
Chapter 3

EG0E(l+2)-s: Pairing Correlations

3.1 Introduction
Pairing correlations play very important role in finite interacting Fermi systems such 

as nuclei [Ho-07,Ka-00], small metallic grains [Pa-02,Sc-08], quantum dots [Lu-01,A1- 

05] and so on. The EGOE(l+2)-s discussed in Chapter 2 provides a model for under­

standing general structures generated by pairing correlations [Pa-02,Al-05]. We adopt 

an algebraic approach to pairing rather than the BCS approach. Our purpose in this 

chapter is to study first the pairing symmetry in the space defined by EGOE(l+2)-s 

and then the measures for pairing, using EGOE(l+2)-s ensemble, that are of interest 

for nuclei (see [Ho-07]), quantum dots and small metallic grains (see [Sc-08]). In the 

space defined by EGOE(l+2)-s ensemble, pairing symmetry is defined by the algebra 

U(20) =3 Sp(2Q) S0(Q) ® SUs(2). Starting with the details of this algebra we show

that the state density generated by the pairing Hamiltonian will be a highly skewed 

distribution. In contrast, the partial densities over pairing subspaces follow Gaussian 

form and the propagation formulas for their centroids and variances, defined over 

subspaces given by the algebra U{2Q) =3 Sp(2D) 3 SO(O) ® SUs(2), are derived. Pair 

transfer strength sum as a function of excitation energy (for fixed S), a statistic for on­

set of chaos, is shown to follow, for low spins, the form derived for spinless fermion 

systems. The parameters defining this form are easy to calculate using propagation 

equations. In addition, we consider a quantity in terms of gs energies, giving con­

ductance peak spacings in mesoscopic systems at low temperatures, and study its 

distribution over EGOE(I+2)-s by including both pairing and exchange interactions.
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All the results presented in this chapter are published in [Ma-09, Ma-10].

3.2 £7(20) 3 Sp(20) 3 SO(O) <s> SUs{2) Pairing Symmetry
Pairing algebra to be discussed here is presumably familiar to others. However to our 

knowledge the details presented here are not reported elsewhere (for a short related 

discussion see [Fl-64]). Note that, we drop the “hat” symbol over H, h and V when 

there is no confusion as in Chapter 2.

Consider m fermions distributed in Q number of sp levels each with spin s = 1 /2.
Therefore total number of sp states is N = 20 and they are denoted by at _ j |0> =

^ ,ms
\i,s = j,ms = ±|)withi = 1,2,...,£X Similarly,

a.I, s= aj,s-- s,

denotes two-particle antisymmetric states with the two-particle in the levels i and j 

and the two-particle spin s = 0 or 1. From now on we will drop the index s = \ for 

simplicity and then the two-particle antisymmetric states, in spin coupled represen­

tation, are

I (i,j) s, m,) = ---— a]a) 1 |0>.
V/1Ts~,[ Ilm■

In constructing EG0E(l+2) -s, only spin invariant Hamiltonians are considered. Thus 

the m-particle states carry good spin(S) quantum number [Ko-06,Tu-06]. Now the 

pair creation operator Pi for the level i and the generalized pair creation operator 

(over the D. levels) P are

p=j= E (<■!<*!)”=Eft ■ ^E(ftft)°s/2‘ (3.2.1)

In Eq. (3.2.1), ats= i>ms = (-l)2+ms«/,8=i,_ms. Therefore in the space defining 

EG0E(l+2)-s, the pairing Hamiltonian Hp and its two-particle matrix elements are,

Hp = Pz = PP+,

(ikj) s, ms\Hp\ (i, j) s', ms>) = SSi08UjSkjS s,s' 8rns,msi ■
(3.2.2)

Note that the two-particle matrix elements of Hp (also true for H) are independent
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of the ms quantum number. With this, we will proceed to identify and analyze the 

pairing algebra. Firstly, it is easily seen that the 402 number of one-body operators 

Upii,]) = (atdjYp r = 0,1 generate (7(20) algebra; see Appendix D. They satisfy the 

following commutation relations,

u^i, j), ur'(k,/)] = £ (-l)r+r'<r pry | r"p") \/(2r + l)(2r' + l)

(3.2.3)

x
r r' r"

1/2 1/2 1/2
u^(k,j)8u- (-1 )r+r'+r"u^(i, 1)8jk] .

