sl+1(l=0,1,2,...,p).

1 , _
Let hj: (>\j1’ )\32, cens )\;}p). We know 'that
i
§l= (511, 512, ve ey Slp)’ then we get
/ ! 3
_)>j.§l = }\jl (5=1,2,+.,k3 1=0,1,...,k)
where >\jl will be either O or 1.

The weight of the linear form representing a two~-factor

interaction is 2. Hence we get from theorem 2.4.

N ~ -

T, _ _ Aiq

A |1 1 l =

T2 b

| g

0 g el 7\31))) C e e e e (2.2.1)
- k - has - »* - - *

T A, A

ke ! K o oy
L - L. i




The matrix /\‘1= (()jl)); 3= 1,2,000,k3 1=0,1,2,...,k

is non-singular. Hence,lbyTh@&Mumz.B, the matrix occuring
on the right hand side of the above expectation equation is
non-singular. Therefore Ai Ai is estimable.

2 73

case (3) :+ A, A; is not sliased with any main effect, but
2 73

ig aliased with a two-factor interaction.
Using the argument similar to.that in case (2), we cen
easily establish the estimability of Ai Ai with the help

2 73
of ¥umon 2.2. and theorem 2.k

This completes the proof.

The following is an example to estimate the main

5

effects and the two-factor interactions of a 27 experiment.

In the example,. 3/4°% fraction is considered.

Consider the assemblies belonging to three arrays
given by the equations

Xyt X2 + X3 =0 1 9

Xq F Ly * X5 = 0 0 1
in ¥G(m,2).

The identity relationship for the fraction of the 25

43



Vo'
—

design defined as above 18

T = A4 = A & = A A A
I A1M2A3 ﬂ1ﬂ4A5 A2”3A4A5

from which follow the sets of aliased effects

(1) {8, 2k, A4A57] ,

(2) .. {Az, A1A5§, §A3, AAA2},
Thyr 0ach, Sag, agnb

(3) Shphss ha)§y Qhphys Mgk

Estimation of Effects

(1%) For the effects in (1), the three estimable linear

functions corresponding to the three arrays are

Ay - A A~ AA

273 7475
A1 - A2A3+ A4A5.

The matrix of coefficients

1 -1 -1
1 1 -1
1 -1 1

is clearly non-singular, which implies that



the effects (1) are estimable.

(2%) For any pair of effects in (2) say A2,A1A3, the two
estimable functions are A1 - A2A3 and A1+A2A3 which are
linearly independent and, hence, the effects involved are

estimable.

(3%) For any pair of effects in (3), say AZAB, A3A4, the
two estimable functions are

and, hence, the effects involved are estimable as in (2%).

The normal equations estimating effects (1) are

24 -8 -8 /.A.\1 ] Y(A1)
24 -8 A/Z\AB = Y (A2A3 )
Sym. 24.,, A2A5 | Y4, A )
L - i J
which give
VAN - r~ -3 - ™
A 2 1 1 Y(A1)
FAS 1
A2A3 =35 2 1 Y(A2A3)
N N )
A4A5 Lsym. 2- Y(A4 57|

Similarly for any pair of effects in (2), say hyhihy



24

-8
which give

A

Ao

h
L13
24

L—B

whic

h give

A

Kb
A

Asby

o

_ 1
64

-8

24

-
64

for any pair of effects in (3)

S 5 -

Lo

-
Y(AE)
T(A A

a—

Y(Az)

_Y(A1

say A2

T (A4

AB) j

5)

-

bgs A3A4

bg)

Y(A3 4 _j

7(

¥ (

A2A5

Aahy

)

)

-

A

The grand average I is estimated by G/24 where G is the

total response of all assemblies.

Thus the 16 effects (maln effects, two-factor inte-

ractions and the grand average) of the 27 design are

estimated from 24 assemblies assuming higher factor inte-

raction as negligible.

The notation /\ over any effect denotes the estimate

of that effect.

