
Chapter 2

Review of Electroweak Model

The relevant topics of the Standard Model are briefly reviewed in this chapter along with the 
discussions of CP violation in the neutral I\ and B meson systems This review provides the 
background for our work that will be reported in the next chapter.

2.1 The SU(2) <g> 17(1) gauge theory

The electroweak model, also known as Glashow-Salam-Weinberg (GSW) model, is based on the 
gauge group SU(2)® i/(l), The observation of weak neutral currents (1973), followed by the 
discovery of the gauge bosons themselves (IF* and Z) (1983) constitute the major experimental 
support for the model, which has proved over the years to be very successful phenomenologically 
and is in detailed agreement with all observed electroweak phenomena so far.

The gauge sector of this model consists of 4 vector bosons, three denoted by W^i = 1,2,3 
are associated with the adjoint representation of SU(2) and one with 17(1) is denoted by BM 
The fermion sector of the model is such that the charged weak interactions couple the 
left-handed component of the charged lepton to the associated (left-handed) neutrino. Parity 
violation is incorporated by assigning all the left handed fermions to transform as doublets under 
SU(2), while the right-handed fermions are singlets.

The Lagrangian is made gauge-invariant by replacing 8^ in the fermion kinetic energy terms 
by the gauge covariant derivative D^ i e

s 0* + igTiWl + ig'jBp, (2.1)

where g,g' and T,,|K are the SU(2),U(l) couplings and group generators respectively. The 
Tt's satisfy the SU(2) algebra

\T„Tj] = ieljKTk (2.2)

and act on the fermion fields as follows

T,4>l = ^rtipL, Tli>R = 0 (2.3)
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where the r, are the 2 X 2 Pauli matrices. The assignments for the other two generations are 

just replica of this.

Since the weak interaction involves electrically charged bosons it must be related to 
electromagnetism, and to incorporate QED in the model, some linear combination of the weak 

generators has to be identified with the electric charge operator Q corresponding to the group 

U(l)em. The clue comes from the fact that the adjacent members of an isospin multiplet are 
eigenstates of T3 with eigenvalues that differ by one unit of electric charge (in units of e) 

Therefore, we may write
Q = T3 + | (2.4)

where T, and Y are referred to as the weak isospin and weak hypercharge generators respectively. 
The above relation (called Gell-Mann-Nishijima relation) can be used to specify the eigenvalues
of the 17(1) generator, ^Y where the factor | is purely a matter of convention. Thus the 

fermions transform under the full symmetry group 5£/(3)c ® SU(2)i, ® U(l)y of the standard 
model as follows:

leptons : l,i = OX
(1,1,-2);

quarks : q,L =
(“;)t(3,M/3);

U,R (3,1,4/3);

d,R (3,1,-2/3) (2.5)

where t denotes the fermion generation. The group structure permits an arbitrary hypercharge 
assignment for each left-handed doublet and each right-handed singlet, and so we have chosen 

Y to give the correct electric charges Apparently, charge quantization must be put by hand in 

SU(2)l ® U(l)y theory

Now, the 51/(2) ® 17(1) invariant Lagrangian that consists of the kinetic energy terms for 
massless fermions and gauge bosons and the fermion-fermion-gauge boson couplings takes the 

form

hiYiid, - - \w^wr - (2.6)

where the sum is over all left- and right-handed fermion fields and the field strength tensors of 

the SU{2) and U{ 1) gauge fields are given by

= W-dvWl-get3kWZW*,

B~ d^Bv - dvB^. (2.7)

The term bilinear in Wul/ generates the trilinear and quadrilinear self-couplings of the W^ fields 
that are a characteristic of non-Abelian gauge theory.
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2.2 Giving mass to the particles

Since the gauge fields transform under the gauge group SU(2) ® 17(1) as

Wp-rWl = U~xWpU + ^U~18fiU,

B^B'^ = Bp + lu-'dpU-, (2.8)

it is evident that an explicit gauge-boson mass term is not gauge-invariant. To see the possible 
mass terms for fermions, consider two left-handed spinors ipi and XL that transform as (1/2,0) 
under Lorentz transformation (LT) The quantity x^^i’L >s invariant under LT. With XL = 
<J2i>R this invariant is

(°2Vr)T- -^rHl (2.9)

and in 4 component notation, is the Dirac mass term

= m(^L^R + tl>Ripi) (2.10)

which is excluded because i>L,i>R transform under SU(2) as doublet and singlet respectively, 
so that this term too manifestly breaks the gauge invariance.

