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CHAPTER - III

FRACTIONAL! FACTORIAL DESIG-NS OP THE TYPE 3*1

3.1 INTRODUCTION

The method of construction of fractional factorial

design of the type 3n is given in section 1.11. It is said

nthat fractional replication is not as satisfactory in 3 

design as in 2m design. In this chapter, fractional 

replicate of a 3 experiment with blocks is discussed.

3-2 FRACTIOIAL REPLICATE OF A 3n EXPERIMENT

Theorem 3»1 : Let the q. linearly independent forms

Me - *01 *1 * b62 Y2 + • • • + V Yn 

( 0 = 1,2,..., q.)

generate a class of arrays $g each of strength 2 in EG(n,3)«

If the fraction of the 3n design consisting of the assemblies 

belonging to the arrays T1 , Tg> •••> T^. of estimates the

main effects and the two-factor interactions, then the 

corresponding incomplete block design vdth k blocks, each 

block containing assemblies of some array T (v=1,2,...,k)
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estimates the same effects orthogonally to the (k-1) contrasts 

between the k block effects (assuming higher factor intera

ctions to be absent).

Proof s The proof is similar to that given in case of 2m 

design in Theorem, 2.6.

The (k-1) linearly independent contrasts between the k 

block totals are linear functions of interactions involving 

3 or more factors corresponding to the linear forms

ji-j + ^2^2 ~l" ' * * + ’

jig = 0,1,2 ( 0 = 1,2, •«., l)j

(p-| > 1*2 > •••> P-q) ^ (0,0,...,0)

each of weight 3 and the contrasts between the k block 

effects.

The theorem holds good if arrays of strength 2 are 

replaced by arrays of strength 3 in EG(n,3)*

Examples

(1 ) Fractional replicate of a 3^ design.

5(2) Fractional replicate of a 3 design.
(3) Fractional replicate of a 3 6 design.
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Example (1j

^/gtb nrac-fc^on 0j> ^4 design in 4 blocks, 9 

assemblies in each

Block-1

Design

Block-2 Block-3 Blodc-4

^4}
where the arrays of strength 2 in EG(4,3) are 

below $

z1 + z2 + z5 = 0
Z2 + 2Z3 + Z4 = 0

as given

...(3.2.1)

in GP(3)« The identity relationship for the fraction of 
3^ design is

9 9 9 9T t2 15 T3 — T5 — T2 ■DC"D — 15 15^15I P1P2P5 P2P3F4 Pir2f4 P1P3P4 

The sets of effects aliased are

(Pi- P2.Pv P3P4’ PzPH ■ 

\f>2’ hh ■ P1P4- h?t\ >

hh’ P2P4’ ’

fc T) Iq2 "D l|r4’ P2P3’ rir2’ Plf3J ,

The 9 assemblies satisfying the equation (3*2.1 ) 

will estimate (1) the grand average, (2) two linearly
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independent functions of effects for each alias set in
(3*2.2).

Since the number of effects in each alias set is 4, 
each effect carrying 2 d.f., let us consider the estimation 
of effects (3*2.2) from the assemblies of the four arrays 
in EG(4,3) given below :

Array 3^ Tg

Z1 + Z2 + Z5 = 0 0
Z2 + 2Z3+ Z4 = 0 1

For each set of effects in (3*2.2), the corresponding 
coefficients in the expected value of the response column 
vector of assemblies belonging to the arrays 1^, Ig, 

in (3.2.3) are given below ;

T 1x3 4

0 1

2 0
*•.(3*2.3)

It should be noted that (1) each coefficient corresponding 
to three assemblies, (2) the estimates of any two effects 
coming from different alias sets are orthogonal.

In the table given 3.1, the coefficient vectors 
within each set are in order of the assemblies, but between 
the sets they are in different order of the assemblies. Two 
coefficients vectors belonging to different sets are 
orthogonal i.e. their inner product is zero.
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from the table 3.1 the normal equations for each set 

of effects can be worked 'out as below ;

Let |f = [LCp^, Q(p1 ) , Uf2$3), Q(p2p3),
Kp3,p4), Q(p5p4), Kf2p|), q<p2p|)J .

I
fa=jjb(p2), Q(p2), l{pip3), Q(p1p3),

i-(pip4), Q(p1p4). Kp3pf). Q(f3P4>J .

_f3=[i,(p3), Q(p3), Q(p.,P2)>

i(p2p4), Q(p2p4), ). Q(pnp|)J .
f

Jrtjdp*). Q(p4), Kp2p3). «P2p3),

iCp-iPl), Qfftpg )> QCPiP|)U »

t ( / I

where , f2, §'y denote the row vectors of effects

in the other three sets as indicated in the table.

