LIST OF TABLES

S.NO.	CONTENTS	P.NO			
<u>CHAPTER 1</u> :					
1.1	Some HPLC methods for estimation of 5FU	9			
1.2	Some of HPLC methods for estimation of MTX	15			
1.3	Some of HPLC methods for estimation of cyclophosphamide	22			
1.4	Summary of developmental status of anticancer drugs tested as liposomal formulations	25			
CHAPTER 2 :					
2.1	Optimisation of DEA concentration	50			
2.2	Optimisation of Copper concentration	50			
2.3	Calibration curve of 5FU copper complex	51			
2.4	Estimation of 5FU in injection and cream	53			
2.5	Optimisation of isopropylamine concentration	58			
2.6	Optimisation of cobalt concentration	58			
2.7	Calibration curve of 5FU cobalt complex	59			
2.8	Estimation of 5FU in injection and cream	61			
2.9	Optimisation of concentration of sodium carbonate	70			
2.10	Optimisation of concentration of volume of diazo reagent	71			
2.11	Optimisation of ratios of glycerol-sodium hydroxide mixture	72			
2.12	Calibration curves of 5FU diazotized primary amines	73			
2.13	Estimation of 5Fu in injection and cream	80			
2.14	Statistical parameters for coupling of 5FU with diazotised primary amines	81			

CONTENTS	P.NO
Optimisation of concentration of mercuric sulphate solution	90
Optimisation of concentration of dithizone / diphenyl carbazone solution	90
Calibration curve of 5FU mercuric complex with dithizone and diphenyl carbazone solution	91
Estimation of 5FU in injection and cream	94
Optimisation of concentration of sodium carbonate solution	104
Optimisation of volume of F.C. reagent	104
Calibration curve of MTX-F.C. reagent	105
Formulae for synthetic mixtures of MTX	107
Estimation of MTX in injection, synthetic mixtures and tablets	108
Optimisation of volume of Nessler's reagent	114
Calibration curve of MTX-Nessler's reagent	115
Estimation of MTX in injection, synthetic mixtures and tablets	117
Optimization of boilingtime of MTX-nitric acid solution	124
Optimisation of concentration of nitric . acid solution	124
Optimisation of volume of ammonia solution	125
Calibration curve of MTX-nitric acid solution	126
Estimation of MTX in injection, synthetic mixtures and tablets	128
Optimisation of boiling time	135
Optimisation of hydroxylamine hydrochloride concentration	135

S.NO.	CONTENTS	P.NO
2.35	Calibration curve of MTX-hydroxylamine ferric chloride complex	137
2.36	Estimation of MTX in injection, synthetic mixtures and tablets	137
2.37	Optimisation of volume of pH7 buffer	148
2.38	Optimisation of volume of ferrothiocyanate/ cobalt thiocyanate solution	148
2.39	Calibration curves of cyclophosphamide- ferrothiocyanate/cobalt thiocyanate method	150
2.40	Formulae for synthetic mixtures of cyclophosphamide	153
2.41	Estimation of cyclophosphamide in injection, synthetic mixtures and tablets	154
2.42	Optimisation of concentration of picric acid solution	159
2.43	Calibration curve for cyclophosphamide- picric acid solution	160
2.44	Estimation of cyclophosphamide in injection synthetic mixtures and tablets	162
2.45	Calibration curve of 5FU by fluorimetric method at pH 9.0	167
2.46	Estimation of 5FU from injection and cream by fluorimetric method	169
2.47	Retention times of 5FU and thymine in various mobile phases	175
2.48	Calibration curve of 5FU by HPLC method	176
2.49	Estimation of 5FU from injection and cream by HPLC method	178
2.50	Stability data for 5FU at pH 10.0 by HPLC method	180
2.51	Stability parameters obtained for 5FU at various temperatures by HPLC method	182

S.NO.	CONTENTS	P.NO		
2.52	Mean percentage of 5FU recovered from human plasma by various methods	188		
2.53	Concentration of 5FU in rat plasma obtained by various methods at various time intervals	189		
2.54	Mean percentage recovery of MTX from human plasma	192		
2.55	Mean percentage recovery of cyclophosphamide from human plasma by different methods	194		
CHAPTER 3				
3.1	Stability data of 5FU at pH 7.0	202		
3.2	Stability data of 5FU at pH 8.0	204		
3.3	Stability data of 5FU at pH 9.0	206		
3.4	Stability data of 5FU at pH 10.0	208		

