
Chapter 3

Symmetric Quark Mixing & Some 
Consequences

3.1 Symmetric Ansatz for quark mixing

3.1.1 CKM matrix with symmetric moduli

Apart from the masses, the other existing free parameters in the standard model are the three 
mixing angles and a CP-violating phase, which are incorporated into the quark sector of the stan­
dard model via the Cabibbo-Kobayashi-Maskawa (CKM) matrix V, All the presently available 
data [21] is consistent with having symmetric moduli for CKM matrix i.e.

WiA = IMj.I- (3-1)

It should be noted that for three generations, the assumption that V has symmetric moduli 
implies a single constraint on the matrix V because the unitarity requirement alone yields

A = \Vi2\2 - \V7l\2 = |K3,|2 - [f/13|2 = IVy2 - |V32i2 (3.2)

for three generations. The fact that experimentally the asymmetry parameter A is, in general, 
small i.e. A < 10-4 and in particular |Vi2| and |V211 are quoted to be same modulo the errors 
and both of them lie between 0.217 and 0.223 prompted us to believe that V has symmetric 
moduli.

It is well known that the individual phases of VtJ is devoid of any physical meaning, since 
under rephasing of the up and down quark fields the non-physical individual phases 7j and /?, 

of VXJ transform as
VtJ - (V% = Vt}exp{7j - /?,). (3.3)

Now, we consider the question whether starting with symmetric moduli one may use the rephas­
ing freedom of the CKM matrix to obtain also symmetric phases. In other words, whether 
starting from an arbitrary V, it is possible to achieve arg{V'\3 = arg(V')by an appropriate 
choice of 7j, /?,. It was shown by Branco and Parada that in general this is not possible for
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arbitrary V, but it is possible for a three-generation CKM matrix with symmetric moduli. In 
fact, to achieve arg{V')n = arg(V')3i, the following relations has to be satisfied

arg(V% - arg{V')lt = 7, - + /?, - (i3 + 2nn. (3.4)

In order for the above equation to yield a solution for 7Jf/?„ the imaginary part of a rephasing 
invariant sextet consisting of the off-diagonal matrix elements of V, namely

Im(Vl2 V23V3iV2l-V13*V32*) = 0. (3.5)

The above equation is a necessary condition to have symmetric phase of V for any number of 
generations (N > 3). Obviously, for N > 3 there are other conditions, analogous to the above 
equation, which need also be satisfied in order to obtain symmetric phases. For three generations, 
symmetric moduli of the CKM matrix lead, through unitarity, to the above condition. To see 
this, consider the orthogonality conditions for the first two rows and first two columns of the 
CKM martix :

VnV;l+V12V& + Vi3V& = 0,
VnV{2 + V2lV;2 + V3lV& = 0. (3.6)

If one multiplies the first equation by V2i and the second by V21, and assumes |V^| = |V^[, 
then one obtains, by subtracting the resulting equations,

V13V^V21 - VsiV&Vu = 0, (3.7)

which in turn implies the vanishing of the imaginary part of a rephasing invariant sextet consisting 
of the ofF-diagonal matrix elements of V. It can be readily verified that for more than three 
generations, symmetric moduli of V do not imply symmetric phases through unitarity. For 
example, for four generations, even if one has exact knowledge of the moduli of V, with |Vy| = 
|VJt|, this would not imply a symmetric V.

3.1.2 Generalised two-angle parametrization

In general, four independent parameters are required to characterize the CKM matrix for three 
generations But, assuming V to be symmetric implies a single constraint and, as a result, 
one needs three parameters to characterize the most general symmetric CKM matrix for three 
generations. A symmetric form for the CKM matrix, with two parameters was first proposed by 
Kielanowski and was generalised later by Blundell, Mann and Sarkar. It was also pointed out by 
Blundell et. al and Branco and Parada that Kielanowski had implicitly assumed a restriction on 
the free parameters of a symmetric CKM matrix.

Now we consider the generalised two-angle parametrization of the CKM matrix. The rephas­
ing freedom of the quark fields implies that two CKM matrices V and V' are physically equivalent 
provided

V = UlUV'Uh, (3.8)
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where U = diag{e'^,ei,h,6^) and Ux = diag(l,e'4'1,6'^). Let A, and or, denote the eigen­
values and the eigenvectors of KM matrix V. The eigenvectors of V may be constructed in 
terms of three angles 0s) and one phase a. The eigenvalues of V satisfy its characteristic

equation
A3 - fc,A2 + k2\ - k3 = 0 (3.9)

where kx = trV,k2 = |[(*rV)2 - tr{V2)], and k3 = detV. The unitarity of V gives k2 = klk3. 
Let trV = xe'^3, a general complex number with real parameters and detV = e'*, a phase. 

