
CHAPTER VII

PREDICTION OP COLLEGE SUCCESS BY MORE GENERAL 
QUADRATIC DISCRIMINANT

Hitherto we ha-re assumed equality of variance - 
covariance matrices for the two groups of pass-fail 
dichotomy, and the results of the previous two chapters 
are based on this assumption.

Smith, Cfedric'A.(19^7) has shown that when differ
ences in variances and covariances of the two groups to 
be discriminated, cannot be assumed equal, the discrimi
nant is a quadratic function of the normally distributed 
predictor-variables, which may be termed as Quadratic 
Discriminant.

Problem

In our data under study, we observe considerable 
differences in the variance-covariance matrices for pass 
group and fail group as determined by the results of the
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PScE. It is therefore the purpose of this study to 
investigate whether Quadratic Discriminant can be used 
to improve the prediction of pass-fail dictotomy, over 
the linear discriminant.

Method
Let-
X^ denote English variable
X_ denote Mathematics variable2

V- denote variance of the English variable in Pass Group 
1' 1

V < x2*2
denote variance of the Mathematics variable in Pass 
Group
denote covariance of English-Mathematics variables, 
in Pass Group

and
V denote variance of the English variable in Fail-Group
Vi

denote variance of the Mathematics variable in Fail 
Group

V denote covariance of English-Mathematics variable
71JZ In Fail Group

V denote variance-covariance matrix for Pass Groupxx
denote variance-covariance matrix for Fail Group
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Then
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where I‘yiy-,1 1

y2y2

Vylyl V
y2y2 "

Vyiya

v2
yiy2

V V
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ylyl y2y2 -

V" yiy2

yly2
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ylyl y2y2 " yly2
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then the Quadratic Discriminant (Dq) is given as-

xi + 2 VA +Vz4 + 2"V V 2*SV ^
A1A1 y yii 11
°V2 = i - i

J^2 X^X2

^V2 - I - I
y2y2 X2X2 5

^*1 = I M + I M
- xlXl Xl Xlx2 X2

-I M - I
y^i y2 7^

II I M + I 1X1X2 X1 X2X2 x2 -i ■ i - i
h?2 yi y2y

I M2 + 21 MM
ylyl yi yly2 yi

2
„ + I M -
*Z y2y2 y2

-21 M M - I ^xlx2 X1 x2 X2
M2 -1 W

2 x2 n */W

M

M.

xlxlM

M being the mean of English variable in Pass Group

M being1' the mean of Mathematics variable in Pass Group
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M being the mean of English variable in Pail Group
yi

M being the mean of Mathematics variable in Pail 
Group

x x„ 1 2
¥ ¥ - ¥XjX- x2x2

and 1 W being the natural logarithm of _____________n X/M 2y ¥ ¥ - ¥
ylyl y2y2 yiy2

C-omputation-
For the data in question, the variance co-variance 

matrices for the two groups ares

- ¥ - ¥ 69,5880 26.5675

¥XX
xixi

¥

xx„1 2

¥
==

26.5675 171.93^
-

■ X1X2 X2X2 •

¥
yy

¥
ylyl ■

¥

¥
yly2

¥ .
77.7653

- 0 .6371

- eO.6371

141.2876
y<y01 2 V2J

The corresponding inverse matrices are-

I =XX

I
X1X2

. \xz

' I
xix2-

1
X2X2 -

-

7

0.01527H9

- .00235972

- .00235972

.00618080

and r I
Vi I,V* .01285968 .00005799"

I =
yy IVa 1

y y2 2.

