CHAPTER V

SOME RESULTS ON THE MINIMAL COMPLETE

CLASS OF LINEAR ESTIMATORS

5,0 SUMMARY

Let ¥ denote the class of all homogeneous, linear,
unbiased estimators of the mean of a finite population, which
do not take into account the order or the number of repeti-
fions of a unit. In this chapter we discuss & sufficient
‘ c‘:”gn‘cii’cion under which & is not minimael complete. We also
give in this chapter a complete description of the minimal
complete subeclass of & in the special case of taking a simple

random sample of sizge 2 from & population of size 3.

541 INTRODUCTION

Consider the problem of estimating the mean of a
finite population. As noted in Chapter I it is known that
the class L of unbiased linear estimators contains a best
estimator in the sense of minimum varianée, if and only if,

the design (S,P) is a unicluster., Roy-Chakravarti [17] have



_broved that the subclass ¥ of L consisting of those estimators

}mﬁich do not take into consideration either the order or the

é number of repetitions of & unit is complete in L. Godambe

" and Joshi (47 and Dhermadhikari [1) gave exemples of

inadmissible estimators in § . Thus, in.general, O is

not minimal complete. In the next section we obtain a

éufficient condition on the design under which {3 is not

minimal complete. Also examples are given in the next section

to show that this sufficient condition is not necessary and to

show that & ma& be minimel complete even if the design is

| non-unicluster. In the last section we give & complete

describtion of the minimal complete class for the artificial

special case when one takes a éimple raniom sample of size 2

without replacement from a population of size 3. In this

special case, the set T, can be indexed by points X ¢ R>. We

show that both the admissible and inadmissible estimators in
Glead to KA ~-sets of infinite Lebesgue measure. Further,

in a certain sense, the inadmissible estimators vastly out-

'number the admissible ones. Thus while, the concept of

‘édmissibility does not lead to a unique choice, it does weed-

out a large~ sub=~class of estimators. ,



5.2 A SUFFICIENT CONDITION UNDER WHICH TEHE
. ROY-CHAKRAVARTT CLASS IS NOT MINIMAL COMPLETE

"For a design (S,P), a homogeneous linear estimator of
the population mean has the form given in (1.2.6),

io\e- t(s,g) = Z ’O(S,i) Yi- . 0:0(5!2.1)
ies .

The conditions for t(s,g) of (5.2.1) to be unbiased
for ¥, the population mean, are

Z b(B,i) p(S) = N-.‘l,'- 121,2, *o ey ¥. 'o‘no(50212)

- 893%1
Note that in our set-up all samples which consist of the same
set of distinet units are‘treated a8 equivalent and hence L
and ¢ , mentioned in section 5.1, coincide. We‘now prove the

theoren.,

Theorem 5.2.1 :+ If 5 n(s) > & g“) , then L is not
BE S .

minimal complete.

Proof : Let T denote the Horvitz-Thompson estimator.

That is,

M(s,X) = 2 [Y;/N W], where v, = 5 p(s).

i€s 831

We want to construct a linear estimator Ti(s,g) = :E: c(s,i)Yi
: ies
such-that T1 is unbiased for the zero function and



&7

t

. edy. (T1,T) 0 for all values of Y.

Since T1(s,§) is unbiased for the zero function

2:1 e(s,i) p(s) = 0O i=1,2, eeeglle  2ee(5.2.3)
g3 .

The condition Cov (T,,T) = O gives
W)™ T ele,t) p(s) = 0 1=1,2, wery B +en(5.244)
g 31
and

7)) T e(s,3) ple) + ()N T o(s,1).p(s)=0
, 5311, 3} 47 8o,

i1y = 1,2, vee N and if j,
000(502'5)
Conditions (5.2.3) and (5.2.4) are equivalent. Hence the

total number of linear equations in (5.2.3) and (5.2.5) are

“ N(N=-1) _  N(¥+1) .
N+ =5 = 5 .

Therefore the maximum number of liﬁeafly independent egquations

18 & 2*1) . The number of unknown constants.c(s,i)
equals 2_ n(s).
SRS

y ., f . N
Thus we have a non-zero solution as soon as

x > B(m1) ’ ver(5.246
Sesn(S) B ++(5.2.6)
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If (5.2.6) holds, then it follows from the lemma in Dharmedhi-
" kar:. {11 that T dominates T + T4 and hence L is not minimal
conipiéteg The steps -(5.2.4_),‘ (5+2.5) and (5.2.6) in the proof
of ‘bt’léorem 5.2.1 are conteined in section (5.3) of

Remkrishnen{18]..