46



Using the same method, fractional replicate of

8

6, 2f, &

2 etc. designs can be suitably constructed.

2.3 The fractional plans given in this sectlon are more
economical. The estimation of treatment effects is more
simpler by using orthogonal arrays of strength 2. Also,
fractional plans are Group Balanced Fractional Factorial
Design (GBFF) of type o™, Here each group of main effects

and/or two-~factor interactions have the same variance.

Construction

The procedure of choosing generators of the designs

remains the same.

We choose Lr's such that none of these linear forms is
‘0of the weight £ 2. The solution (X1,X2,...,X_m) of the

equa tions

b

i

d., (mod 2) e (2.3.1)

Ay

]

0,13 = 1,2,..4,p

each level of every factor will occur egual number of
times. The same is true for each combination of levels of
every pair of factors. The sclutions to-gether are said to

form an orthogonal array of strength 2, Rao [36] .
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. Right ham side of (2.3%.1) is a sub-matrix taken from
orthogonal arrays of strength 2 with some column dropped.

this result is due to Parikn [31] .

Examples
th . . 6 .
(1) 3/4"" fractional raplicate of 2° experiment.
(2) 7/16th fractional replicate of o8 experiment.

9

(%) 5/32nd fractional replicate of 27 experiment.

Detailed discussion of these designs is given in

the following pages.

Example (1)

th

/0% practional Replicate of 2° Design

The design consists of the treatments satisfying the

equations
Xy + %5 +AX3 =1, 1, 0, 1, 0, 0
X4+ X4 + X5 = 0, 1, 1, 0, 1, 0
Xy + X4+ X = 0, 0, 1, 1, 0, 1
mod 2.

The identity relationship for the fraction is

I

A1A2A A A A = A2A4A6 = A5A5A6

3 T RiMqsg

= A2A3A4A5 = A1A3A4A6= A1A2A5A6



Estimation of Effects

The set of correlated effects are
4

(1) {8y, a0, 4,0,
§hos Aghs, A AT,
Thss Ayhy, onct
Shys Db, Aphct,
$hey Bikys Akl
$her Aokys hohsh
(2) {414c, A3A4, Aohct

Each set of effects in (1) is estimated by the matrix
-1

40 0 0 8 0 0
=1

48  -16 = =5 9 3

Sym. 48 Sy. 9

Effects in (2) is estimated by the matrix.

- . : -

48 ~16 -16 2 1 -1
48 =16 = o 2 1
Sym. 48 SyTi. 2

ﬁ =~»%w s Where G 1s the sum of observed responses.



Example (2)

7/16tb Practional Replicate of 28 Design

Tne design consists of the treatments satisfying

the sgquations

Xy + X3 + hg = o, 1, 1, 0, 1, 0, O
X, + X5 + X7 =0, 0O, 1, 1, 0, 1, O
X, +Xg + X =0, 0, 0, 1, 1, 0, 1
X3 + X5 + X =1, o, 0, 0, 1, 1, O
mod 2.

The identity relationship for fraction is

il

I A1A3A6 = A2A5A7 = A4A6A7 = ABABAB'

= A1A5A6A8 = A2A4A5A6

il

A1A5A4A7

A2A5A7A8 = A1A2A4A8

il

Estimation of Effects

The sets of correlated effects are
(1) {45, B8g0 AghgY,
| {855 Aohq, Ashgt,
Ther Aihs, A4A7}’
§a0, Byhs, a6,
§Aghgs Ardy, ABA%,
gA1A8, hghe, AZAé,

A



(2)

fay) hyhe ¥
TS
8y Aghal,
Shgs Azhsl,
{aag, agngy,
W sohg b
{hedgs 4hq |
a8y, 88k,
{AEAB, A7A8}.