The other possibility for a mass term is given by the chioce XL, — Then we have

^(i>io2ipL, +rplcr2i>i). (2.11)

This mass term is called Majorana mass term and it is not invariant under 17(1). Consequently, 
any additive quantum number carried by ipi, such as charge, lepton number, etc. is not 
conserved if tpi has a Majorana mass. Since the gauge structure of the SM conserves the lepton 
number such a mass term for the fermions is not allowed

Now we discuss how to generate gauge-boson and fermion masses without destroying the 
renormalizability of the theory, which depends so critically on the gauge symmetry of the in­
teractions. As the low energy symmetry observed in nature is SU(3)c ® j7(l)em, the gauge 
symmetry SU{2)i ® U{l)y must break down to t/(l)em. This is achieved through the spon­
taneous symmetry breaking of the gauge symmetry SU{2)r <gs {7(1 )y by introducing a complex 
scalar field (higgs sector) <f>, which couples gauge invariantly to the gauge bosons through the 
covariant derivative

dvWtf = M2 — P„ + igTtWl + tg'jBJt |2, (2.12)

and to the fermions through so-called "Yukawa” couplings of the form

- hj[(i>L4>)rpR + i>R(^iJ}L)} (2.13)

Evidently, the field should transform as (1,2,1) under SU(3)c® SU(2)r® U(l)y to preserve 
the gauge invariance. Hence, we write

<t> = where
/ <t>+ = {4> l + i<t> 2)/\/2\ 
\4>° = {<h + i4>i)l'/2 ) (2.14)
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with 4>t real, while the Hermitian conjugate doublet $ describes the antiparticles <j>~ and

Besides the above interactions, there can be a self-interaction between the higgs fields. 
The most general SU{2) invariant and renormalizable form (with dimension < 4) for such a 
self-interaction term in the Lagrangian is

V{<p) = + A(<^V)2, (2.15)

where A must be positive to keep the potential bounded below. For y2 > 0, V((f>) is at its 
minimum when \{<$4>)\ = /t2/2A The minima that has the vacuum expectation values (vevs)

<0|&|0>=0,t = 1,2,4; < O|03|O >= (2.16)

is chosen and then the field <p is expanded about this minimum such that the particle quanta 
of the theory (i.e. the physical higgs) correspond to quantum fluctuations of 4>z{x) about the 
value fa — v rather than to <frs(x) itself, that is, to

h{x) = <f>z{x) - v. (2.17)

The choice of the non-zero vev for the neutral field (f>3 ensures that the vacuum is invariant 
under U(l)em of QED, and the photon remains massless.

When the relevant term in the Lagrangian is rewritten[6] in terms of ^ ^ , the

mass term for gauge bosons read

I(0m + tsT.Wl + ig'jBJ <4>> |2 = {\vg?W+W-» +

- gB^f + 0 (gW* - gB^fl 2.18)

where
W± = (W1 ± iW2)/s/2. (2.19)

The mass matrix of the neutral fields is off-diagonal in the (W3, B) basis. As expected, one of 
the mass eigenvalues is zero and, thus the normalised neutral mass eigenstates are

„ (SK-9'B>) _„,3 „ „ . „Z,n = ---- t!==:— ■- = cos $w ~ BM sin 0w,
yg2jrg'2 

(g'w3 + aB )
An = ---- 7==-■= - s W* sin Q\v + Bn cos 0w\ (2.20)

yg2+g'2

where $w is the Weinberg angle defined by
/

$w = arctan —. (2.21)

Comparision of eqn (2 18) with the mass terms in the Lagrangian of the physical W^,ZU and 
photon An fields, namely,

M?yW+W-“ + l-M2zZl + \m2AI (2.22)
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yields
(2.23)

and so

Mw = Mz = l,vyj(g2 + g'2), M^ = 0,

cos 8w = Mw
Mz

It is easy to see that the higgs mass comes out to be

Mf( = 2Av2 = 2/i2

which cannot be predicted since neither ft2 nor A is determined, only their ratio v2 is.

(2.24)

(2.25)

The p — parameter that specifies the relative strength of the neutral and charged current 
weak interactions is defined as

M2P ~ M2cZ2Bw • (2,26)

The GSW model with a single higgs doublet has p = 1, which is in excellent agreement with 
experiment. If the higgs sector is such that there are several representations (i=l,...,N) of higgs 
scalars whose neutral members acquire vevs vtl then

. Etflr.CF. + iMy,2]

where T, and Yx are, respectively, the weak isospin and hypercharge of representation i.

(2.27)

To see how the charged leptons acquire mass consider the Yukawa coupling term for the 
electron doublet :

'<£+'

I eR + «m<p ><r h
After the symmetry breaking

he

£ev =-he[{TTe, e)L ( ^ ) eR + eR{r , (V\ ) }■

;(v + h)(eJieL + eZeR)Cy = v/r

(2.28)

(2.29)

from which we read out the electrons mass and couplings to be
hev ,, , am,= ? 9(hee) = ii^- ^

Although the electron's coupling to higgs is well specified, the actual mass of the electron is not 
predicted as he is arbitrary Similarly the most general SU(2) ® £7(1) invariant Yukawa terms 
for the quark doublet (u,d) are

C\, = -hd(u,d)L (^o ) + hu{u,d)L ^ j uR + h.c. (2.31)

, / <j>°* \ .
here ) ls lT2<^’ ^at has 3 neutrai uPPer member. Due to special proporties of SU(2) it
has Y = — 1 After the symmetry breaking

Cy = ~(mddd + muuu)( 1 + -)

where mass of the quarks are given by

m,
_ kgV

vr

(2.32)

(2.33)
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2.3 Current mass and Physical mass