Then the characteristic equation becomes

A3 - xe'^3X2 + xe,2*/3A - e'+ - 0 (3.10)

whose solutions are

Ai

A2

An

= ie*^3(® - 1 - i\f 3 + 2x - x2)

= -et4,/3{x - l + i\/Z + 2x - x2)

— Mf* (3.11)

for —1 < x < 3. Unitarity of V implies that the only relevant range of x is —1 < x < 3. Note 
that the factor e“^3 will vanish in the magnitudes of KM matrix elements, and in the rephasing 

invariant plaquette J, so the observables are independent of detV. Since J = 0 for x < — 1 
and x > 3 we will examine the range — 1 < x < 3.

The CKM matrix has three orthonormal cortiplexeigenvectors. The normalised eigenvectors 
are determined upto a phase Thus we can choose one nonvanishing component of each vector 
to be real The two remaining arbitrary phases can be chosen in such a way that one eigenvector 
is real. We use the following parametrization of the three eigenvectors of KM matrix with the 
above properties-

(3.12)
( C1 ) 1 -«lC3 \ 1< sxs3 \

W1 = SlC2 , W2 - C1C2C3 - s2s3e,a , m = \ -cjc2S3 - s2c3eta
^ cxs2c3 + c2s3eta J \< -CxS2s3 + c2c3eia /

where c, = cos(0,) and s, = sin(/?,) and the KM matrix V is written as

V = ^2 A,w, ® w,
«=i

(3.13)

In the case where 03 = 0 and a drops out, we write the magnitudes of the elements of symmetric 
KM matrix in terms of three parameters i.e. x and two angles 0i,02 as:

|V,,| = 1 - -sm2(20i)(3 + 2x - x2)

|Vi2| = ~s???(2/l1 )eos(/32)sj(3 + 2x - x2)

= ^sm(2y3i)s»«(y92)\/(3 + 2x - a-2)IV,

28



|Vaa| = ^1 ~ ^m2(2/32)[3 - x] - ^sm2(2/?i)cos4(/?2)[3 + 2x - x2]

|^23| = ^in(2/32)^/[3 - x] - ^stn2(2/?i)[3 + 2a; - a;2]

IV33I = yi^3m2(2/?2)[3 - x] - ^sm2(2/?i )sin4(/32)[ 3 + 2x - x2]

(3.14)

3.1.3 Restrictions on the eigenstates and eigenvalues

Since the CKM matrix is unitary, it can be diagonalised by a unitary transformation

V = WKW~1\ K = diag{et,ri ,e'a* ,e'°3) (3.15)

where exp(i<7,) are the eigenvalues of the CKM matrix, corresponding to the eigenstates with 
components wfJ(j = 1,2,3) The asymmetry parameter A can be expressed in terms of the 
eigenvalues of V and the combinations of the elements of the matrix W as follows:

A = —4/[sin ((?i - cr2) + sin (a3 - <?i) + sin (a2 - cr3)], (3.16)

where / = I m(Wi 1W22 W{2)• From the above expression for V it is obvious that the reality 
of W is sufficient in order to have a symmetric V. It was shown[21] that the CKM matrix is 
symmetric if and only if the matrix W is real, apart from irrelevant overall phases for each one 
of its columns. We have also reached the same conclusion (see the subsection 3.2.2). One can 
easily verify that if two of the eigenvalues are degenerate, then |Vj is necessarily symmetric and 
the eigenvectors can be chosen to be real Note that the asymmetry parameter A vanishes when 
two of the eigenvalues are degenerate and / or when the matrix W is effectively real (i.e / = 0). 
The fact that experimentally A is small provides an indication that two of the eigenvalues of V 
are close to beimg degenerate and / or W is close to be ‘effectively’ real i.e. I « 1.

3.2 Consequences of Symmetric quark mixing

3.2.1 Top Quark Mass and a Symmetric CKM matrix

We pursued1 the investigation of symmetric quark mixing (ze a symmetric CKM matrix ) in 
conjunction with CP-violation in the neutral kaon-system and the extent of the 5§-5^mixings 
to find out what constraints it put on parameters like m* etc of SM. We used the standard 
parametrization[12, 13] for CKM matrix described in the introduction.