Bach set of effects in (1) is estimrted by the matrix
-1 -

112 -16 ~16" 6 1 1
112 -16 - o1 6 1
Sym. 112 Sym. 9

Each set of effects in (2) is estimated by the matrix

-1 _
112 ~16 ) 7 1
~16 112 768 |, 7

;/.\1 = ¢/112, where ¢ is the sum of observed responses.
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Bxample (3)

5/32" practional Replicate of 2° Design

The design consists of the treatments satisfying

the equations.

X1 + Xg + XB =0, 0, 1, 1, 1
Xy + Ry + Xg =0, 0, 1, 1, 1
X7 + Xg o+ xg =0, 0, 1, 1, 1
Xy + X5 + Xg =0, 1,1, 0, 1
Xy + X + X9 =1, 1, 1, 0, O

mod. 2.

The identity relationship for fraction is

i

I= A1A2A3 = A4A5A6 A7A8A9 = A2A5 8 -

= A3A6A9 = A1A4A7 = A1A3A5A8 = A1A2A6A9

hohyhghg = A by hshy = Ayhohohg .

it

il
i

A3A6A7A8

1

Aphzh As (omitting 5 and more factor interactions).

Betimation of Lffects

The sets of correlated effects are



(1) 1h Bohss 2],
$hoy Mqhg, Aghgh,
$hys Bohe, Aqach,
Shgr Byhe, bohgts
$hs Byhgs Aga,t,
{ags A7hgr Aohsf,

(2) $hgr Ayhy, Achol,
e Ao Aghol,
{9 Aokgs Ashdy

(3) S 8ihgs Aohc, A,AT,

' {hohgr bihg Aghol,
$ashss byhgs Aidgh
Yhshar Aghy Aohsl,
Saghgs Ashys Aobot,
faghgs Ashys Aokl

Bach set of effects in (1) is estimated by the matrix

R -

80 16 16 6 -1 -1

= ] -
80 16 = 118 6 1

sym. 80 Sym. 6

e

1




Fach set of effects in (2) is estimated by the

80

Sym.

16
80

-
16

1

~43 = 128

. §

80

matrix

2 -1 -1
3 2
Sym. 3

Fach set of effects in (3) is estimated by the matrix.

e

80

Eym.
A

-48
80

c-~“‘1

16

I

16 = 128
80

-

3 3 -1
3 -1
Sym. 2

p = 6/80, where G 1s the sum of observed responses.

2.4 FRACTIONAL REPLICATE OF A 2" DESIGN WITH BLOCK

Theorem 2.6

the (p+1) arrays, say 5185500 -

.
L)

’Sp+1

If the assemblies belonging to each of

of strength 2 in

B¢ (m,2) defined by the p linearly independent forms.

L
r

T 8. X1 + ar2X2 + eee 4+ a__X

rmm

(r=1,2,...,p), equated to

o 1 0 0 .o

Of




A
A

column-wise in-EG(2) are assigned to a block, then the
resulting fractiondl design of the 2% experiment in (p+1)
blocks, all main effects and two~factor interactions are
estimable with their estimate correlated in sets, but

orthogonal to p block contrasts.

Proof : ELet (SU) denote the sum of responses of the
assemblies in the arraySU(Uzi,Z,...,p+1). These will be

then the (p+1) block totals in some order.

The p linearly independent contrasts between the
(p+1) block totals represent linear function of interac-

tions corresponding to the linear fomrms.

A+ Aoy + oo+ )pr .. 2.4.1)
Ar = 0,1, 3 (r=1,2,¢¢.,0)3
CAps Ags ooe s N) #(0,0,...,0)
each of weight 2> 3, and the~contrasts between the block
effects. This implies in otherwords that the interactions
corresponding to (2.4.1) are mixed up (or confounded) with

the contrasts between the block effects.

Next the p liuear forms Lr(r=1,2,...,p) in GP(2)
partition, the effects of the factorial experiment in

alias sets, the estimates of any two effects belonging to



q

,.
St
2

different alias sets being orthogonal.