Exemple : Consider a situation where one takes simple random
samples of size 2 without ;'eplacement from a population of
size 3. Here ES.I;:_LL =6 = 2 n(s). Thus the condition .
(5.2.6) of the theorem 5.2?16 ?ust fails. However, as shown
by Dharmadhikarif{1] , L does contain inadmissible estimators,

Hence condition (5.2.6) is not necessary.

Example ¢ Let N = 2 and suppose that the only samples of
positive probability (each equal to 1/2) are 5, ={1} and

8, = {142} + Then Te¢ L is of the form

2(8,,Y) ==Y, 5 T(s,,¥T) = (1=ot) Y +¥,5 AeR.

Por anyoe R, the resulting estimator is admissible, because
it is the only estimator which has zero variance at 4l
points (¥,,Y,) on the line (2« -1) ¥, = Y,. Thus L is

minimal complete while »_ n(s) =3 =X g""”’
B€ S :

It is clear from the two examples above that (5.2.6)

cannot be improved in general.
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5.3 IDENTIFICATION OF THE MINIMAL COMPLETE CEASS
. IN'A SPECIAL CASE

E Consider the extreme special case of a simple rendom
san;'ple of size 2 drawn without replacement from & population
of size 3. Here we bave three samples s; = 11,2%, B, = 12,3}
and s; = {3,1% eaéh having the seme probability 1/3. Here L
can be indexed by points in R°. The estimator Toq corresponding

to X = (\ g9 Lpy 953) € 33 is defined by

T (85,Y) =o<i*fi + “"?(:m) Yi.q 0 151,2,3,
where i+1 is interpreted as 1 whez;' i=3, Thié_convention
regarding the subscript (i+1) will be followed throughout
this section without me:qtiona We now prove the following

lemma

_lfz_e__zg_m_g_ 5.3.1 : Every T € L reaches zero variance on some line
1l in R? passing through origin and not coincident with any
coordinate axis. Conversely, given any line 1 which passes
through the origin and which does hot coincide witﬁ any
coordinaté axis, there is a uniquely determined class

{t(c), c€RY of es;timators in L such that every T(c¢) reaches

zero varisnce on l.



Proof : (a) Let T4e L « For T4 to have zero variance at
X = (Y1,Y2,Y3), we must have
To‘(BJ;; X) = Ty (329‘}:) = Tx (839 X) = Y.

The equations T, (s,,Y) = T, (85,¥), T, (850X) = T, (84,Y)

and To((sz,z) = T, (SB’Z)

give .
(2041-1 Xy + (1-&?2) Y, =oz¥; = 0,
-k Yy + (2o<2~1) Y, + (1-043)3{3 =‘o,
(1-90 )Yy =KX, + (200 5-1)T5 = O, IINCERY
‘respectively.

The equations (5.3.1) are linearly dependent. Therefore
there is a non-zero solution and the solution space has
dimension 1 or 2. If the solution space has dimension 2,
clearly it will contain a liné 1 which paases thrpugh the
origin and does not coincide with any coordinate axis. If
the solution spece has dimension 1, then it coincides with
& line 1 passing througb the origin. But then 1 cennot be a
coordinate axis. For if (0, O, Y3) is & solution of (5.3.1)

with Y3#O, then we get the contradictory results

0(3 = 0,043 =1 and 5 = 1/2.

20



) . N . ) N "\‘q'{’\" )
. This proves the first part of the lemma. Conversely, let 1 be

" the line determined by the origin and a point Y with Y,#0, and
~ 1

YZ‘;J.O. Then an estimator T, attains zero variance on 1 -ify

and only if, it attains zero variance ét'g-fmhus for having

zero variance on 1 we rewrite (5.3:1) as follows.:

~{0ty = Tpot, + gty = Yz=Y,. eee(543,2)

The non—homogeneous system (5.3.2) is consistent. A solu-

tion of homogeneous system corresponding to (5.%3.2) is

Yiui = ¢y, i =1,2,% where ¢€ R, A particular solution of

(5.3.2) obtained by using the constraint
-Y1o<1 + Y2o<.2 + Y3u3 =0, is

Tyoy = (/300 ), 1=1,2,3.