3.5 Stability parameters obtained for 5FU at various pH and temperature 210

3.6 Activation energies of 5FU at different pH values 212

- 3.7 Data for stability of MTX at pH 1.2 216
- 3.8 Data for stability of MTX at pH 3.9 218
- 3.9 Data for stability of MTX at pH 5.0 220
- 3.10 Data for stability of MTX at pH 6.0 2223.11 Data for stability of MTX at pH 7.0 224
- 3.12 Data for stability of MTX at pH 8.0 226
- 3.13 Data for stability of MTX at pH 10.0 228
- 3.14 Stability parameters for MTX at various pH and temperatures 230
- 3.15 Activation energies of MTX at different pH values obtained by different methods 232

S.NO.	CONTENTS	P.NO
3.16	(a) Stability data of 5FU in different bases at 4 ⁰ C	236
	(b) Stability data of 5FU in different bases at 25 ⁰ C	237
3.17	(a) Stability data of MTX in different bases at 4 ⁰ C	238
	(b) Stability data of MTX in different bases at 25 ⁰ C	239
3.18	Stability data of cyclophosphamide at pH 1.2 by ferrothiocyanate method	242
3.19	Stability data of cyclophosphamide at pH 2.0 by ferrothiocyanate method	244
3.20	Stability data of cyclophosphamide at pH 3.9 by ferrothiocyanate method	246
3.21	Stability data of cyclophosphamide at pH 7.0 by ferrothiocyanate method	248
3.22	Stability data of cyclophosphamide at pH 8.0 by ferrothiocyanate method	250
3.23	Stability data of cyclophosphamide at pH 10.0 by ferrothiocyanate method	252
3.24	Stability data of cyclophosphamide at various pH and temperatures	254
3.25	Activation energies for cyclophosphamide at different pH values	257

<u>CHAPTER</u> <u>4</u>

-

.4.1	Calibration of egg lectithin by ammonium ferrothiocyanate method	262
4.2	Calibration curve of cholesterol	264
4.3	Calibration curve of 5FU and MTX in PB5	266
4.4	Particle size distribution of liposomes of 5FU and MTX	275

S.NO.	CONTENTS	P.NO
4.5	Effect of ionic strength of calcium chloride on entrapment of 5FU and MTX	277
4.6	Effect of millimolar ratio of lecithin and cholesterol on percentage entrapment of 5FU and MTX	279
4.7	Liposomal formulations of 5FU in various bases	282
4.8	Liposomal formulations of MTX in various bases	283
4.9	Mean cummulative percentage permeation of 5FU across rat skin	286
4.10	Mean cummulative percentage permeation of MTX across rat skin	289
4.11	Effects of methods of preparation on percentage entrapment of 5FU and MTX in liposomes	293
4.12	Effect of millimolar ratio of lecithin and cholesterol on percentage entrapment of 5FU	265
4.13	Effect of millimolar ratio of lecithin and cholesterol on percentage entrapment of MTX	296
4.14_	Assay of 5FU and MTX from formulations	300
4.15	Permeation coefficient and percentage reduction in permeation for formulations of 5FU	301
4.16	Permeation coefficient and percentage reduction in permeation for formulations . of MTX	303
4.17	Stability data of 5FU and MTX liposomes in different formulations at 4 ^O C	309
4.18	Effect of time on permeation profile of 5FU from various semisolid bases	310
4.19	Effect of time on permeation profile of MTX from various semisolid bases	311

S.NO.	CONTENTS	P.NO
4.20	Scoring pattern for DNCB induced erythema in guinea pigs	316
4.21	Mean erythema scores obtained for formula- tions of 5FU in hydrous emulsifying base	318
4.22	Mean erythema scores obtained for formula- tion of 5FU in HPMC K4M gel base	319
4.23	Mean erythema scores obtained for formula- tions of MTX in hydrous emulsifying base	320
4.24	Mean erythema scores obtained for formula- tions of MTX in HPMC K4M gel base	321
4.25	Percentage reduction in erythema for formu- lations of 5FU	322
4.26	Percentage reduction in erythema for formu- lations of MTX	324