The relation ]Vj2| = |l72ij obviously restricts one to a three dimensional hypersurface in the 
parameter space spanned by sl2, s23, q = |l/i3|/|V23l and 6, While J = Im(VuF22Fj*2^2!)> the 
rephasing invariant measure of CP-violation, does vary with s23, q and 6 do not show any such 
variations, as their dependence on 023 is very weak. Taking Si2 and s23 as phenomenological

’This suction is based on the work reported in ref [22]
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inputs from (2.69) and (2 74) leaves us with a a curve in the q-6 plane for fixed values of si2 
and s23 For the situation described in ref [23] the curve shrinks to a point. By determining 

whether this curve lies within the region in the q-6 plane allowed by the and B—B mixing 

data we are therefore able to obtain limits on the mass m^ of the t-quark as a consequence of 

the symmetric CKM ansatz since these latter quantities depend upon mt.

The KQ-~K° system indirect CP-violating measure £/<- in the CKM picture is expressed as 

[24]

|€/c| = C • BK ■ sl3qsn\(6) [(VshiVt) - m)ycSu + mytf2{yt)43(si2 - ?cos($))] (3-17)

where

C

f2(Vt)

h(yt)

{Gf/kMw)2Mk

6ir2>/2(A Mk) 

_ 3 + yd
4(1- yt)2 1 +

In
/]/t\ _ 3 Vi ' 

\Vc) 4 1 -yt .
1+7^ <»(»■)

• i — yt

and yt = (i = c, t), The parameters tj, are QCD corrections [25]

t?i = 0.7 , ifc = 0.6 , m = 0.4 .

(3.18)

(3.19)

The experimental result |t/v-| = 2.3 X 1Q~3 gives a parabola in the q-6 plane for given Bk, 
$23 and m{. The Bag factor Bk is very poorly determined and various theoretical estimates only 
find the bounds 1/3 < Bk < 1 The expression for the Bj-lfj mixing parameters xd = AM/T 

is on the other hand,

= n^Me (Bb/1) MfrytMvt)\VtbV;d\2 (3.20)

where Mb = 5.28GeV, Bb/2 - (0-15 ± 0.05GW)2 and the QCD correction Tj — 0.85. 
Experimentally |Vt(,| « 1 to a high degree of accuracy and

\Vtd\2 = 323(42 + 4 - 2512? COS 6) . (3.21)

The ARGUS result[27]

xd = 0.73 ± 0.18 (3.22)

thus gives another curve in the q-6 plane for given s23 and mt.

It is straightforward to see that the symmetric ansatz implies a strong lower bound on mt. 
Eq. (3.20) shows that xd ss m2|V^i|2 which by the symmetric ansatz is ra2|Vi3|2. However eqs. 
(2.74,2 75) impose a severe upper limit on [V13I, in turn yielding a strong lower bound on m*.

In our numerical analysis we hold Bk and fixed and consider the total variation of all 
other parameters, taken in quadrature Thus we get two interesting bands in the q-6 plane

30



vs
. ae

it

U

CD
TJ

*f.

cr

31

Fi
gu

re
 3.1

: Th
e s

ym
m

et
ry

 cu
rv

e f
or

 q 
vs

. 6. 
N

ot
e th

at
 th

e e
xi

st
in

g d
at

a i
m

pl
ie

s th
at

 
8.

0°
 <

6 <
 32

.0
°



coming from ck and xd. If this zone does contain the curve obtained from the symmetrical 
ansatz, then the assumptions are obviously valid for the given choice of m* and Bk.

A plot of the curve in the q-6 plane for the symmetric ansatz (henceforth called the symmetric 
curve) is given in fig.(3.1)

We find a very narrow curve considering all the variations of S12 and $23- We next superim­
pose on the symmetric curve in the q-6 plane curves parametrizing the regions allowed by the 
experiments with B-'B mixing and the measurement of ejf [28].

We find that when the top quark mass is lighter than 180 GeV, the symmetric curve does 
not intersect with the ARGUS measurement of xd, implying that the top quark must be at least 
this heavy if the symmetric ansatz is correct. Imposing the K-K mixing result we find that for 
Bk — 1/3, the symmetric ansatz implies mt > 275 GeV (although for Bk = 2/3 and 1 the 
lower limit of 180 GeV is unaltered). Alternatively, for given values of mu when the symmetric 
curve overlaps with the measurements of xd and €k we find that the symmetric ansatz allows 
only a restricted range of values for q and 6, i.e., the CP-violating phase is not completely 
arbitrary. The value of 6 lies between 8° and 31°, while q is restricted to lie between .113 and 
.13. We have shown the allowed regions of q and 6 for different mt values in figs.(3.2, and 3.3) 
for two different values of Bk, namely, Bk = 2/3 and 1.