Here, are CG coefficients and {............ } are 6 j-symbols. The U(20) irreducible

representations (irreps) are denoted trivially by the particle number m as they must 

be antisymmetric irreps {lm}. The 20(0 -1) number of operators {i, j),

VrAi,j) = Vi-l)r+1\urJi,j)-(-1 YuUj,»)] ; i>j, r = 0, 1 (3.2.4)

along with the 30 number of operators w* (/, i) form Sp (20) subalgebra of U(20) 

and this follows from the results in [Ko-06b]. Using anti-commutation relations for 

fermion creation and destruction operators and carrying out angular-momentum al­

gebra [Ed-74], we have

(atdj^iatdi)^0

= (-!)* 2k+1
2JTT iv

1/2 1/2 k 

1/2 1/2 k 

k' k' 0

► Katap^idjdi) k' iO

(3.2.5)

{a\dj)k{a\dj)k o
= -x*

1/2 1/2 k 

1/2 1/2 k 

0 0 0

y(a\a])°(didj)0.
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Here, x l ,} are 9 j coefficients (they are not 9/-symbols). Note that

1/2 1/2 k 

1/2 1/2 k 

s s 0

2s +1 for k = 0,
(3.2.6)

“h 1 r Q 1

—— [§-s(s+l)] forfc = 1,

We will show that the irreps of Sp(20) algebra are uniquely labeled by the seniority 

quantum number V discussed in the context of identical particle pairing in nuclear 

structure [Ta-93] and they in turn define the eigenvalues of Hp. The quadratic Casimir 

operators of the 1/(20) and Sp{2Q) algebras are [Ko-06b],

C2 [1/(20)] = Y.uT{i,j)-ur{j,i),
t,j,r

C2[Sp( 20)] = 2 YJul{i,i)-ul{i,i)+ Yr,Vr{i,j)-Vr{i,j). 
i i>j,r

(3.2.7)

Simplifying these expressions using relations in Eqs. (3.2.5) and (3.2.6) [with h being 

the number operator], we have

C2[t/(20)]=2n0-2£PjPt- £ \/2s+1 [s(s+1) -1] ffajat)' 
i i^j.s

C2[Sp( 20)] = (20 + l)n-6£pzpf -4£(P,Pj + P/Pj)
i i>j

- Y, V2s+1 [s(s+l)-l] {ajaiY
i¥=j,s

=> C2[U{20)] - C2[Sp(20)] = 4PPf - ft.

It is also seen that the operators P, P* and Pq form SU(2) algebra,

(3.2.8)

[P, P+] = n - O = 2 P0, [P0, P] = P, [P0, Pf] = ~Pf ■ (3.2.9)

The corresponding spin is called quasi-spin Q. As Mq, the Po eigenvalue, is (m
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n)/2, we obtain Q = (Q-v)/2. Then, for m < Q, v take values v = m,m- 2,...,0 or 1. 

Therefore eigenvalues of the pairing Hamiltonian Hp are given by,

Ep{m,v,S) = {Hp)m'’={PPf} = -(m-v)(2Q+2-m-v). (3.2.10)

As (C2[i/(20)]){im} = m(20+1 - to), Eqs. (3.2.8) and (3.2.10) will give

C2[Sp(2£2)]=2v(n+l-^) . (3.2.11)

Comparing Eq. (3.2.11) with the general formula for the eigenvalues of the quadratic 

Casimir invariant of Sp (2Q) [Wy-74], it follows that the seniority quantum number ‘v’ 

corresponds to totally antisymmetric irrep (lv) of Sp(20). Thus Sp( 20) corresponds 

to SU(2) quasi-spin algebra generated by (P, P1", P0). More explicitly,

(Q.-V- p)\ „ m-v| m, v, S, a)^\ ———-rPp \m = v, v, S, a) ; p = ——(3.2.12) 
y (Q-v)!p! 2