.00005799 .00707802
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H
X

1

= 60.06

1 1
= I

yiyi

«^>X X
1 2

/

= I
yiy2

X V - I
2 2 “ y2y2

1
= I

X X

M = 72.21 M » 52.31? M = 59.44 
X2 y! yi

I = .01285968 * -.00241151 
xlxl - • Ol 5 2»7 f 19

I = .00005799 + .00235972 = .00241771

- X- = .00707802 - .00618080 = .00089722
x x 2 2

M + I M - I__ M - I_ M
_ X X X X ^1^1 y..y0 yo111 122 111 122

= (.01527119)(60.06)+(-.00235972)(72.21)-(.01285968)X

,(52.31) -(.00005799) (59-44)

0.07065550

H + I I w M - I_ _ M
y«y„ y. y2y2 y*2 X1X2"X1 X2X2 X2 -1-2^1 -cr**z

= (-.00235972)(60.06)+(.00618080)(72.21)-(.00005799)

(52.31M. 00707802) (59-44)

= - .11916018

■ 2 2 2
V =1 1+21 M M + I M ~-I Mx

yiyi.yi yiy2 yi y2 y2y2 y2, x1x1

V2 x
-21 M M ' - I M_ - 1

x X x x XX x2 n H1 2 1 2 2 2 y

1
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=(.01285968)(2736.34)+(.00011598)(3109.31)
+(.00707802)(3533.11)-(.01527119)(3607.20)

11258.74
-(-.00471944){4336.93)-(.00618080)(5214.28)-l --------

n 10986.87

=-6.2902?969- 1 (1.0247) 
n=-6.29027969 - (0.0106)(2.3026) 

=-6.31468725

The Quadratic Discriminant so computed is given as-
2 2 Dq = -0.0024ll5lXi + 2( .00241771+ ,00089722X2

+2( .0706555OX - -2( .11916018)X -6.31468725 
x 2

We use this discriminant to classify 278 students in 
the data. The test criterion used for classification is as 
follows 1

Dq^O , the individual is classified as belonging to Pass 
Group

Dq< 0 , the individual is classified as belonging to Pail 
Group

In using this Quadratic Discriminant to classify 278 

students in the data, 21 errors of type I were observed, 
while 55 errors of type II were observed. Though there is 
some improvement in type I error, type II error is increased, 
compared to two variable discriminant.
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We further study a particular case of Quadratic 
Discriminant, in which the correlation between and 
x being very small, is assumed to be equal to zero.

Particular Case s Y
12

Y = 0
*1*2

Then- ■

V 1 =
Yxlxl Vxlx2

69.5880 0.0

XX VX X1 2
V
x2x2

- 0.0 171.9344

Similarly-
Y Vyiyi yiy2 77 •70-53 0.0

Y Y = 0.0 141.2876
*1*2 y2y2 ‘ ■

The corresponding inverse matrices are-

I
0.01437029 0.0

XX " . °*° 0.0058161V\
and

*Y*
0.01285921 0.0

I •; = yy 0.0 0.00707776
^x,x, = I - I = -0.001511081 1 *1*1 xlxl

q/ x_x^ = I - I = 0.00126159^ 2 2 y2*2 7^

11 I M - I M
1 v y t V Vxi 1 1 ylyl yi

-= 0.19041434^
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= I M , M2 xxx - I y 222 ¥2*2 2
- 0.00071642 

2 W_< = I M + I M2*-! M - I M2-l (I-)
Vi7! V2y2 Vl*l *2*2*2 n"y

= - 22.05563039

!

The Quadratic Discriminant, without the product term 
so calculated is- ,

2 2= -0.00151108Xi + 0.00126l59X2 + 0.38082868X^-0.0014328^

-22.05563039

Results and Discussion-
In using this discriminant to classify 278 students 

and the same test criterian as before, 23 errors of type I 
were observed, while 47 errors of type II were observed., 
comparing these results with those found with two variable 
discriminant, we observe that the results are as much the 
same; yet in some specific situations, as shown in the 
following graph (E-£gtgrirs4'), the observed cur:yilinear 
trends seem to be more appropriate for prediction purposes.