The experimental constraints imply that x must lie between -0.882 and .02. We also show 
the allowed regions of the parameter x for different values of mt in fig.(3.4). From the allowed 
region of x for different mt, we can immediately conclude that x = 0 is allowed for mt about 
185 GeV, in accord with an earlier result of Rosner [30].

We find that if the CKM matrix is symmetric then the top quark mass has to be heavier 
than 180 GeV, to be consistent with the experiments on B-B mixing and the measurement of 
€k; if the bag constant Bk = 1/3 then m{ > 275 GeV. The parameters q and 6 are constrained 
to be in the range

• 130 > q > .113 8.0° < 6 < 31.1° (3.23)

for the symmetric CKM matrix over the allowed range of the top quark mass.

3.2.2 Symmetric CKM matrix and Quark Mass matrices

The importance of studying the mass matrices lies in the fact that the structure of the quark 
and lepton mass matrices determines the flavour dynamics of the standard electroweak theory. 
However, the elements of these matrices cannot be predicted within the standard model as 
quark and lepton masses are the free parameters within the model. Furthermore, there exits an 
infinite number of mass matrices, related to each other by unitarity transformations, which yield 
the same physics. We have tried2 to find out the constraints imposed on the form of the mass 
matrices due to the symmetric CKM matrix. In the basis, where the up-quark fields are mass

sThis section is based on the work reported in ref [29]
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eigenstates, MM is diagonal i.e.

Mu = diag(mu,mc,mt) (3.24)

In general the matrix is not hermitian, but we assume to be hermitian and write the 
most general hermitian M^ is given by

AT M = hMu + A, (3.25)

(3.26)

where
/ 0

A = R1e~i^
\ R2e-i>>*

Thus the mass matrices are a ten parameter family determined by mu,mc,
mt,h, /, d, Ri,2,3 and the invariant phase (pi + p3 — p2) [32]. Taking the trace of both the sides
of equation, we obtain the constant h in terms of parameters of mass matrices as

Rie^
f

(fflrf + m, +.m6) - / -d 
(mu + tnc + mt) (3.27)

Since the identity of the quarks is defined in the basis where the mass matrix is diagonal, the 
flavour projection operators[20], denoted by Pa and P'j (a,j = l,2,...,n) are introduced to 
keep track of the identity of quarks in any arbitrary basis, where the mass matrices are arbitrary, 
by projecting out the appropriate flavour. They are given by

Pa{S) = Va(S)/v,
P'}(S') = v'3(S')lv\ (3.28)

where the hermitian matrices S(= M^M^) and S'(= M^M^) has non-negative eigen­

values

(*i,®3>...,*n) = (ma2,mc2,...),

(z'i,z'2,.••,*'*) = (m/,m(2,...), (3.29)

respectively and v is a Vandermonde-type determinant given by

V — v(x\, X2, X-n) — II/3,o,(z/3 - Za); fi > ot. (3.30)

The quantity v' is the primed version of v, whereas the quantity va is obtained from the v by 
replacing xa by the matrix S and all other xp,(i £ a by x@I where I is the unit matrix. Thus 
va is a n x n matrix. For example, for n = 3 we have

v = v(xi,X2ix3) = ($3 - zi)(z3 - a!2)(z2 - Zi), (3.31)

and
Vi(S) = (z3 - x2)(x3 - S)(x2 - S). (3.32)
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These projection operators are hermitian and have unit traces.They can be used to express the 
measurable combinations of the CKM matrix elements in terms of invariant functions of the 
mass matrices.

To incorporate the constraint due to the symmetry of CKM,we use Jarlskog's flavour pro­
jection [20] operators to express the mod square elements of V in terms of the matrices S and 
S' as

|K*j|2 = tr[Pa(S)Pl(S% (3.33)

where the first and second indices denote the up and down quark sectors respectively, and the 
flavour projection operator in 5 is given as

[(S-Xi){S-X2)...(S-Xn)]
[(*or - )(*or- *2)-(*o " ^n)?’