Thus the spin S is generated by V free particles and therefore v > 2S. Then, for a 

given (m, S) we have

v= m, m~2,2S, (m<n). (3.2.13)

Number of states or dimension D(m,v, S), without the (2S +1) degeneracy factor, for 

a fixed-(m,v,S) is,

D{m,v,S) = df{D.,m = v,S)-df{Q.,m = v-2,S). (3.2.14)

Note that the fixed-(m, S) dimensions d/(0, m, S) are given by Eq. (2.2.2). Table 3.1 

gives the reductions m-> S-+v, D(m,v, S) and also Ep (m, v, S) for some examples. Let 

us point out Sp{20) => SO(Q) ® Sf/(2) but SO(Q) carries no extra information. In fact 

there is one-to-one correspondence between the Sp{20) chain and the alternative 

group-subgroup chain 1/(20) 3 U(Q.) ® SU(2) 3 SO(O) ® SU{2). This is verified by 

comparing the results in Table 3.1 with the irrep reductions for f/(0) SO(Q) that 

are given in Appendix D. It is useful to note that Eqs. (3.2.10), (3.2.13) and (3.2.14) 

will allow one to construct the state density generated by the pairing Hamiltonian
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(E-s)/<y

Figure 3.1: State density for the pairing Hamiltonian H = -Hp for a system of 22 fermions in 
O = 22 orbits (N = 44) and total spin S = 0. In the histogram, p(E] for a given E - (E-e)/a 
is plotted with E as center with width given by AE = AEla (see Eq. (3.2.15) and the following 
discussion). The smooth curve is obtained by joining the center points to guide the eye. A 
similar plot was shown before by Ginocchio [Gi-80] but for a system of identical fermions in a 
large single- j shell.

H--Hp. The dimensions df(D,, m, S) and D{m,v, S) along with the energy Ep of Hp 

will give the normalized density p(£) to be

P(-Hpm = -■ ■; AE = Ep(m,v+l,S)-Ep{m,v-l,S) = n-v+l. (3.2.15)
TYty i)J /\I;

Figure 3.1 gives p(E) vs E plot for O = 22 (i.e., JV = 44), m - 22 and S = 0. For this 

system, the spectrum spread is 132 (note that vmax - 22), centroid e ~ 5.7 and width 

a ~ 6; note that E = (E-e)lcr. Clearly, it is a highly skewed distribution (see also the 

a - 0 plot in Fig. 3.4 ahead).

3.3 Fixed- (m, v, S) Partial Densities and their Centroids 

and Variances
Expansion of a given |m,v, S, a) basis state in terms of the H eigenstates \E;{m,S)), 

with the expansion coefficients being c™’v's,a will allow us to define the fixed- (m, v, S)

N

IS
)

03i
to 

c
m

o o
 o 

^ 01 
C

O
 o

o IS
)

oo

St
at

e D
en

sit
y

oo
oo

oo
oo

o

58



Table 3.1: Classification of states in the U[2D.) z> Sp(20) => SO(D.) ® Si/s(2) limit for O = 6 
with m = 0 - 6 and 0 = 8 with m = 6 - 8. Given are (m, S, v) labels, the corresponding di­
mensions D(m, v, S) and eigenvalues Ep(m,v,S). Note that £v,s(2S + l)D(m,v,S) = (2^) and 
Z,vD(m,v,S) = df(Q,m,S).

Q m S v D(m,v,S) Ep(m,v,S) O m S v D(m,v,S) Ep{m,v,S)