Also let

- [< {w2lnli}) - (lvz2=01n ^ T^)J ’
TfQ(?iP2)} = C(fZ1+Z2=°}MT}) - 20Z1+V1^^})

+ ({vZ2=2} n \ tJ-)] .
where ^ T j denotes thd set of assemblies of the fraction 

defined in (3.2.3) and the other notations have the same 

meaning as given in section 1.10.
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Then

Q3

Qi

E5

A
. =1(1.)

t) <i
...(3.2.4)

3 = 1,2,3,4

where P^=Pg=P^ 24 0 12 -18

0 72 -18 -36

24 0

sym. 0 72

24 0 3 -9

0 72 -9 -9

24 0

Sjfw. 0 72

R-

R,

24 0 6 0

0 72 0 18

24 0

sym. 0 72

24 0 -3 9

0 72 -9 -9

24 0
sym.

0 72

B.2~

R. =

24 0 -3 -9

CMC-O

9 -9

24 0

sym. 0 72

24 0 3 -27

0 72 -27 9

24 0
sym.

0 72
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-r
-3 -9 -3 -9 -3 9 6 0

9 -9 9 -9 Qo= -9 -9 0 18

3 -9 3 -9 -6 0 3 9

-9 -9 -9 -9 0 18 9 -9

6 0 -3 9” 3 9
i

-3 9

0 18 -9 -9 9 -9 -9 -9

3 9 -6 0 15 9 12 -18

9 -9 0 18
5

-9
L

45 -18 “3<L

From (3.2.4) follows

P •3 1

q, 3

3 =

r

1,2,

y(f3), (3.2.5)

where

p1~p2"p3"TD8 P4 324

r1=r2=r3“TD8
1

-4 324

'

18 0
0

0 6

18 0
sym.

— 0 6 J
j- 0C

O 3 21

0 16 21 -1

48 0
sym.

0 16 J
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41 108

- _i_
q.5 -j os

3 1 . 3 1 0 -2 -3 1

-1 1 -1 1 1
q2“108

2 0 -1 -1

-3 1 x -3 1 3 1 0 -2

1 1 1 3 1 -1 -2

-3 1 0 -2 -9 -3 0 -6

-1 -1 2 0 1
324

-3 3 6 0

0 -2 3 1 -9 -9 -18 0

-2 0 1 -1 _9 -3 0 6_

Hence, all the 33 main effects and the two factor 

interactions (including the grand average) of the 3^ design 

are estimable from 36 assemblies of the fraction consisting 

of the arrays ,Tg,T^». as given in (3*2.3).

Using the transformation given in (1.11.3), the above 

effects which are estimated in Geometric set can be trans

formed into corresponding effects in Product Set.

Since the block contrasts together with the effects of 

the 3^ design account for all 35 d.f., nothing is left to 

estimate the error. Hence, error has to be obtained from 

previous knowledge or by having one more replication.

{
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Example (2)

^/^rd grac-t;tonal Factorial of a 3^ Design in 

3 Blocks, 27 Assemblies Each.

Block-1

Design

Block-2 Block-3

\ ^3!
where the arrays of strength 2 in EG(5,3) are as given Below :

' Array

Z., + Z0 + Z, 1 2 3

2^ + Z4 + Z5

0 1 

0 2

2

1

In this design, the estimates of effects are orthogonal.

Example (3)

2/9^ Fractional Factorial of 3^ Design in 6 

Blocks, 27 Assemblies Each.

This design is obtained from array of strength 2 in 

EG(6,3), assuming higher factor interactions to be absent.

Consider an array of strength 2 in EE(6,3) defined by

the equations
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2Z1 4* Z3 + 2Z

2Z2 4* Z4 + 2Z

2ZX3 4* z4 + zc5
in GR(3) •

6The identity relationship for the fraction of the 3 > design 

given by (3*2.6) is

I = = ?ip41*6 = = hhh?6
= ?3p4P|p6 = Pl$2?3?4 = ■P2P3P5P6

= f-ip2p3?5 =

omitting interactions involving five or more factors.

Restricting to any of the main effects and the two 

factor interactions, the sets of effects aliased are

{Pi> P3Pe ’P^’

\h’ P+Pe }>

4pr PiP$V<

\h’ P2Pe • ¥iP| 3r»

\h’ h?4

(p6’ PlP| > P2PU’ ...(3.2-7)

\ p1 f'2 ’ P3P5I’
(P1P3 ’ P2P5 .’ flp6 ’ PjPej’’
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\ P1P4’ P4P5’ P2P3’ PiP^’
Ihh’ f4h’ hfl’ h$'
^ P3P4 ’ h&’

{hH - P2P| K 

^PsPe- Pi?!- Wll-

Let us consider, for simplicity in calculation, the 

estimation of the effects (5.2.7) from the assemblies of 

the six arrays in EG-(6,3) given below :

Array h T2 T3 T4 'Pl5 T6

2Z1 + Zr,3 + 2Z6 = 0 1 2 0 1 2

2Z2 + Z4 4* 2Zg = 0 2 1 1 2 1 . ..(3-2.8)

2Z1 + \ 4* Z5 = 1 0 1 1 2 2

While estimating the effects .from the assemblies of 

the six arrays in (3.2.8), the aliasing disappears, and the 

effects (3.2.7) become estimable either orthogonally or‘in 

correlated sets.