(3.34)

with [...]' to mean that the factor (5 — xa) in the numerator and the factor (xa — xa) in the 
denominator must be left out. The expression for Pa(S') is obtained by replacing a,S,x„ by 
j,S' and x'n respectively. Then, the symmetry condition

ivy2 = |V,, 12 (3.35)

is translated into a relation involving the matrices S and S' as

tr[Pa(S)P,3(Sf)) = tr[P}(S)PUS’)]. (3.36)

Since the matrices MM and of our choice are hermitian, we have done all the calculations 

in terms of invariant functions of the matrices and instead of S and S'. Considering, 
in particular

|^2|2 = IHil2, (3.37)

we obtain the constraint condition due to symmetry of CKM matrix involving the parameters 
of the mass matrices as

l#2 + + {hmc + / - ma)(hmc + / - m6)]+
+ {hmu - md){hmu - m6)] = 0.

(3.38)

In general, it was not possible to find out the form of based on the general consraint 
involving all the parameters. But, an interesting point was noticed when we calculated the CP 
violation mesuring plaqutte J in terms of S and S' using [33]

±J = Imtr{vi(S)v'2(S')v3(S)v{(S') 
vv'

(3.39)

It was found that if any of the Ri,R2,Rz is chosen to be zero along with MW being diagonal, 

then J is zero impling such a choice is not allowed for three generations. Thus, we note that 
in the basis in which MM is diagonal, no ofF-diagonal elements of MW can be made zero 

consistent with the CP violation in the quark sector for three generations.

The numerical calculation was done to find out whether any of the ofF-diagonal elements of 
the mass matrix MW is consistent with zero. To find out numerically the allowed ranges for 

the elements of the mass matrix we note that can be written as

M(d) = D^MdD = VMdV* (3.40)
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because a diagonal form for MM implies U = I and D = FT For a symmetric V it reduces to

= VMdV\ (3.41)

Since any unitary matrix that diagonalises a hermitian matrix can be written as the product of 
an orthogonal matrix and a phase matrix, we write V , in this basis, as

V = 0VPV, (3.42)

where the phase matrix Pv carries all the informations regarding the CP violation in quark sector 
for three generations. Then, the ranges for the elements of the were calculated using the 
eigenvalues of M^ and the mod of the elements of V. The allowed ranges for the elements of 
MW in GeV are found out to be

M(d) =
0.0117 - 0.0052 
0.0549 - 0.0207 
0.0409 - 0.0059

0.0549 - 0.0207 
0.2374 - 0.1186 
0.3261 - 0.1591

0.0409 - 0.0059 \ 
0.3261 - 0.1591 .
5.3962 - 5.1824 )

Similarly the allowed ranges for the elements of are found to be

Af(“)
/ 0.1137- 0.0657 

0.4209 - 0.2818 
^ 1.9774 - 0.1881

0.4209 - 0.2818 
2.2736 - 1.3885 
16.312 - 5.4287

1.9774 - 0.1881 \ 
16.312 - 5.4287 ,

279.78- 179.38 J

(3.43)

(3.44)

in the basis where is diagonal.

Since the CKM matrix V = UD*, where U and D are unitary matrices that diagonalise the 
mass matrices ‘and respectively, then the symmetry condition for V i.e. V = VT 
will be fulfilled by the necessary and sufficient condition involving the matrices U and D

V = D*£/tD. (3.45)

Consider the product of the matrix P(= UTD) with its complex conjugate P*.

PmP = (UtDY(UtD) = U^D*UtD. (3.46)

Now, the use of symmetry condition and the unitarity of U yields

PP* = U*U = I. (3.47)

Thus, we have seen that P is a unitary matrix which is also symmetric. Hence, the most general 
condition for V to be symmetric is

D = VP, (3.48)

which helps us to write the symmetric V as

V = UD* = UP*UT. (3.49)

Since the unitary matrix U can be written as the product of a phase matrix Pu and an orthogonal 
matrix Ou i.e.

U = OuPu,
uf = KOI, (3.50)
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we reduce the symmetric V to

V = U(UmP)i = OuPuP’PuOl. (3.51)

The choice of P to be a phase matrix is a special but interesting case because for such a choice 
of P we can write either

= /(Mw*) or Af<tt> = g(AfW). (3.52)

For such a chioce of P, we write the CKM matrix as

v = OuPOl, (3.53)

where P is a phase matrix. Then one of the choices for the mass matrix is a function of 
Af(“)* as follows:

= p(M^’)2 + + rl, (3.54)

where the parameters p, q, r are introduced to retain the mass hierarchy for the down quark 
sector. Upon diagonalisation of both sides of the above equation,we obtain three equations 
involving six quark masses and three unknown parameters p,q,r which can be determined 
uniquely. These three parameters are given in terms of the quark masses as

m,
V = Tncmt

maq = —,
rrtc

r = rrid - mj~. (3.55)

To get the ranges of the mod elements of the mass matrices for the case when P is a phase 
matrix we proceed with the numerical calculation using a convenient parametrization [34].

