CHAPTER IV

PREDICTION OF OVERALL DEGREE OF COLLEGE SUCCESS

In the first three chapters, we have dealt with the prediction of each of the criterion variables language, mathematics and science separately. The main objective behind these studies was to get some idea to build up a kind of model for predicting the degree of college success. This is dealt with in this chapter.

In previous chapters, we observed that-

- the variance accounted for by the quadratic term in mathematics variable is significant in many cases and that-
- 2. the variance accounted for by the quadratic term in English variable though statistically not significant, is observed fairly considerable occasionally.

Problem

We now have the problem: what mathematical function of these variables will be appropriate in predicting the overall degree of academic success as measured by PScE Grand Total percent? Method

Consistent with the observation made, we start with the most general function of second degree in the two predictor variables-English, (say_x) and mathematics (say_y) for predicting the criterion (say_z) of overall degree of success measured by PScE Grand Total percent.

The most general equation of the second degree in x and y for predicting Z, is given as-

 $\frac{12}{2} = ax^{2} + 2hxy + by^{2} + f_{2}gx^{2} + g_{2}fy + c$ = $Ax^{2} + Hxy + By^{2} + Gx + Fy + C (say)$

We therefore first of all, fit this equation to the data and test its significance. If found not significant, we go on fitting alternative models subsequently derived by detegting the unnecessary term one by one, and test their significance.

The method used is multiple regression method which is applicable in case of quadratic and product term also.

Since PScE mathematics serves as more objective and hence more accurate criterion variable, we study the prediction of this criterion variable also; the whole study is made in four sections - I to IV. I Prediction of overall degree of success (PScE Grand Total Percent: from (i) SSCE English marks and (ii) SSCE Mathematics marks).

Analysis:

Let Ye denote PScE Grand Total Percent

 \dot{x}_1 denote SSCE English

x₂ denote SSCE Mathematics

1. The sums of squares and products are-

x	N	x1	x ₂	\mathbf{x}_2^2	x_1^2	x 1 x 5	У _е
1	278	15899	18758	1320592	933211	1083758	11514
x _l		933211	10833758	77087772	56072195	64277000	671646
x 2			1320592	96530 57 0	64277000	77087772	797514
2 x ₂ x ₁ ×1			7	293833128	4619816878	5693346842	2 57554392
×1.					3441409147	3902881040	40160830
×1,	^ر ي					4619816878	3 47012551

The details of calculations are given at the end in (Appendix 3).

2. The fitted regression equations are-

 $y_e = 0.000296801x_1^2 + 0.001015470x_1x_2 + 0.002156692x_2^2 + 0.304140489x_1 - 0.057402935_{1}^{2} + 12.696481468$

 $y_e = 0.000670528x_1^2 + 0.002384344x_2^2 + 0.331641948x_1 - 0.029321393x_2^+ \\ 10.851602865$

$y_e = 0.002426104x_2^2 - 0.033995319x_2 + 0.406727996x_1 + 8.925260124$
$y_e = 0.415435175x_1 + 0.292338266x_2 - 2.067212463$
$y_e = 0.549481648x_1 + 9.992054936$
3. The significance of each of the foregoing equations
is tested by following analysis of variance (Table 4.1):
Table 4.1 Testing the Significance of Various Terms in SSCE-English(x_1) and SSCE Mathematics(x_2) for the Prediction of PScE Grand Toral Percent

Source	S.S.	D.F	Means	S.S. F
Reg. on $x_1, x_2, x_2^2, x_1^2, x_1x_2$	11590.73	5		
Reg. on x_1, x_2, x_2^2, x_1^2	11587.15	4		
Difference Residual	3.58 11670.87	1 272	3.58 42.91	0.08
Reg. on x_1, x_2, x_2^2, x_1^2	11587.15	4		1
Reg.on x ₁ ,x ₂ ,x ₂ Difference <u>Residual</u>	11585.47 1.68 11674.45	3 1 - 273	1.68 42.76	0.04
Reg. on x_1, x_2, x_2 Reg. on x_1, x_2 Difference Residual	11585.47 11488.95 96.52 11676.13	3 2 1 274	96.52 42.61	2.27
Reg.on x1,x2 Reg.on x1 Difference	11488.95 7227.27 4261.68	2 1 1	4261.68	99.55**
Residual Total	11772.65	275 277	42.81	

•

-

59

.

,

- .