Unlike the electroweak part of the SM, the renormalised masses in QCD cannot be naturally 
defined by on-shell renormalisation due to the confinement of quarks. The quark mass param­
eters of the Lagrangian can be simply considered as additional coupling constants. Hence, like 
the running coupling constants, their measurement first requires a careful mention of the con­
ventions needed for the unique definition of a renormalized running quark mass of the theory. 
We discuss within the domain of the MS scheme which has the advantage that renormalization 
group equations are flavour diagonal. The evolution of the quark masses and the strong coupling 
constant with the renormalisation scale fx is governed by the RG equations

dm, . ,**-3— = -7 m,(§)m,. (2.34)

In the modified minimal subtraction (MS) scheme, the beta function and the anomalous di­
mension are respectively given[7j by

(45r)2fl -(V+o(,,)' (2.35)

and
*■<»> = (4V '-(4;v»*+o(a (2.36)

with

A> = (HCq - 4TftN/)/3,

Pi = [(34C& - 45Cc + 3CF)T/t*/]/3,
70 = 6Cp,
71 = Cf[9Cf + 97Cg-20TrNj]/3, (2.37)

where IV,= number of quark flavours, Tr is given by the normalization of the generators 
['Tr(TaTb) = NjTr] and CG,CF are the values of the quadratic Casimir operator on the 

gluons and quarks respectively Following the convention for 577(3) i.e. Tr = 1/2, Co = 3, 
and CF = 4/3 we have

po = (li-i^A

Pi = 102 -jNf,

7o = 8,
4 107! = -(101 -~JV,).

The solution to the differential equations are

Qs(fl) =
g2(n)

Atc

4irrri PilnL
Po 1 PI L + 0((~)*) ],

(2.38)

(2.39)
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and
= S57(f + 0((“)’)]. (2-4»)

where X = ln(n2/A2). Here A and m; are the RG invariant scale parameter and masses, 
respectively defined through

(2.41)
-0o32(O) _ ^L.(ln^l)(h/0Z

- A2V»A*>

and

A being the momentum cut-off

m,(0) = TO7(J»p)W2/\ (2.42)

The physical mass of a quark is its value calculated at the same scale. Thus to one loop 
order, the physical mass of the ith quark is given by

mphy = m,(m,)[l + ^-a3(m,)]. (2.43)

Although the determination of the light quark masses involves larger errors, still they are best es­
timated by the use of Chiral QCD perturbation theory as well as meson and baryon spectroscopy
m-

mu = 5.1 ±1.5 MeV

nid = 8.9 ±1.5 MeV

ma = 175 ± 55 MeV (2.44)

Similarly the physical masses of the charm and bottom-quarks are obtained from e+e~ data by 
using QCD sum rules for the vacuum polarisation amplitude. The running masses at iGeV and 
Aqcd = 100MeV [7] are

mc(lGeV) = 1.35 ±0.5 GeV
mb(lGeV) = 5.3 ±0.1 GeV (2.45)

While non-observation of the top-quark puts a lower limit to its mass

mfy > 103 GeV, (2.46)

experimental consistency with the radiative corrections[9] in the SM requires

nit < 180 GeV. (2.47)

2.4 The quark mixing matrix

In the early sixties, the LH quark states that take part in weak interactions were LH doublets, 
and a lonely strange singlet; and all the RH quarks were singlets :

sr, (2.48)
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where d is a mixed state of d and s states (Cabibbo's hypothesis)[10],

d = Vudd + Vuss, (2.49)

when expressed in terms of the Cabibbo angle 9c, Vud — cos0c,VU3 — smOc- Cabibbo s 
hypothesis acccounted for relative coupling strength of stangness-conserving and strangness- 
violating baryon semi-leptonic decays, for the ratio of leptonic decay rates of pions and kaons, 
and for many other important features of the charged weak interactions. However, there is the 
strangness changing neutral current (ds + 'Sd) term arising from d'd — cos2 %<M + sin2 + 
cos6csm9c(ds + sd). The too large rate of Kl -> given by such a neutral strangeness
changing current compared to the measured value of the branching ratio

Br(KL —* mV") = (9.1 ± 1-8) X lO"9, (2.50) •

leads to the introduction of the ‘charm’ quark to form another left-handed doublet (GIM 
scheme[ll]) (1970)

(d) ’(s') ’UR’dR'CR’SR’ (2.51)

where (d' ,s') = (d,s)VT, and VT is the transposed matrix of

K = ( £ £ ) . (U*>
which represents a rotation by an angle % in the two dimensional abstract space and alt RH 
quarks are still singlets. The orthogonality of the mixing matrix guarrantees the absence of 
strangness-flavour changing neutral current terms. Kobayashi and Maskawa (1973) extended[5] 
the quark sector to

(/) ’(s') ’(&') ,UR'dR,CR,SR,tR,l>R> (2.53)

by introducing two more quarks, namely the top (t) and the bottom (b) on the basis of the 
theoretical observation that the ‘reality’ of the matrix V would not allow CV violation via the 
intermediate bosons W± coupling in the SM The matrix V that express (d ,s ,b ) in terms of 
(d,s,b) is

( Vud Vus vuh \
V = Vcd Hcs Vcb ,

\ Vtd Vis Vtb
(2,54)

and is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The V,3's characterize the mod­
ification of the charged current vertices for the physical quark fields induced by quark mixing. 
The unitarity of the V matrix i e VV^ = I ensures the absence of FCNC.