Comparing this general form with the form of symmetric V, we see that if A is recognised as 
P then the general form is reducible to symmetric form only if VF is real. Thus we conclude that 
the reality of IF is a necessary and sufficient condition for having a symmetric CKM matrix. Then 
it is evident that the choice a = 0 will make V symmetric within the above parametrization. 
In this parametrization all the mod elements of V were written in terms of x as well as the 
angles. Consider the case when = 0 and a drops out. Then the mod elements of CKM 
matrix relevant to our discussion are:

|V„| = 0. - (l/4)sin2(2/3i)(3 + 2x - x2),

IV12I = (l/2)sm2(20i)cos(202)yj(3 + 2a: - x2),

|F13| = (l/2)sin2(2j31)sin(2l32)^(S + 2x~ x*). (3.56)

The experimental constraints i.e.the values of the magnitudes, p = |V13/V23I and J imply[22] 
that x must lie between -0.882 and 0.02 We then solve for fix and /?2 by inverting the above
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equation and using the the magnitudes of the first row of V and found out the allowed ranges 
to be

01 = 0.1265 to 0.3605,
02 = 0.0040 to 0.0320. (3.57)

Consider the case of a = 0. Then the elements of the matrix W are functions of 3 mixing 
angles 0\,02 and 0z out of which two are independent and we recognise Ou — W. Then, the 
unitary matrix U is given as

U = OuPu = WPU;
Pu = (3.58)

Using the matrix U and assuming the matrix ilfM to be hermitian, we can write the mass 
matrix MM as

= U^MUU = P:\VtMuWPu, (3.59)

and the mass matrix as

M^5 = D*M*D = P*PuWtMjWP'P. (3.60)

In our numerical calculation, we use above mentioned ranges of the angles fix and 02 to 
calculate the ranges for the mod elements of the mass matrices using the above equations in this 
two-angle parametrization of CKM matrix. The allowed ranges in GeV for the mod elements of 
MM in GeV are:

( 0.1799-0.0242 
0.4609 - 0.1617 

v 0.0147 - 0.0006

0.4609 - 0.1617 
1.6636 - 1.1413 
8.9172 - 0.7141

0.0147 - 0.0006 \ 
8.9172 - 0.7141 
279.93 - 179.87 j

and for the matrix are:

MW =
0.0386 - 0.0081 
0.0738 - 0.0135 
0.0023 - 0.00005

0.0738 - 0.0135 
0.2318 - 0.1059 
0.1692 - 0.0198

0.0023 - 0.00005 \ 
0.1692 - 0.0198 .
5.3995-5.1947 >

(3.61)

(3.62)

Basis independent symmetry constraint

In the previous sections, we have given the ranges of the elements of the mass matrices Mu and 
Md allowed by the symmetric CKM in two different bases. In this section we give the symmetry 
constraint written in a basis independent form. As we have seen in the previous section, the 
condition IV12I = \V2i \ implies

tr{Px(Mu)P2(Md)} = tr[P2(Mu)Px(Md)} (3.63)

which can be rewritten as

tr[c1V^P1(Mu)VP2(Md) - c2V^P2(Mu)VPx(M4)] = 0 (3.64)
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where the constants Ci and C2 are functions of the mass eigenvalues and

PiAMu) = UP1<2(Mu)Uf;

Pia(Md) = DP1<2(Md)D' (3.65)

Consider going from a unprimed basis to a primed basis by the following transformations:

U' = AU; D' = BD (3.66)

where A and B are unitary matrices. Then the CKM matrix in the primed basis is

V' = AVB* . (3.67)

Requiring V' = V relates A and B through the matrix V as follows:

A = VBV^ (3.68)

Then use of symmetry of CKM matrix in the primed basis yields

A = VBV\ (3.69)

The mass matrices transform under this basis transformation as followes:

M' = AMUA^ ,M'd = BMdBf (3.70)

But the difficulty in using these expressions to find out how the mod elements of the mass 
matrices transform under this basis transformation is that it is not possible to seperate out the 
phase from the the mass matrices in the primed basis for any general unitary matrix A and B 
after the transformation.