From these it follows that the estimates of the main
effects and two-factor interactions are orthogonal to the
estimates of the interactions correspouding to linear form
(2.4.1) since they belong to alias sets different from the
one consisting of the effects belonging to (2.4.1) which in
turn implies that they are also orthogonal to the p block

contrasts. They are estimable.

For example, 3/4%0 practional Replicate of 2° Design

v

in % block of 8 Assemblies Each.

The design consists of the treatment satisfying the

equations.

Array S1 82 S3
£+ Xy + X5 = O 0 1
X, + X, + X = O 1 0

p. 4 5




Construction of Block Design

Block~1 Block~-2 Block~-3
S, S, S5
(00000) (00001 ) (10000
(0001 1) (00010) (10011)
(11000) (11001 ) (01000)
(11011) (11010) (01011)
(10101 ) (10100) (00101)
(10110) (10111) (00110)
{01101) (01100) (11101)
(01110) (01111) (11110)

where %Sﬁ& U=1,2,% mean the set of assemblies belonging
to the array SU.
The identity relationship for the fraction is
I= A1A2A3 = A5A4A5 = A1A2A4A5
from which follow the sets of aliased effects.
RAq s Aphgy Ajhgh Ao, Aok Ac],

8y, by, Bohh boy Aid A,

§A3’ Aboy byhgs A1A2A3A4A5}’
{A4, Aihohzly s Aghs, A1A2A5},
§A5, Bidohzhe, Agh,, A1A2A4},

faghg, Mohsho, Aash,, Aoad.

1
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The two block conitrasts are

(85) = (8;) and (85) - (8,)
with B [(8,)-(s, )] =16 Aghyhs= 16 Ayhob, Aot 8(by=b.)
E ):(53)—(81)] = 16 Ajhphy= 16 AiAsK Axt 8(0y-D,)

where b1, bz, b3 denote the block effects.

Thus the interactions A1A2A3, A3A4A5, A1A2A4A5 are
coufounded with the contrasts (b2-b1), (b3—b1) between the

three block effects.

Bince the estimates of any two effects belonging to
two~different slias sets are orthogonal, it follows that
the estimates of A1A2A3, A3A4A5, A1A2A4A53re orthogonal
to the estimates of the rest of the effects in other sets
which implies that the contrasts (bznb1), (b5—b1) are
orthogonal to the estimates of all main effects and the
two—~factor interactions which are estimable.

Fractional replicates of 26, 27, etc. can be

congtructed.

2.5 CONSTRUCTION OF T/QP“1 FRACTION OF 2BP FACTORIAL DESIGN

Consider linear forms L1, LQ, veey Lp given by



) |
)

o= Xy F Xy v Ay

L, = X, + X+ X

e e e e e e ...{2.5.1)
Ly = Xgpo * X3 * A5y

Obviously the solutions of the p linear equations

array of strength 2, according to Rao [563 . From this

5 =0y veny Lpzo (mod 2) given an orthogonal

fraction, we can obtain estimates of 22p linear functions

of the main effects and interactions of the 2°° design.
Assuming interactions including three factors and more to be
absent, this ilmplies that the linear forms which are
estimable are functions of the main effects and the two-
factor interactions, which means that the tﬂo~factor intera-
ctions are aliased with main effects. They are obtained from

the 1ldentity relationship

L= hyhohy = byhoh = oo = by oho by,

omitting higher factor interactions.
The aliased groups of effects are
(A5 Ayiqr Ayyp)

(Aj+1, Ay Aj+2) ...(2.5.2)

i’ Ti+)



60

where J = 1, 4, Ty +vey (3p-2)
To make these aliased effects estimable, let us take

one more fraction by the solutions of the equations

Ly =1, Ly, =1, = ... = Lp = 1 {(mod 2).

The two fractions together give a fractionsal design
from which the estimates of the main effects and the two-

factor interactions come out orthogonal.

Examples:

(1) 26 Practional Factorial Design with 32 runs.

(2) 27 Fractional Pactorial Design with 128 runs.