Ever since it was noted that the quark flavour states (states that take part in the weak inter­
actions) are mixed states of the physical states (states that have well-defined mass), attempts 
have been made to comprehend the dynamical origins of the mixing angles. The observation 
that the Cabibbo angle 6q is very close to the mass ratios,

9c ~ m„/ms ~ mdfms, (2.55)

13



initiated many studies around expressing the elements of CKM matrix in terms of the quark 

masses

To see how the CKM matrix is related to the procedure of quark mass matrix diagonalisation, 
consider the part of the Lagrangian containing the most general quark mass terms i.e.

Cy = h^u'iLu’jRjP' + hfliLd'}Rf + h.c. (2.56)

After symmetry breaking it reduces to

Cy = ~[u',Lh{t; + d?tLhfd'jR} + h.c. (2.57)

with the generation index i,j = and u'iLtR — |(1 qp 7s)tr(. The complex Yukawa
couplings htJ constitute N x N matrices which are generally neither Hermitian nor diagonal and 
d(246 GeV) is the vev of the neutral higgs field. Thus the quark mass matrices are given in 
the flavour basis as

<w) = = -(v/y/2 )h[f, (2.58)

where the matrices Af(“) and denote the quark mass matrices for charge 2/3 (up-type)
and —1/3 (down-type) quarks respectively. In order to find the physical fields, the quark mass 
matrices AfW and M(d) must be diagonalised. As it is well-known from the theory of matri­

ces, any square matrix (hermitian or not) can be diagonalised by a bi-unitary transformation. 
Since the mutually exclusive left and right-handed fields in the standard model can be rotated 
differently i.e.

UL,R = UlfiUL'R,

dL,R = Dl,R<?l,R‘i (2.59)

we can find four matrices such that for three generations

UiM^Ur* — = diag(mn,mc,mt,...),

DlM^Dr} = = diag(md,ms,mb,...). (2.60)

This defines the basis of the physical quarks, and we have

Cy = -(%lMI^u]R + dlRM^djR) + h.c. (2.61)

It should be noted that the matrix and S^) = (Af^AfW^) are hermitian

and can thus be diagonalised by a single unitary transformation i.e.

UlMWmM*uI = = (mu2,mc2,m(2,...)

DLM{d)M^D[ = (M^)2m(md2,ms\mb2,...). (2.62)

On the other hand, the transformations that relate the flavour basis to the physical basis intro­
duces non-diagonal coupling into the charged currents, when they are expressed in terms of the 
physical quark basts,

~ UiLlitVxjdjij, (2.63)
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(2.64)

where V is the unitary N X N flavour mixing matrix (CKM matrix) and is given by

V = Uj}Dh.

The unitarity of the N x N complex matrix V reduces the number of real parameters from 2N2 
to N2. An orthogonal matrix in N dimensions can be parametrized by N(N — l)/2 rotation 
angles. Thus, out of N2 real parameters of V, N(N —1)/2 are rotation angles and N(N 4-1)/2 
are phase angles. Since under rephasing of the up and down quark fields the non-physical 
individual phases j} and /?, of VtJ transform as:

^ - TO = Vue*P(7,- A), (2-65)

(2N — 1) of these phase angles can be absorbed into the definition of the quark field phases 
without loss of generality. So an N X N flavour mixing matrix V can be parametrised by 
N(N - l)/2 rotation angles and (N - 1)(N - 2)/2 phase angles. Since there are many ways 
to absorb the phases as relative phases between quark fields and to introduce the rotation 
angles in a particular way, there exists no unique parametrization of V. Physical quantities do 
not depend upon the particular choice of the parametrization. However, some non-measurable 
parameters (like the phase of a transition amplitude) are sensitive to the phase convention 
accepted for the quark fields. The chioce of a particular parametrization for the CKM matrix 
always implies the adoption of a definite phase choice. Now we consider three frequently used 
parametrization of V for three generations. For three generations, V can be parametrised in 
terms of 3 Euler angles and one phase (since five phases of the quark fields can be rotated 
away).

Kobayashi and Maskawa were the first to point out the matrix V for three generations cannot 
be transformed into a real form Then, they suggested a parametrization where quark phases 
are so choosen that the first row and column of V are real,

V =
1 Cl

n ci 
\ SI-S2

-S1C3 ~Sl$3
C1C2C3 - S2S3e’4 C1C2S3 + S2C3e’4 

C1S2C3 + C2C3e’5 C1S2S3 - C2C3e‘5
(2.66)

where c, = cos#,; s, — sin#, with 1 = 1,2,3. Without loss of generality #, can be chosen to lie 
in the first quadrant t.e.O < < ?r/2 provided we allow the phase angle S to take values in its
full period, i.e. - tt < <5 < 7r

An alternative parametrization proposed by Maiani[12] and advocated by 
standard one is given as.