The graph shows the points corresponding to passes ■ 
and fails (by dots and cross) and the two discriminant.
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The passes and fails are scattered so close to and mixed 
up on both sides of the discriminant line or curve1 that 
further improvement does not seem feasible with the help 
of either? but as we look on moving away from the ‘dis
criminant on both sides, the curvilinear trends joining 
the dots as well as crosses, as shown by dotted lines., 
seem to provide better solutions than these given by the 
straight lines. For instance, in the lower extreme posi
tion, the suitability of the curve shown by the dotted 
line becomes more evident for a small probability (say 
0.05 or 0.01) of II kind of error, as also, in the upper 
extreme portion for I kind of error to be equal to 0.01 
or one percent. Thus the method of selection based' on 
lower curvilinear solution ensures elimination of unfits 
in a better way, and can be used in situations where the 
number of seats for admissions are sufficiently large, 
and yet we want to reduce the unnecessary wastage keeping 
Type II error to be minimum or zero.

Usually the admission in college or university are 
governed by the number of seats, > For institutions which 
maintain a very high standard, the number of seats are very 
limited and only a few top students are admitted. In such 
situations the upper curvilinear solution resulting in 
0.01 error of II kind, seem to be more desirable compared 
to the straight line solution.
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How these better solutions at the extreme’situations 
can be explained?

It may be pointed out that the differences in vari
ance- covariance matrices, as a result of which the Quadra
tic Discriminant arises, are mainly contributed by the ex
treme groups, while in the middle situation, these differ
ences are not so effective.

So far we have considered the solution to the predi
ction in term of errors of first kind ( ) and second
kind ( °<x ) only and we have corresponding two regions only- 
one of acceptance (R^) and the other region of rejection 
(B2) and we have observed that as we ohanee the discriminant 
line or curve, from one position to another, if one kind of 
error decreases the other kind of error increases and vice 
versa. If we use the optimum solution, then we have co
rresponding minimum errors of first and second kind that can

Jbe offerred by the data under the situation, depending upon 
the efficiency and reliability of the measuring instrument.

In yet another way, we may require to limit these 
errors of I and II kind to be smaller than some fixed 
values. In this case, the third region of doubtful cases (D), 
.such that an individual belonging to this region remains 
unclassified, has to be introduced to keep the error of
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classification at a desired level. The frequency of 
doubtful cases decreases as the number of sufficiently 
accurate predictors increases. Contrary to this, a 
sequential test given by A. Wald and the extension of this 
test to multivariate analysis developed by C.R. Bao can 
be used to keep the wrong classification at a desired 
level, without making use of a large number of predictors 
simultaneously. We have also observed in the analysis of 
chapter VI, that it is not always profitable to start with 
a number of variables together unless each variable is 
sufficiently accurate to reduce percentage error in pre
diction. As such, the above method (due to A. Wald and 
C.B. Bao) can be used to advantage.

If

The regions ,B^t Bg and D are given as i
pf -i 1-—±. >,-- , the individual is classified as belonging to R.Pf2

and

E£i<pf2~

l-v,

—£.» the individual is classified as belonging to B„ 1- *

Pf2
pfo the individual is classified as belonging 

to D
where p£i

pf2 denote probability densities.

If the individual is found to belong to D, we take one 
or more additional test variables to classify him as belonging 
to R^ or Bg. We will illustrate this method in a general 
case in the next chapter.
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In chapter IV, we observed that, in case of aptitude 
measures, the quadratic relationship improves the predi
ction significantly over the linear combination of test 
variables and so, even if the results of the Quadratic 
Discriminant in this analysis with achievement measures 
are not found to be very gainful there is wide scope for 
Quadratic Discriminant of being useful, while dealing - 
with aptitude measures.

Secondly, Linear Discriminant is a particular case 
of more general Quadratic Discriminant and if', appropriately 
use^'toes^not"harai the prediction, and is more suitable

o

at the extremes, as observed above. Moreover, Quadratic 
Discriminant Is based on probability density and hence 
can be easily geared to other more advanced methods due 
to A. Wald, C.R. Eao and Welch. As such, it might per
haps yield Improved results with more rigorous methods
and with better situations of test data and examinations.