Detailed discussion of these designs is given in

the foilowing pages.

Example (1)

Fractional Replicate of a 26 Degign with %2 runs

The design consists of the treatments satisfying
the equations
X1 + x2 + KB = 0,1
0,1

i

X4 + X5 + X6
mod 2.
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The identity relationship for each fraction is

I= A1A2A = A A5A6

3 4

from which follows the sets of correlated effects are
a0 2853,
{8o5 AyAsT,
Shgy iAo,
{4y Ashohs
Fhss ByheT
?AG, A4A5}.
All these effects and the remaining two-factor

interactions are orthogonally estimated.

Example (2)
9

Fractional Replicate of a 2° Design with 128 runs

The design consists of the treatments satisfying

the equations

[
O
—

X, + X5 + Xp = o, 1

i
-
-
—

X7 + X8 + X9
mod 2.
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The identity relationship for each fraction is

from which follows the sets of correlated effects are
TRV

1850 8851,
$a5, 4,851,
80 Asteby
{hse Ayhh
oo Maasts
Jaqs Agho b,
$4gs Aghgl,
{hgr Arhf -
A1l these effects and the remaining two-factor

interactions are orthogonally estimated.

2.6 REMARKS
The fractional desiéns given in section 2.5 can be
further assigned to two blocks, each block containing the

treatments in each of the two fractions, obviously the
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estimablliity of the treatment effects is not affected. The
analysis of variance table is to modify to accommodate

one degree of freedom between the two blocks.

2.7 DPARTTALLY DUPLICATED FRACTION AL

FACTORIAL DESIGN OF TYPE 2%

Partiaily duplicated fractional factorial design
which requires fewer runs, including duplicates, was given
by Deniel [§7j . The duplicated runs provide an unbiased
estimate of error variance and more precise estimates of
effects. Here block designs are considered for fractional
factorial. We assume that the main effects and the two-
factor interactions are present and the interactions of

higher orders are negligible.

Construction

Using the above mentioned theorems on fractional
factorial designs of type Qm, the investigation on partially

duplicated fractioneal factorial designs is given.

The linear form Lr(r=1,2,...,p) are called the

generators of the fractional design and will said %o

generate the fractional design or the fraction.
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6 Let D = (dru)’
= 1,2,00yP; U= 1,2,00.,D
be a non-singular matrix of O, 1 (mod 2).

Then the combined solutions of the (p+1) set of simultaneous

equations
L,] = O, d11’ d12, ey d1p
Lg = O’ dg.}, d22’ c ey dzp 0.'(2!7-1)
mod 2.

This gives a fractional design from which the main

effects and the two-factor interactions are estimable.

Example

26 experiment with 40 runs

The design consists of the treatments satisfying

the equations

I

X+ Xy 4 X =0, 0,1, 0,1

1
| X, * X, + % =0, 1, 0, 1,0
| Xy + %, + % =0,0,1,1,0

) mod 2. |
|



The identity relationship for the fraction is
1= A1A2A3 =

= A2A3A4A5

= A2A4

The sets

B

Lg

A1A4A5

= A AZA

17374

Aohs, Ayhsl,
hokyr bshsys
g, hyhgly
bikyr bshel)

ss boheh,

§hgs bk, Ashcl,
(3) {88, bk, A2A5}.

(1%) Bach set of effects in (1) is estimated by the matrix

-1

= A3A5A6

—

4

A6 = A1A2A5A6

of correlated effecits are

2

Sy.

1

3

1

2
3

6

(2%) Bach set of effects in (2) is estimated by the matrix

40

sym.

-8
40

-1
-3

8

40

i

NS

—

6

Sym.

1
6

1
-1
6

o

——
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(3% ) Bffects in (3) is estimated by the matrix

-1 - -
40 8 8 2 -1 -1
_ 1
40  -24 = T 3 2
Sym. 40 Sym. 3J

A
B = ¢/40, where G is the sum of the observed

responses.