. . . Only linear combination of x_1 and x_2 (i.e. Reg. on x_1 and x_2) is found to be significant in the above analysis. All other F-ratics are found to be not significant at 1% or 5% level. Hence in this case we are led to conclude that General College Scholarship as shown by overall degree of college success is more or less a linear function of SSCE achievement Test marks in English and Mathematics. The multiple correlation (R) of PScE Grand Total Percent on SSCE English and Mathematics marks is found to be .70. II - Prediction of overall degree of success (PSc Grand Total Percent) from standardized (i) English test score and (ii) Numerical test score.

Analysis:

Let y_T denote PScE Grand Total Percent T_e denote English Test Score T_n denote Numerical Test Score The sums of squares and products are:

1.	The	e sums	of squar	res and pro			
	N	$^{\mathrm{T}}$ e	Tn	T ² n	\mathtt{T}_{e}^{2}	$^{\mathrm{T}}\mathrm{e}^{\mathrm{T}}\mathrm{n}$	\mathtt{y}_{T}
1	352	4107	6296	122722	52541	76948	18246
$^{\mathtt{T}}\mathbf{e}$		52541	76948	1560336	724563	1023242	217622
Tn			122722	2564234	1023242	1560336	335947
Tn Tn Tn				56702782	21499022	33840454	6726085
T_e^2					10631837	14576902	
TeTn						21499022	4196512

The details of calculations are given at the: end (Appendix 4).

2. The fitted regression equations are:

$$y_{T} = 0.063271124T_{n}^{2} - 0.035156042T_{e}T_{n} - 0.035813412T_{e}^{4} + 1.900922869T_{e}^{4} - 0.035813412T_{e}^{4}$$

-1.082079092T_n+39.982330603

 $y_{T} = 0.041743291T_{n}^{2} - 0.038429395T_{e}^{2} + 1.333862989T_{e} - 0.718546148T_{n} + 40.307073548$ $y_{T} = 0.032277443T_{n}^{2} + 0.406713656T_{e} - 0.370227694T_{n} + 42.458602786$ $y_{T} = 0.416726136T_{e} + 0.805045880 + 32.573684389$

y_m=1.024363500T_e+39.883349735

- 3. The significance of each of the foregoing equations is tested by following: analysis of variance(Table 4.2):
- Table 4.2 Testing the Significance of Various Terms in Standardized English Test Scores (T_e) and Numerical Test Scores (T_n) for the Prediction of PScE Grand Total Percent

Source	S.S.	D.F.	Mean S.S	. F
Reg.on $T_e, T_n, T_n^2, T_e^2, T_e^T_n$	10294.21	[°] 5		
$eg.on T_e, T_n, T_n^2, T_e^2$	10253.49	4		
Difference Residual	40.72 24216 .23	1 346	40 .7 2 69.99	0.58
$\mathbf{r}_{e}, \mathbf{T}_{n}, \mathbf{T}_{n}^{2}, \mathbf{T}_{e}^{2}$	10253.49	4		
$\begin{array}{c} \text{Reg.on } \mathbf{T}, \mathbf{T}, \mathbf{T}^2 \\ \mathbf{e}, \mathbf{n}, \mathbf{n} \end{array}$	10147.89	3		
Difference Residual	105.60 24256.95	1 347	105.60 69.90	1.51
Reg. on T_e, T_n, T_n^2	10147.89	3		
Reg.on T _e ,T Difference Residual	9695.41 452.48 24362.55	2 1 348	452.48 70.01	6.46
Reg.on T _e ,T _n	9695.41	2		
Reg.on T e Difference Residual	4850.07 4845.34 24815.03	, 1 1 349	4845.34 71.10	68.15
Total	34510.44	351		

ANALYSIS OF VARIANCE

In the above analysis, we find that the regression in T_e, T_n, T_n^2 comes out significant over and above the linear combination i.e. regression on T_e and T_n . Hence we are led to conclude that in case of prediction of overall degree of success from the standardized aptitude tests, the quadratic term (T_n^2) improves the prediction significantly over and above the multiple linear regression. It may be noted that all F-ratios (except one corresponding to linear combination i.e. last one) in case of standardized tests are also elevated compared to those found in case of prediction from SSCE achievement tests. The multiple correlation (R) of PScE Grand Total Percent on standardized English and Numerical Test scores is found to be .53.

III. Prediction of PScE mathematics from (i) SSCE English marks and (ii) SSCE Mathematics marksAnalysis:

Let y_d denote PScE Mathematics marks and as before x_1 denote SSCE English

x₂ denote SSCE Mathematics

Here, also, we start our analysis with the most general equation of the second degree, i.e.