PDG to be the

V
c 12C13

-■S12C23 - CnS23Si3etS 

Sl2-S23 - Ci2C23.s13e'i

S12C13 Sise-*5

C12C23 — ■Sl2'S23Sl3fi*5 S23C13

-C12S23 - Sl2C23Sl3C‘S C23C13
(2.67)

where the standard notation ctJ = cos6t)\ stJ = sin9tJ with i,j = 1,2,3 is used. It has the 
advantage that it makes it easy to incorporate the experimental results on B • meson deacy.

A third parametrization was introduced by Wolfenstein[14] in which he expanded the ele­
ments of the matrix V in terms of a small parameter A = sin#c, exploiting the experimental
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information about the smallness of the mixing angles. The remaining structure is then deter­

mined by the unitarity constraint. This parametrization reads

-A
/1A3(1 - p - iij)

|A2 - in A2 A4 

-A A2

AX3(p - irj + A2) ^
j4A2(1 + ir) A2)

1 /
(2.68)

This matrix is approximately unitary, the imaginary part of the unitarity relation is satisfied to 

order A5 and the real part to order A3 The coefficients A,p and r? are of order one or even 

smaller

Now we discuss the measured values of these mixing angles. While 9i% is very accurately 
determined from Ke3 and hyperon decays[15]

S12 = .221 ± 0.002, (2.69)

$23 and #i3 are rather poorly determined. The value of $23 may be extracted from a determi­
nation of Vcb (since S23 w IK&I to a very good approximation) from the semileptonic J9-meson 
partial width, under the assumption that it is given by the ^-mediated process to be

T(6 - clVt) = (£M)F(ml/ml)\Vcb\* (2.70)

where F(x) = 1 — 8a: + 8x3 — x4 — I2x2 ln(x) is a phase space factor. Thus

2 _ 192tt3 Brjb^clVt)
23 " 1 Gl }rbmlF(m2/ml) *

Using the experimental results for the branching ratio and the B-meson lifetime[16]

Br(6 — elVi) = .121 ±0.008 n = (1.16 ± 0.16)10~12sec (2.72)

and the estimation for the quark masses :

mc = 1.5 ± 0.2 GeV mt = 5.0 ± 0.3 GeV (2.73)

we get
$23 = 0.044 ± .009 (2.74)

The charmless B-meson decay width imposes the limit[17]

0.05 < s13/s23 < 0.13 (2.75)

The CP-vioIating phase S is allowed to adopt any value in the range [0, x] by these current 
experimental results
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2.5 CV violation and quark mixing

Apart from the continuous symmetries that leads to conservation laws through the Noether 
currents the interactions that the particles undergo also respect certain discrete symmetries. 
Each discrete symmetry corresponds to a definite inversion and can be described in terms of a 

single operator.

Parity (P) , Space-inversion. Invariance under V means that the LH frame obtained 
from RH frame by changing the signs of all spatial coordinates is an equally valid frame for 
expressing the laws of physics. In otherwords, the mirror image of an experiment would yield 
the same result in the reflected frame of reference as the original would do in the initial frame. 
Under V operation the 3-momenta are reversed. Interactions can be classified according to their 
transformations under the V operation. Since particles can be created or absorbed, intrinsic 
parity can also be assigned to particles. The over-all parity of a state is its parity under space 
inversion times the intrinsic parities of the particles in the state.

Charge-Conjugation (C) : It transforms particles into anti-particles ( i.e. reverses all 
additive quantum numbers) while spins and momenta are preserved. Invariance under C means 
that by turning all particles in a process into their anti-particles, we would get another process 
that would happen with equal probability Under this operation, a spinor field transforms as :

C : - i>c = Cf , (2.76)

where C is a matrix in the Dirac space satisfying

Cilc~x = &C = 1, CT = -C. (2.77)

A look at the Dirac equation tells the way the chiral components transform under C:

C : rpL-* (iJ>R)c = CtpRT = PLi>c .
C '• ipR —> = CTl = PRr , K ' }

where Pl,r are the left- and right-projection operators respectively.

Time-Reversal (T) : It refers to the reversal of the flow of time. Under this anti-unitary 
transformation, the initial and the final states are interchanged and spins and momenta are 
reversed

Luders and Pauli had proved[18] that any Lorentz-invariant unitary local field theory is 
invariant under the combined transformation CPT (in any order) But, the invariance under 
any individual discrete symmetry is not assured by any deep-rooted theoretical motivations 
Three out of four basic interactions i.e. gravitation, electromagnetism, and the strong nuclear 
interactions respect each of these discrete symmetries to quite a great extent whereas weak 
interactions violate both C and V invariance maximally.

Since the two terms (having same strength) present in the V-A structure of the Noether 
currents for the weak interactions can completely interfere, a system of quarks or leptons can 
change its parity and it is said that V is violated maximally. Similarly, SM also violates C
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invariance maximally since (for example) processes occur involving LH neutrinos, but never LH 
anti-neutrinos. However, under the combined operation CP, the LH neutrino is transformed 
into a RH anti-neutrino and in SM, we do have electroweak interactions of LH neutrinos as 
well as the RH anti-neutrinos. Thus it was believed that (mid 1950's) that even though SM 
violates C and V separately it conserves CP in the sense that if a process occurs, so does the CP 
transformed process. But in the mid-1960's, it was found[19] out that although processes and 
their CP conjugate processes occur in SM, their probabilities to occur are not identical but differ 
by a small amount, about a one part in a thousand (see next section for detailed discussion). 
This small difference in the probabilities is called the CP violation.