Firstly, we write [31] the symmetry constraint as an equation involving the parameters of 
the mass matrices using flavour projection operators of Jarlskog[20] in a basis where is
diagonal. In general, it was not possible to find out the form of based on the general
consraint involving all the parameters. Also we give the numerical ranges for the mod elements 
of MW in this basis. Then, we wrote the necessary condition for having a symmetric V in 

terms of the matrices U and D as
U = D"UtD (3.71)

We chose a particularly interesting basis where U = DmP ;P being a phase matrix and gave 
the ranges for the mod elements of jn that basis using a convenient parametrization
for V. We noticed that non of the off-diagonal elements of and M^ is consistent with 
zero for a symmetric V, which means such forms for mass matrices cannot be obtained from 
any symmetry. But, in principle there exists infinite number of other bases related to each other 
by similarity transformations So it is apparent that the numbers we provided for the allowed 
ranges of the mod elements of mass matrices are not basis independent. Finally the symmetry

r s'

constraint is written in a basis-independent form
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3.2.3 Rank One quark mass matrices and Phenomenological constraints

Recently in an interesting letter[35], the results of the studies on the approximately symmetric 
KM matrix based on eigenvalues of the KM matrix and the rank-one quark mass matrices were 
reported In this new scheme, the up and down quark mass matrices are given as

MW = kuMq + XV] = kjjMq + XD (3.72)

where ny and up are numerical constants; Mq is a 3X3 rank-one matrix defined as

(Mo)y = hthy, h = (gi, 92,gz). (3.73)

with g,(i = 1,2,3) being real and the matrices Xu and Xy are correction terms that have to 
be added to Mo to obtain the non-zero masses of the light two generation quarks since the 
rank-one mass matrix Mq has only one non-vanishing eigenvalue. These quark mass matrices 
are diagonalised by unitary matrices as follows

M^(diag) = UuUoiKuMo + Xu^UuUo)-1,

M^idiag) = UdUo{kdMo + Xd){UdUoTx. (3.74)

where Uq diagonalises the rank-one matrix M0 and is given as

ft ft1 0 \
U0 = (s?+s?)

..JVj .. ’ (3.75)
V ft ft ft t

+
 

C
4 r-l

li

fe; X3 = \Jgl + al + gl N2 = NtxN3. (3.76)

Then the KM matrix V is written in terms of its eigenvalues and unitary matrices Uo,Uu, and 
Uy as follows

V = {UuUo)K{UyUoYl\ I< - diagie™1 ,e'a\ei(,z)- (3-77)

In this scheme KM matrix is symmetric if Uu and Uy are the unit matrix because then matrix 
Uo is real. In this work3, we mainly comment on the results given in this scheme related to 
perfectly symmetric KM matrix. We started with the most general parametrization of KM 
matrix for three generations in terms of three angles and a phase[12]

It is easy to see that the symmetry condition for KM matrix reduces the number of inde­
pendent parameters from four to three. For example, taking

IVial2 = |V31|2 (3.78)

puts the constraint
S13 = S23(S12 + -^2 - 2si2-RcOs5) (3.79)

where R = IV13/V23I- Hence the four parameters crj - cr3,cr2 - 03,51/53,52/53 used in Tani- 
mato's paper[35] to express the matrix elements of the perfectly symmetric KM matrix cannot

3This section js based on the work reported in ref [31]
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be independent of each other as the above constraint can be translated into an equation relating 
them. To demonstrate this in a simpler way, consider the generalised two-angle parametrization 
of KM matrix[34]

To establish the link between this parametrization and the new scheme[35] consider

A, = exp(icrt)', i = 1,2,3. (3.80)

Then we can write

et(cr\-<y3) = Ai/Aa
= A2/A3 (3.81)

Denoting o\ - 03, 02 - <73 by $1,62 respectively and using the expressions for the eigenvalues 
we obtain

e.(fii+«2) _ i (3.82)

which implies
(*i + S2) = 0 (3.83)

Thus we see that the parameters — cr3 and 02 — <73 are not independent in general and we 
have to be careful while choosing their values.