Hence, if Y, # 0, a solution of (5.3.2) is

3o

Yixy =c+ % (Yir— Yi'ﬂ)’ i=1,2,3 ese(543.3)

where ¢€ R is arbitrary.

1f Y3 = 0, then o« is arbitrary and o, =<, are uniquely
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determined. In ayy case, we get a family of estimators

.indexed by the real numbers. This proves the lemma.

If an estimtor T reaches zero variance on a line 1,
then any estimator T' which dominates T must also have zero
variance on 1. Thus, ‘to de’aerminé acimissibilgity, one ca'.ﬁ
consider subclasses of estimators »rea.;zhing zero variance on
different lines. The above lemma engbles us to split L into

two types of subclasses.
(i) sSubclass I consists of those estimators which reach zero
variance at points Y such that exactly one Yi---O.

(ii) Subclass II consists of those estimators which reach

‘zero variance at points ¥ such that no Y, vanishes.

- We will now consider each subclass separately and identify

the admissible estimators.

Theorem 5+3.1 : (1) An estimator Ty attains zero variance

at some:point (O,. By a_),) with. a2;540 and ‘a3;40 if, and only

if, (o<2, c<3) lies on the rectengular hyperbola
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(11) Let (oXp,ot5) satisfy (5.3.4)¢ IE (\<><2’,o<3) = (1,0),

then T is admissible if, and only if, g = 1/2. I

(542,0(3) # (1,0), hen T, is admissible for every w4 € R.

Proof : Suppose that the estimator T attains zero variance
at (0, a,, aa) with a2;£0 end a3;40. Then (5.3.1) gives
(1-%4,) a, - %585 = 0,

“0(23.2 4 (29(3"1,) 3-3 = (,). 000(50305)

From (5.3.5) we get

> L3 ,(2<><3 - 1)

a

. ) ,...(5.306)
Hence 3 642043 - 2oty w1 =0

which by simple algebra reduces to (5.3.4). Conversely, if
(uz,cx.j) satisfies (5.3.4) then a2/a3 can be determined
uniquely by (5.3.6) so that (5.3.5) holds and hence T Will

have zero variance at (O, oY a3) . This proves part (i).

‘Wow let (cxz,o(a) satiefy (5.3.4). For varying « 4,
the variance of T, at a point ¥ with Y #0 is

3 2
Ver (1, ) = % z, [og Y+ (1=, ) ¥, - 53
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Thus Var (T, .) is minimum when
- Y+ (ocz-‘l) T, +ol,Y5
1° - 2Y

i
¥

e e(543.8)

1
s (s z) # (1,0), then the right side of (5.3:8) can be
made to'assﬁme any real value by a suitable, choice of Y.
‘Tberefore;‘ for any «,€R, the estimator Tc; is the unique
éstima’cor which attains minimum variance at a suitable point

g amongst all estimators which attain zero variance at

another. suitable point (O, 8y, a3);\ Thus éVei'y such T, is
admissible. On the other hand, if (o, 043) = (1,0), then

right side of (5.%.8) reduces to 1/2. Hence & =(1/2, 1, 0)
leads to en admissible estimator. For ™ ,# 1/2, Dharmadhikeri[1]
has shown that the estimator corresponding . to (o<1, 1, 0) is
inadmissible. This proves (ii) and completes the proof of the

theoren,.

Theorem 5.3.2 : Let a = (&, 8oy a3), where ai;éO, i=1,2,3.

Let a= (a1 +oay + 33)/3. in estimator T~ attains zero

‘varience at a if, and only if,

Bty = ¢+ 8y, 1=1,2,3 \ eee(54349)

where c€ R is arbitrary and 8, = (a;-a;

i 1+5 )/3-



An_estimetor satisfying (5.3+9) is admissible 1:f.‘, and only

if,

le - %—E'\ ﬁ.h*, where h*-:\iﬁ g? + 5§ + 8%)/6] e

Proof : The first assertion has already been noted in the
proof of Lemma 5.3.1. Let e, denote the estimator T, where

< satisfies (5.3.9). Then

oy 8y +(1-r><i+1) a,

141 = .5, i=1,2,3, 0--(5*3010)

as T (si,g) =2 for i=1,2,3.

/

We now compute Var (ec) at a point Y.