 $y_{d} = a_{1}x_{1}^{2} + 2hx_{1}x_{1} + bx_{2}^{2} + 2gx_{1} + 2fx_{2} + c$

	1. The	Bamb or by	luares and pi 2	•	•	
N	x1	^x 2	x22	\mathbf{x}_{1}^{2}	x 1 x 2	2
1 27	8 15899	18758	1320592	933211	1083758	12038
x ₁	933211	1083758	77087772	56072195	64277000	70796
¥2		1320592	96530570	64277000	77087772	85799
x2 2			7293833128	461981687	8 5693346842	63533
x ₁ ²		~		344140914	7 3902881040	4265
x ₁ x ₂				·	4619816878	5097
y_=0				.005277173	$x_1^2 + 0.96621758$ $x_2' - 10.59256$	
	00000000000	7x2-0.0048	81655x ² +0.99		0.341618126x2	2 ~ -
y _d =0	•00607559			ar 10		
y_=0	•00777157	•	72671x ₁ -0.30 58124x ₂ -33.7	7590474×2 ⁴		

.

,

· .

3. The significance of the each of the above regression equations is tested by following analysis of variance (Table 4.3):

Table 4.3

.

Testing the Significance of Various Terms in SSCE-English (x_1) and SSCE-Mathematics (x_2) in the Prediction of PScE Mathematics

Source	S.S.	D.F.	Means S.S	• F
Reg. on $x_1, x_2, x_2^2, x_1^2, x_1x_2$	44118.96	5		
Reg. on x_1, x_2, x_2^2, x_1^2	44114.95	4		``
Difference Residual	4.01 56197.66	1 - 272	4.01 206.61	0.02
Reg. on x_1, x_2, x_2, x_1^2	44114.95	4		
$\operatorname{Reg.on} x_{1}, x_{2}, x_{2}^{2}$	44025.79	3		
Difference Residual	89.16 56201.67	1 273	89.16 205.87	0.43
$\begin{array}{c} 2 \\ \text{Reg.on } x_1, x_2, x_2 \end{array}$	44025.79	3		
Reg.on x1,x2	43035.36	2		*
Difference Residual	990.43 56290.83	1 274	990.43 205.44	4.82
Reg. on x_1, x_2	43035.36 15893.64	2 1	-	*
Reg.on x _l Difference Residual	27141 .7 2 57281.26	1 275	27141.72 208.30	130.30
Total	1000316.62	277		
	فكالمسادي والرقاب ومستعلي ويتبر فتقد فتستعد والمراجع والبراد والمراجع والمراجع			

ANALYSIS OF VARIANCE

In the above analysis, we find that quadratic term x_2^2 improves the prediction of PScE Mathematics over and above the linear combination of the two predictors i.e. Reg. on x_1, x_2, x_2^2 comes out significant over and above the significant Reg. on x_1, x_2 .

IV. Prediction of PScE Mathematics from Standardized(i) English test score and (ii) Numerical test score-

We start our analysis with the most general equation of the second degree, i.e.

 $P_{m} = x_{1}T_{e}^{2} + 2hT_{e}T_{n} + b_{1}T_{n}^{2} + 2gt_{e} + 2fT_{n} + c$ The sums of squares and products are:

1.

	N	те	T n	T_n^2	T _e	TeTn	P _m
1	352	4107	62 96	122722	,52541	76948	18888
Te		52541	76948	1560336	724563	1023242	227242
Tn			122722	2564234	1023242	1560336	353445
				56702782	21499022	3384454	7187815
T _n T _e ²			•		10631837	14576902	2980010
T _e T	n					21499022	4453015

The details of calculations are given at the end (Appendix 6).

2. The fitted regression equations are- $P_{m} = 0.231753282T_{n}^{2} - 0.190390137T_{e}T_{n} - 0.151970060T_{e}^{2} - 4.783357641T_{n} + 7.488583174T_{e} + 35.346538295$ $P_{m} = 0.115167713T_{n}^{2} - 0.166137107T_{e}^{2} - 2.814618155T_{n} + 4.417628573T_{e} + 37.105207424$ $P_{m} = 0.074245169T_{n}^{2} - 1.308775540T_{n} + 0.409397106T_{e} + 46.406651224$ $P_{m} = 0.43242800T_{e} + 1.394610368T_{n} + 23.669179953$ $P_{m} = 1.485060385T_{e} + 36.331980110$

3. The significance of each of the above equations is tested by following analysis of variance (Table 4.4):

Table 4.4 Testing the Significance of Various Terms in Standardized English Test Scores (T_e) and Numerical Test Scores (T_n) for the Prediction of PScE Mathematics.