Now we relate the angles 0u02 to the parameters 51/53,<72/53- Since the eigenvectors of 
KM matrix are given by eqn (3.12), we compare the elements of the matrix that diagonalises V 
for the case /?3 = 0 with that of the matrix Uq and get

5i/53 = -S1S2/C2

52/53 = -C1S2/C2. (3.84)

Using the expressions for the KM matrix elements given in ref[35], it is easy to see that the CP 
violation measuring plaquette J can be written in terms of the parameters Gi(= 51/53), <?2(= 
52/53), h,&2 as follows

2[1 - cosjh - S2)](G21smS1 + Gjsmg2)G?Gj
(Gf + G|)2(l + G? + <%)2 ' 1 }

The ranges for the parameters <7i - 03,02 -03,51/53,52/53 can be found out using the allowed 
ranges of x, fix, 02- It has been shown[34] that the experimental constraints i.e. the values of the 
magnitudes of the KM matrix elements, R = IF13/V23I and CP violation measuring plaquette 
J imply that x must lie between —0.882 and 0.02. Hence the allowed ranges for 0\ and 02 was 
found to be[31]

01 - 0.1265 to 0.3605,

02 = 0.0040 to 0.0320; (3.86)

which in turn decide the allowed ranges for parameters 51/53,52/53 to be

51/53 = 0.0005 to 0.0112,

52/53 = 0.003 to 0.031. (3.87)

43



(3.88)

We also found out that[31] the experimental constraint

0.05 < q(= -^1) < 0.13
1^23

restricts the allowed range in 6 to be

8° < 8 < 32°. (3.89)

Cosequently, considering the CP violation measuring rephasing invariant plaquette J to be given 

as

J = S?2's23'S13C12C23C13s^>
4sm(62)3G?G!(Gf - G\)

~ (Gl + G>ni + Gl + Gir

and using the experimental numbers
f

s12 = 0.221 ± 0.002, 

s23 = 0.044 ± 0.009,

^13/^23 = 0.09 ± 0.05,

the allowed region for the parameter (cr2 - <73) can be found out. Now consider the R ver­
sus 8 curve for symmetric KM matrix which is plotted using eqn.(3.79). Then recognising 
—ArgV^M(ub) = 8, it seems from the numbers provided in ref(35] that the solutions A and B 
correspond to two different points whereas the solution C corresponds to a spread in the allowed 
ranges of R versus 8 curve. In the generalised two angle parametrization, 8 is a function of 
x and consequently the solutions A, B, C seem to correspond to suitable choices of x in the 
generalised parametrization. For example, the Kielanowski’s solution i.e. 8 = 30° corresponds 
to x = 0.

Now let us analyse the solutions provided in ref[35] from the viewpoint of the generalised 
two angle parametrization. The conclusions regarding the observables should be the same in 
both the schemes

Case A: gi « g2 « <?3, cri = <r3

This case corresponds to symmetric KM matrix by construction, since two of the eigenvalues 
are taken to be degenerate[21] The numerical values

Si/ff3 = 0.0024 and g2/g3 = 0.021

lie well within the allowed ranges for the parameters gi/g3 and g2/g3. The choices a2—a3 « 180° 
and <T\ = 03 are also consistent with each other as the constraint (<?i + ^2) = 0 is not applicable 
to this case. To see the allowed value of top quark mass (mt) in this case, we consider the 8 
versus curve 3 which is consistent with the experimental constraints from Bq — Bq mixing and 
e parameter in the neutral K meson system. We found out that this case requires mt ~ 255 GeV 
provided the Bag factor B& = 1; otherwise this solution is ruled out experimentally.

Case B : g\ « g2 « g3, <jl-cr3 = -(cr2 - <73) = 120°

(3.90)

(3.91)
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This is Kieianowski's soiution[23] which has been discussed extensively in the literature. In terms 

of the parameters of the generalised two angle parametrization this case corresponds to

/?i = 0.1285, /J2 = 0.0300, x = 0 (3.92)

Case C:gx = g2«g3

The condition g\ — g2 requires sin(3\ — cos/31 implying 0i = 45°. Then the CP violation 

measuring rephasing invariant plaquette J vanishes for this case as we have

J = -^-cos(2/3x)sm2(2/5i)sm2(2/?2)[3 + 2x — a;2]3/2 (3.93)
04

Secondly, the given numerical value of the parameter <71/513 does not lie within its allowed region. 
Hence it is difficult to see the consistency as well as the physical significance of the solution C.

To summarize, we found out that the solutions A and B are special cases of the allowed 
solutions for symmetric KM matrix corresponding to different values of the parameter x in the 

generalised two angle parametrization. The solution A predicts mt « 255GeV only if Bk = 1; 
otherwise it is ruled out experimentally. The solution C was found to be inconsistent with the 
experimental constraints.
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