For convenience we write b, = Yi/ai'

All summations below are for i = 1,2,3.
=21 _ ‘ _
3 [ver(eg) + T7] =Flxy¥y + (1= o q) Yypq ]
=3 [=g2ibs+ (1= °‘1+1) %141 b1+1]

-Z[o(ia b, + ( = 481 ) b, ] using (5.3.10)

i+1

| =5 [(or 8,00, + (F-o-5,) "’1+1] “ustng (5.3.9)

zz—[c(bi~bi+1 M+ §. (bl b1+1 )+ abi+1]
2 2
= Z(bl—b:{.*}-? + 20255_(‘0 = byq)

.+ 2082 (b;=by 4) by 4+ Q ,"'(5'3'”)



where Q denotes terms which do not involve ¢.

Now

" o e
T (by=b5.4) by 4 =2 (b; by 4 - byq)

2

- ' 2 .2
< =% (2b° + 2b2 + 2b%- 2b b, - 2b,b, - .2b,b,)
1 o * 2b3= 2byby ob3 = -2b5D,

i

4 [ (by-by)? + ‘(bgfbé)a + (bg=b)?]
= F X (b, )%
Therefore (5.3.11.) gives
3[Var (ec)-%"‘f'z]:‘: c2z(bi-\-bi+1§' + c%(28,-a)(by-b, 4 )2+Q.

It follows that
)2

B[Var (e,) = Var (ey)] = (c=d) 2. (c+d~a+2 §,) (b =b,

eee(5:3.12)

), then 'z‘_zi:.o.

Write h = ctd-a, Z; = (bif‘bi-i»‘l

Hence (5.3.12) becomes
3[Val' (ec)» - Var (ed)] = (C’d)Z(h+2 Si) Z?_ 5

Then, using the results Zéi = 0 and Zzi=0 after some

simplification, we get



3 [?ar(ec) - Var (e;)] = 2(e=a)[ (b-84) Z;') +{h=G8y)
25+ (02 8 5)2,2,). +e(5.3.13)

The quedratic form on right side of (5.3.13) is definite
if, and omly if, ’
(b-8,) > 0, (b= 81) >0 eand (b-3,) (h-81)—(-t23*-+53)2> 0.
Oor .
(b= 8,) <0, (b=8;) <0 and (n~.52) (b= 61)-(-‘2‘-(+53)2> 0.
But this means that the condition.’

(b~ 62.2,(h- 61) - (~ -g- +53)2 S 0 is both ‘necessary and
sufficient for tbe'quadratic form on righﬁ‘side of (5.3.13)
to be definite.

~After some simplification this condition reduces to

he> (2/3) (6% + 52 + 5%) or

|h| > 2h*  where h* ==J %[ (6? + 52 + 5%)] .

~ Purther, it is easy to see that the gquadratic form in the
bracket on the right side of (5.3.13) is positive definite
if k> 2h* and negative definite if h < —-2h¥. ‘



 Tet c>F+ b* and @ =5+ h*  then
ho= c+d - a)> 2h¥. Therefore the bracket on right side of
(5.3.13) is positive definite. But c-d> O. Therefore right

side of (5+3.13) is positive definite. Thus e; dominates e,

and e, is. inadmissible. Similarly e, is not admissible for
c<(8/2) - h*. Now let lc - (3/2)] < h* and 1d4-('é'/2)l < b*,
We show that €3 does not dominate eé. This will show that

e, is admissible, because for d outside this range, ey is
domina ted b;;;‘ef where f = (3/2)+h* or £ = (8/2)-h*. Ve

have -ic+dJE|5§éh*. Ther efore the quadratic form on the right

side of (5.%.13) is indefinite. Hence e is not dominated by

c
ey Thus ecxis admissibles This proves the theorem.

We will now describe @ method by which one cen determine
whether, for a givenocejR?, Tx 1is admissible. Calculate

the three quantities

8y = (3¢, ,1=2) (Bot, o=1)+1, i=1,2,3. eve(5:3414)

Actually (a1,a2,33) is just & solution of (5.3.2) for
the given o« . »
Case 1. Let one of the a,'s, say, a, be zero. Then (042,o<3)

lies on the hypgrbola (5+344). IF (9‘2* c><3) # (1,0) then T,



is admissible. If (o5 o<3)‘= (1,0) then T_, is admissible if,
and’ bfn;;ly if, Ky = 1/2. The Case .9-2=0 or a3=0 are treated .
similarly.