			<i>c</i>	
Source	S.S.	D.F.	Means S.S.	F
Reg. on $T_e, T_n, T_n^2, T_e^2, T_e T_n$	30296.56	. 5		
Reg.on T_e, T_n, T_n^2, T_e^2	29102.26	4		
Difference Residual	1194.30 99838.53	1 346	1194.30 288.55	¥.14
Reg.on T_e, T_n, T_n^2, T_e^2	29102.26	4	<u>,</u>	
Reg. on T_e, T_n, T_n^2	27128.50	3	,	-
Difference Residual	1973.76 101032.83	1 347	1973 .7 6 291 . 16	*** * 6 .78
			(contd.)

ANALYSIS OF VARIANCE

Soube	S.S.	D.F.	Means S.S	F_
Reg.on Te, Tn, Tn	27128.50	3		
Reg.on T _e ,T _n	24734.43	2		**
Difference Residual	23 94.0 7 103006 .5 9	1 348	2394.07 295.99	8.09
Reg.on T _e ,T _n	24734.43	2		
Reg.on T _e	10193.62	1		
Difference	14540.81	1	14540.81	**
Residual	105400.66	349	302.01	48.15
Total	130135.09	351		

It is of interest to note in the foregoing analysis, that all the terms in the general equation of the second degree i.e. T_e , T_n , T_e^2 , T_n^2 , and $T_e T_n$ come out significant.

RESULTS AND DISCUSSION

Comparing the analysis of variance, we find that, as the criterion y_e - PScE GT percent - is changed to y_d -PScE mathematics, the non-linear component emerge; or in case achievement tests are replaced by objective aptitude tests, the non-linearity is clearly visible, which can be well understood from the following table:

Table 4.5	Testing	the Significance of Each Additional Term: in	
	English	and Mathematics Variables for Prediction of	
	PScE GT	Percent and PScE Mathematics	

	Terms in achievement measures	PScGT Per- cent	PScE Maths.	Terms in Aptitude measures	PScGT Per- cent	PSc Ma- ths'.
		1	2		3	4
1	x ₁ ,x ₂ ,x ₂ ,x ₁ ² ,x ₁ ² ,x ₁ x ₂	NS	NS	$\mathbf{T}_{e},\mathbf{T}_{n},\mathbf{T}_{n}^{2},\mathbf{T}_{e}^{2},\mathbf{T}_{e}\mathbf{T}_{n}$	NS	S
ii	² ² x ₁ ,x ₂ ,x ₂ ,x ₁	ns	NS	$\mathbf{T}_{e},\mathbf{T}_{n},\mathbf{T}_{n},\mathbf{T}_{e}^{2},\mathbf{T}_{e}^{2}$	NS	S
111	x ₁ ,x ₂ ,x ₂ ²	NS	S	T, T, T ²	S	ន
iv	x1,x5	ន	S	Te,Tn	ន	ន
v	x1	S	S	Te	S	S

Comparing 1 with 3 in the above table, it is observed that the term x_2^2 in (iii) is not significant while T_n^2 is significant. This shows that the achievement measures in combination ultimately tend to be linearly related with the criterion of general college scholarship while aptitude measures, in combination also, tend to have curvilinear relationship. Also the strength of linear relationship of achievement measures is more than that of the aptitude measures. Whether the differences mentioned above with regard to achievement versus aptitude tests are due to comprehensive nature of the achievement test or whether they are due to achievement measures containing linear component in excess which may be due to such additional abilities as memory, application to studies, cannot be said here. It is beyond the scope of this study and hence needs further investigation.

Conclusions:

From the above study, the only conclusions that can be drawn are:

- 1. The prediction function of comprehensive SSCE achievement measures-English and Mathematics in combination - is found to be linear for predicting the PScE Grand Total Percent and it is found to be curvilinear (with only quadratic term in SSCE-Mathematics significant) for the prediction of PScE Mathematics.
- 2. The prediction function of brief aptitude measures-English and Numerical test scores in combination is found to be curvilinear (with only quadratic term in Numerical variable significant) for predicting the PScE Grand Total Percent, while the

prediction function given by the general equation of the second degree in English and Mathematics Test variables is found to be significant for the prediction of PScE Mathematics.

3. The curvilinear relationship given by the general equation of the second degree raises the level of accuracy of the prediction of PSc Mathematics (from English and Mathematics test measures) significantly well above the linear combination. This result: bears much significance in validation research. Yet it is certain that the level of accuracy reached by SSCE achievement measures is far more than that of the aptitude test measures as indicated by multiple R's in the prediction of the PScE Grand Total Percent. In other words, the predictive value of aptitude test scores is limited for this , criterion, compared to achievement measures. Hence the implications of the above results should be studied in combination with some auxilary variables, to have the same level of accuracy. For this reason, the analysis with aptitude measures is abandoned in Part II.