CP violation was incorporated into SM by noticing that CP violation implies a violation 
of T or vice versa since CPT is a good symmetry for all quantum field theories. It is well 
known that if T is a good symmetry, then the quantum mechanical transformation gives < 
ip'\H\i> > = < Tip\THT~1\Tip' > Since the anti-unitary time-reversal operation T involves 
complex conjugation, the T (and CP) is violated if the Hamiltonian H is not real, as the complex 
conjugation will, then, mean that THT~X H. From the structure of charged-current in SM, 
it is evident that C (hence H) is complex if the phase angle in the CKM matrix is non-zero. 
Thus the CP violation in SM is attributed to the non-zero CKM phase.

It should be noted that for less than three generations of quark flavours, there is no CP 
violation in SM as CKM matrix could, with full generality, be made real in such a case. However, 
for the CP violating character of V not only the phase 8 is important. If any of the mixing angles 
is zero, the theory can be made CP invariant by reabsorbing the CP violation phase 8 into a 
redefinition of the quark field phases. As for the leptonic sector, CP violation is identically zero 
in the minimal SM, but could arise if neutrinos are made massive.

Another concept that has been advocated is whether CP symmetry might be violated in 
a ‘maximal’ way as P and C are separately. But, it is not easy to find a resonable definition 
of "maximal CP violation” because the definition should be invariant under a change of phase 
convention or a parametriztion The condition that the CP phase angle is equal to ff/2 for max­
imal CP violation in some parametrization does not meet this standard. In fact, the rephasing 
invariant quantitative measure of CP violation was given in terms of elements of flavour mixing 
matrix elements as

Jia = Im(VJ0Vkl V^Vfr) (2.79)

where i,j,k and a,0,7 are cyclic. There are nine of these invariants for three generations case 
and they all are the same, this invariant Jxa is a small quantity bounded from above as

J,a < 1^11^11^11^1 < 1.8 x 1(T4, (2.80)

and is given explicitly in various parametrizations as follows

KM : Jta = CiC2C3SjS2S3sin£

Maiani:Jlo = ciC2C3S2.S2S3sm£

Wolfenstem : Jta = X6A2tj(l - ^A2) (2 81)
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Then the "minimal CV violation” can be defined in terms of J,a. J,a is maximal if

cos 0i = 1/V5, sin 62 = sin 03 = l/\/2, |sin0| = 1. (2.82)

Obviously, CV in nature is not violated maximally according to this definition.

Jar!$kog{20] has defined a convention independent measure of CV violation in terms of quark 
mass matrices as

= tC, (2.83)

where C is a traceless hermitian matrix whose determinant is a convention independent measure 

of CV violation,
detC = -2 FF'Jn, (2.84)

with

F = (to? - to?)(to? - - ml)
F' = (ml - ml)(ml - m2d)(m2s - m2d) (2.85)

and it vanishes if two of the quark masses with charge (2/3)e or any two masses with charges 
(~l/3)e are degenerate.

2.6 CV violation in neutral meson systems

As we have seen how SM incorporates CV violation, the next thing we would discuss is the 
extent to which SM can account for observed CV violating effects through the phase in CKM 
quark mixing matrix. The system of neutral Kaons is still the only experimentally established 
system having CV violation since its discovery by Cronin and Fitch (1964). In this section we 
introduce a general formalism that describes the CV properties of neutral mesons like I(° — 
K°, D° - D°, B° - B° etc. Although the K0 — K° system is taken as the prototype , the results 
hold for other mesons as well.

2.6.1 The Neutral Kaons system

Since both the strong and electromagnetic interactions conserve sTrangness, the neutral Kaons 
K° and K° (characterised by definite strangeness) form the basis for the Hamiltonian Hs+Hem. 
But they do not possess well defined masses or life-times as a mixing between K° and K° is 
caused by strangeness violating weak interactions. Instead there exist two independent linear 
combinations of these states, namely Ki and Ks ( having no definite strangeness but having 
definite mass and decay rates) that are characterized by the differences in the mass and life­

times. The short-lived state Ks decays primarily through the 2ir channel (with CV eigenvalue 
+1), the long-lived state Kt, has many decay channels mostly going to final states with CV 
eigenvalue -1 i.e. 3rr or mode if CV is respected in the above decays then it would
follow that Ks and Ki are eigenstates of CV with eigenvalues +1 and -1 respectively.
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With a convenient phase choice

CP\K° >=~\F5> and CP\K° >= -|A'° > (2.86)

we define two CP eigenstates as follows :

|A’?2 >s -U|A'° > M*5 >1. CV = Tl (2.87)
’ v2

Then CP invariance would imply that

\KL >= |A’i > and \KS >= U<2 > • (2.88)

But it was observed by Cronin et al that \Kt > does decay into the it+ir~ mode ( CP = +1) 
with a small branching ratio 2 X 10~3. Hence, the states \Ki, > and |/fs > should be a more 
general superposition of A'° and A’° as

\Kl,s >s Nl,s[\K° > ±e’^|K5 >], (2.89)

where are complex numbers and N^s the wavefunction normalization constants.