Case 2. Suppose all the ai’s are non-zero. Calculate

5 = (31 i+1 )/3, i=1,2,:f> and h* =l%{( é? + 53 + ~5§)]

Because of (5.3.9), the velue of o(;a,- 3; is same for all i

anl we denote this velue by ¢, Then T is admissible if,

and only if, .
|c ~ (a/2)l < ¥ ..(5.315)

where a,-(a.‘-fa 8y )/3 ‘ e
The expression (5.3.15) can be expressed in simple form

8q 08,85 sg-'éa. see(543416)
Put i=1 in (5.3.14) and substitute for oly, (3 by
= ‘(c+ Si)/ai, to get
62 - cB= (a1aza3 - Yaa ., )/9e oo (543.17)
. Condition (‘\5.3.15) is equivalent to
? - & ¢m? -3 B vee(543.18)

From (5.3.17) and (5.3.18) we get (5.3416).



/' TLet A be the set of ell <R’ such that T, is admissible
a*.nél\,let B be the complementary set of all«x€ R’ such that T
is inadmissible. first observe ’ohaf the estimators cbnsidered
in Theorem 5 %+1+ correspond to a set of Lebesgue measure zero.
Therefore, from the po;mt of view of measure, the essential
information is contained in theorem 5.3.2 and hence in the
condition (5. 3 16). If we substitute for the ai's from
(5:3.14), (5.3.16) becomes a condition invelving & sixth

degree polynomial in gy Ko and 043,
{(3oty=2) (3e¢g=1) + 1} L(3¢4-2) (30¢,=1) #1]

c ((3%y=2) (3 ,=1) #1) 5%'&2 . | vee(5.3.19)

Substitute d; = 3[w;=(1/2)] and write d = (d,,d,,d;). Then
the condition (5.3.16) for admissibility takes the form

£(a) €0 , ,

- 2 8%) = 3(a)+E(d)+n(a)u(a),

where £(a) = 12(&132&3
with 3(d) = 1245 a2 &2 + 108,d,35(d+3,+d5)
. , 2 43 pdz(dy+dytds),
K(a) =—4(d1d + d§d§ +d a1) + 2 9 (d2+d ),
L(d) = 6(d1-d2)(d2-d3_)(d3-q1),
_ _9Tta a V2. 2 NRY::
M(d) = 4[(6.1 dy)° + (4, d3) + (d3 d,) ]



Note that M(d) < O for all d, - . |
L(d) <0 whenever dq > 4, > d?}' see(543.20)

It is easy to verify that
K(d) < O whenever

2y 2and a5 2. vee(503.21)

Now J(a) = 2a,8,d, [ d5(64,d,+5) + 5(d+d,) ] -

d

Therefore J(d) €0 whenever -

-5 (6d,d, L0, d; £0and dj+d,

va Ot c-o(503022)

It follows from £5.3.20), (543.21) and (5.3:22) that
- £(d). £ O whenever
..% £a,8, €0, 4y <dy <= J2. eee(543.23)

Now the set of de R’ for which (5.%.23) holds has infinite
Lebesgue measure.This shows that the set of admissible points

in the d-space has infinite Lebesgue measure.

Now T is inadmissible whenever

£(a) > 0 where £(d) is as defined earlier.

Rewrite f(d) as
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y ooa 323204221 4 aa2a2(a2o 1324252
£(d) =4 a30,(d3-1) +'4d5d5(a5-1) + 4dzdj(dz-1)

3

, . |
108,8,d5(a,+4,+d5) + 2[(2a,-4,) ag+(2ay-d5)d;

(2(13:-(11) d.J + 6(d,-d,) (dz—dB)(da-—d,,).

+

One can easily verify that

of

£(d) > O whenever 1cdy <dy < dg & 245, +ee(5.3.24)

Now the set of & € R’ for which (5.3.24) holds has infinite
Lebesgue measufe. Thus the set of inadmissible poihts in the

d-space also has infinite Lebesgue measure.

Now for fixed 4 such that each‘di#O and k € R, f(kd) is
& sixth degree polynomial in k. Therefore the set of all
values of k for which f(kd) £ 0 is a bounded set. Thus any
line through the origin which does not lie in any co-ordinate
plane makes only & bounded intefcept on the set of admissible
points in the d-space. In this sense one cén say that in-

admissible estimators outnumber the admissible ones.