The sets of correlated effects for the fraction 

defined by (3*2.8) are
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' Set-1

P2P5’ hfe
set-4

P4P5 ’ P2P3

Set-2
hh< h&

set-5-

P2P4

Set-3

We’ We ’

. . .(3-2.9)
Set-6

P2?5 ’ P3P4

derived from the linear forms 

Z1 + 2Z2 + 2Z5 + 2Z6

2Z2 + 2Z3 + 2Z4 + Z5 ,

which are equated to

0 2 0 2 0 2 .

0 1 0 1 0 1_ .

Columnwise in the six arrays defined by (3-2.8)

The coefficient of effects in the expected value of 

the response column vector of assemblies belonging to 

the arrays in (3-2.8) are given below :
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In the above table :

(1) each coefficient corresponds to 9 assemblies,
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(2) the coefficient vectors within the set are in order 

of the assemblies, but between the sets they are in 

different order,
(3) any two coefficient vectors coming from two different 

sets are orthogonal, i.e. their inner prodcut is zero,
(4) for any pair of effects in sets 1, 2, 3 the coefficient 

vectors are the same, but in different order of 

assemblies.

Similar remarks holds for the pairs of effects in 

sets 4, 5, 6.
i

Let ^j(j=1,2,3) denote the column vector of effects 
J

in sets 1, 2, 3 and . (j=1,2,3) denote the column vector
J

of effects in sets 4,5,6.

Then the normal equations are

12 0 ' 3 -9
A

0 36 9 9 •ti - Y(^)
12 0

sym. 0 36 ...(3.2.10)

and
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9 x

12 > 0 -3 -9

0 36 -9 i

12 0
sym.

0 36

A

where
A
ij-

p5 4j

_*3 r. 3J

and a 'p5 9-i
\ .=
" 3

3

qt3 r.3_
(j = 1,2,3)

T(fs)

Y(l)
o

i.e. Y( f , ), )
<J «J

have the same meanings as given in

example (1 ), which give

A

A

12 0 -3 3

1 0 4 -3 -1
9x108

sym.
12 0

L 0 4

12 0 3 3

1 0 4 3 -1
9x108

sym.
12 0

0 4

. yGI.J
J

(3.2.11 )

(3=1,2,3)
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The rest of the effects are orthogonally estimated.

The estimates can be converted into the corresponding ones 

in Product Set by using the transformation given in (1.11.3).

3-3 FRACTIONAL FACTORIAL OP 36 RESIGN PROM 

ARRAYS OF STRENGTH 3 IN EG (6.3).

In this section, a problem of construction and 

estimation of main effects and the two-factor interactions 
of 3^ design from arrays of strength 3 in -EG(6,3) is given.

6Consider a fraction of the 3 design consisting of the 

assemblies of an array of strength 3 in EG(6,3>) defined by 

the equations

Z1 + 2Z2 + 2Z5 + Z4 =. 0

Z2 + 2Z5 + Z5 + 2Z6 = 0 ...(3.3.1)

The identity relationship for the fraction defined 

by (3.3.1) is

1 = PiPIpI^ = ?2?3P5Pl ...C3.3.2)

interactions involving five or more factors are not 

considered.

The aliased sets of effects are
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\h?v PaM- 
1 ?2P5 ’ P3P6 \ ’

Ahfi’hft^’ ' .-.(3.3.3)

j 15 "D^ ~t3 15^ >

lfir3? f2r4 * ’

IP2P3 -PePs <■ ’ 
f P2PI- P3?l ^ ’

Only the main effects and the two-factor interactions 

are considered.

Consider the estimation of effects from the assemblies 

of the two arrays given as below :

Array Tg

Z1+2Z2+2Z3+Z4 = 02

Z0+2Z^+Zk+2Z. = 022 3 5 6

For each pair of effects in (3*3.3)' taken in orders 

the corresponding coefficients in the expected' value of the 

response column vector of assemblies in T-pTg are given 

below s such coefficients in the table corresponds to 27

assemblies.
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^'s\NEf f ect 

Array I»
P1P4

Q L
■P2P3

Q

-1 1 -1 1

T1 0 -2 0 -2

1 1 1 1

-1 1 0 -2

T2 0 -2 1 1

1 1 -1 1

The same table holds for every pair of effects in (3*3*3) 

taken in order. Denoting by S . (j=1,2, ... ,6), the column
ti

vector of effects in the j pair, the normal equations 

for estimating £ . are
tJ

27

4 0 1 3

0 12 -3 3

4 0
sym.

0 12

A
= Y ( L) ...(3*3*4)

D = 1,2,.

Prom (3.3*4)

36x27

12

0

0

4

sym.
L

-3

3

12

0

-3

-1

0

4

.1(1 j) ..(3.3.5)
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The estimates in (3*3.5) may "be converted hack to the 

corresponding estimates in the Product Set by using the 

transformation given in (1.11.3)*

The effects not occuring in (3*3*5) are orthogonally 

estimated.

i