The mixing and decay of ]A’° > and |A'° > are governed by an effective Hamiltonian ( 
non-hermitian) H = + Hem + //„,* = M - iF where M and T are 2 X 2 hermitian matrices
called the mass and decay matrices respectively. In order to study the time evolution of the 
states we write them as a two-component vector which satisfies the Schrodinger’s equation,

*ftK^)=#(S)s(M“*r/2)(S)- • (2-90)

The eigenvalues of H are

El,S = mL,s - m,s/2 =~{Ihi + Hn ± \J{Hn ~ H22f + AHl2H2l] (2.91) 

and the difference is given by

El-Es = Am - iAj/2 = y/(Hu - //22)2 + 4//i2/J2i]. (2.92)

For Kl,s to be the eigenstate of H we must have

= EkZ and e*s = Ell-lh*. (2.93)
ii\2

Now we use both CPT and CP invariances to relate the elements of H as follows :

CPT: //„ =

CP : Hu =

< K°\H\K° >=< K°\(CPTylH(CPT)\I(° >

< K°\H\K° >= H22 
Mil == M22, Fj 1 = F22
< K°\H\K° >=< KXCP)~'H(CP)\K° >
< ~K°\H\K° >= Hn

Mi 2 = M21, r 12 = r21 (2.94)
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Using the above relations, we get

CPT-h = f5 = £ = -5ln(§^)

CV: e,( = 1. (2.95)

However the relation el(- — 1 depends on the phase convention To see this let us define the 
phase rotation on Kaon wavefunctions as

|A'0 >—- [A'° >' = e,a|A'°>,
>—*• \K° >' = e-,a\K^>. (2.96)

Under this rephasing of the Kaon fields the diagonal elements of any operator O remain un­
changed whereas the ofF-diagonal elements pick up phases

013 — 0fi2 = e~2taO\2 and 02l —> 0'2l = e2taOn, (2.97)

and, hence
£ — £' = £ + 2«. (2.98)

thus the basis independent condition for CV invariance is that f be real There exists a phase 
convention dependant parameter c that is often used as a measure of CV violation as follows :

e
1 -e'<
1 + e‘f' (2.99)

Next we consider the decay of neutral Kaons to 27r mode Bose-Einstein statistics demands 
that the 2tt state be in either 1=0 or 1=2 where I denotes the total isospin. Parametrising the 
K° —* 2rr amplitudes as

< >= oTe'S n = 0,2, (2.100)

where |n >= \2ir;I — n > and Sn is the 27r s-wave phase shift in the l=n channel, we found out 
that CVT invariance implies = -a*n whereas CV invariance demands that the ratio a2/ao 
be real Under the phase rotation

ane (2.101)

and hence the following combinations are independent of phase choice convention :

_ < Q\IIwh\I^L > flo - aoe'^
£° = < G|//^.|A's > ~ a0 + a’0e'<

e = 1 < > _ 1 «2 ~
2 y/2 < 0\Hwh\Ks > \/2a0 + aJeK

_ < 2|//^lA'g > _ a2 -
~ < 0|//,„*. jA's > a0 + a-oe'? (2 102)
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For the neutral Kaons system the CV violating quantities, which are directly related to 

physical observables, are

_ < 1r+?r |Hwk\KL > _ £o + (2 _ | ____
= <x+v-\Hwk\Ks> " I+cj/n/2"6'3 1 + u>A/2

— < > _ ep — 2e2 _ _ 2e'
= < ff°T°|//u,/i|A's > “ 1 - “ C° 1 - \/2u/ (2.103)

where

«2 -
t££o
V5’

In terms of the matrix elements of M and T then

Im(Mnal) - */m(r12ag)
Re(alMu) ~ |i2e(agri2) + ^(Am - ^7)

, _ t /m(a2ao)(Am “ |A7)e,^2_5°5 s

^Re(alM12)~]iRe(airn)+l-f(Am-±A1)

(2.104)

(2.105)

Now we will simplify these general expessions to the special case of neutral Kaons and use 
some experimental results to obtain the approximate but easy to handle expressions. Experi­
mentally we have

mu = 0 498 GeV
Am/, = 3.5 x 10-15 GeV
Alh- * -7/vs = -7.3 X 10-15 GeV 

[;/+-| = (2.275 ± 0 021) x 10-3

I?;00! = (2 299 ± 0.036) X 10~3. (2.106)

The dominant contribution to r]2 comes from the 2/r states and more specifically the 1=0 state. 
Thus

r12~< Ko\II*j?a'\0><Q\H.
AS=
xvk l\K° >, (2.107)

and hence
ImFi2 _ Im{a,Q)2
ReTn ~ Re(ai)2 (2.108)

The A/ = A rule for neutral Kaon decays manifests itself through a small suppression factor

w « 0.045 (2.109)

Using the value of w along with the experimental numbers for i}+ and if0 we get

e0| = 2.3 x 10-3, (2.110)

and the phase of e0 is approximately ?r/2 this small value of |fo| gives the inequalities

ImMi2/ReMi2 < 1,

ImTu/ReTn < 1, (2.111)
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Figure 2.1: “Box”-diagiam generating A'0 — K° mixing and etc in the SM

w+

Figure 2.2: “Penguin”-diagram responsible for e'K in the SM

Consequently, the mass and width differences in the above approximations are given as

Amt, ~ 2ReMn, Ayk ~ 2ReTi2, 

and
,, 1 ImM 12 _ 1 ImMi2K°' “ 7! &M,< * 272 ReMn ‘

(2.112)

(2.113)

In the 3-generation SM, which, for a complex CKM matrix, is a milliweak theory, K0-~K° 
mixing and Ki -+ 2ir come about because of the 1-loop Feynman diagrams in Figures (2.1) 
and (2.2) respectively, giving rise to

Gl
ImMu = —pfKmKmfrBK [KmS(yc) + A+ AcAt%5(»Cfff,)j

and

tan Oq =
■^13^23

512
sin 8

' 150MeV 2 -
.m,(l GeK)J H

(2.114)

(2.115)
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where
(2.116)

The quantities rjt represent QCD corrections [25]. While % does not depend on mt and is 
evaluated to be 0.85, i]2 is essentially independent of mt for 40 GeV < mf1^® < 130 GeV and 

t]2 — 0.61. rfy and H are slowly varying functions of mt and are approximately 0.25 and 0.37 
respectively [26] However we shall allow for their full variation in our calculations.

2.6.2 The Neutral Beauty meson system

Although CP violation has been observed so far only in neutral Kaon decays, one would expect 
to have non-zero effects in other processes onvolving heavy neutral mesons like B° — B° and 
D° — D° if one believes the KM mechanism for CP violation is correct. The phenomenology of 
the B° - B° systems is quite similar to that of K° - A'0. The physical situation, however, is 
very different since B° involves the bound states of a heavy quark a light quark and there are 
many intermediate states and the multi-particle final states dominate the decay as the case in 
deep inelastic scattering.

A new property which makes the B system very interesting is the recent observation of 
Bd - Bd mixing by the ARGUS collaboration. Their result fully justifies the expectation that 
the studies regarding neutral beauty mesons can reveal new phenomena and motivates the 
serious consideration of CP assymetries in this system. To study this partide-antipartide mixing 
consider the time-integrated mixing parameters proposed by Pais and Treiman [6.4 p]

/q°° I < B2\Bu > I Hi ,t a (AmB)2+ (ArB)2/4/0°° | < Bd\Bd > \2dt |e 1 2T| + (AmB)2 + (ATB)2/4

/o°° 1 < BdM > ?dt , 2 (Am^)2 + (Ar^/4
fSa\<Bd\Bd>\*dt 1 1 2r|_+(Am^)2 + (Ar^)2/4-

If CP is violated we expect r to differ from r by a quantity proportional to

|e'^|2-|e*^rf|2«8Ae<rB, \cB\ < 1, (2.118)

otherwise r = f. The above considerations are relevant for reactions where only one B° or Bq 
meson is produced. However, often in the actual experimental situation a pair of B° and >s 
produced instead of a single B° or Bq As the beam evolves in time, both of them oscillate in 
their B° and Bq content and one cannot directly measure either or fj.

U =

rS &

X, = K‘dK,s yt = rn2/m‘2w
fK = 0.16 GeV mw = 81.8 GeV.

Whereas fa is the pion decay constant, the bag parameter Bk reflects our ignorance of the 
hadronic matrix elements. If vacuum saturation approximation were correct then one would 
have Bk = 1, but theoretical estimates only put the rather loose bound of 1/3 < Bk < 1. The 
functions S(x) and S(x, y) arise from the loop integral and are given by
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Okun, Zakharov and Pontecorvo proposed the observations of following two parameters in 
dilepton decay mode, characterising particle-antiparticle mixing

N++ + N —
Rd N+~ + JV-+ 

and the CP violating leptomc charge assymetry

iV++ - N —
Ad

(2.119)

(2.120)
N++ + N+~ + N~+ + N—

where N's denote the number of dilepton pairs with the associated charges. For example, in 
the process

e+e- —♦ T(4 S) —♦ B%Wd (2.121)

these relations reduce to

(2.122)

Neglecting the possibility of large CP violation and introducing the approximation AF/Aro « 
0 we have

d 2 + (Am^)2 ( ’ ]

If one assumes that for 3 generations SM with a relatively heavy top quark, the dominant 
contribution to rd comes from the corresponding box-diagram with the top flowing in it then

^ = (Amd/Td) = (Bsfl) M&ytMyt)\VibVt*d\2 (2.124)

where rg is the Bd lifetime, fg the decay constant, Bg the bag factor and r) a QCD correction 
factor

The ARGUS result permits the range

A mg 

or xd 
and mg 

V

(4.2 ±0.9) X 10~13GeV 

0.73 ± 0 18
5.28GeV, Bgfg = (0.15 ± 0.05GeF)2 

0.85 rg = (1.16 ± 0.16) X 10-12s (2.125)
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