6 0 0 0 1 0 8 6 0 6 840 0
1 1

2 1 6 0 4 300 4
2 0 2 20 0 2 35 12

0 1 6 0 1 18
1 2 15 0 1 6 1134 0

3 1
2 3 64 0 4 350 4

1 6 5 2 28 10
3
2 3 20 0 2 6 350 0

4 0 4 84 0 4 70 4
2 20 4 3 6 28 0
0 1 10 7 1

2 7 1344 0
1 4 90 0 5 840 3

2 15 4 3 160 8
2 4 15 0 1 8 15

5 1
2 5 140 0 3

2 7 840 0
3 64 3 5 448 3
1 6 8 3 56 8

3
2 5 64 0 5

2 7 160 0
3 20 3 5 56 3

5
2 5 6 0 7

2 7 8 0
6 0 6 70 0 8 0 8 588 0

4 84 2 6 840 2
2 20 6 4 300 6
0 1 12 2 35 12

1 6 84 0 0 1 20
4 90 2 1 8 840 0
2 15 6 6 1134 2

2 6 20 0 4 350 6
4 15 2 2 28 12

3 6 1 0 2 8 300 0
6 350 2
4 70 6

3 8 35 0
6 28 2

4 8 1 0
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partial densities pm,v,s{E},

pm’v’s(E) = (8{H~E)) m,V,S.

D{m, v, S) ^

Im'v’s(£) = D(m,v, S)pm,v,s{E) = X"

>m,V,S,a

(3.3.1)
m,V,S,a

Often it is convenient to use total densities I (E) rather than the normalized densities 

p(E). It is important to note that fixed-(m,S) density of states pm,s{E) decompose 

into a sum of fixed- (m,v, S) partial densities,

pm's(E) y D(m,v,S) mivlS{E)

=> Im,s(E) = £lm-v-s(E). 
v

(3.3.2)

The partial densities are defined over broken symmetry subspaces and they are also 

called ‘strength functions’ or ‘local density of states' [Ko-01, Ko-03]. Partial densities 

pm’v’s{E) give intensity distribution of a given basis state | m, v, S) over the eigenstates 

\E), i.e., distribution of the expansion coefficients !C^’r|2 vs E. The partial densities 

have same structure as that for the strength functions defined in Eq. (2.5.2) as partial 

sums over the strength functions give partial densities. We will also encounter partial 

densities in Chapter 5.

In the X > Xp region, as discussed in Chapter 2, strength functions take Gaus­

sian form and therefore partial densities are expected to be Gaussian in this region. 

Extension of this result to EGOE(l+2)-/ [Pa-07] with subspaces defined by the pair­

ing Hamiltonian, i.e., fixed-(m,v,/) partial densities are Gaussian is often used in 

nuclear physics [Qu-74, Qu-77]. In Fig. 3.2 we present tests of this assumption for 

EGOE(l+2)-s with / replaced by S. In order to discuss these results, we will start with 

the EGOE(I+2)-s Hamiltonian defined by Eq. (2.2.1). We choose, in all the calcula­

tions reported in this chapter, e,- = f + (1/i), i = 1,2,...,£2 and Xq = X\ = X = 0.3. Re­

sults in Chapter 2 confirm that X = 0.3 corresponds to strong coupling region. Before 

going further, let us add that we will later consider extensions of H with the inclusion 

of pairing and exchange interactions (they are not random). For a O = m = 8 system
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with 50 members, we have extracted the partial densities pm’v,s{E) in Eq. (3.3.1) by 

numerically constructing the H matrix in good S basis and then changing it into good 

(m,v, S) basis with an auxiliary diagonalization of Hp in the good S basis. Results for 

the ensemble averaged partial densities are shown for S = 0 and 1 in Fig. 3.2 and the 

results are compared with the Gaussian (^) and ED corrected Gaussian forms given 

by Eq. (2.3.2). From the results in Fig. 3.2, it is seen that the agreement between the 

exact and ED corrected Gaussians is excellent. For v = 0 (this is one dimensional) the 

deviations are some what larger. Similar results are also obtained for a smaller exam­

ple (these are not shown in the figure) with O = m - 6 and S = 0,1 and for this system 

we have carried out calculations with 500 members. This shows fixed-(m, v, S) par­

tial densities take close to Gaussian form, just as fixed-(m, S) densities, in the strong 

coupling region. Thus the EGOE(l+2)-s densities follow EGOE(l+2) even in pairing 

subspaces. This is a result assumed in statistical nuclear spectroscopy (see for exam­

ple [Da-80, Fr-82]).

For constructing Gaussian partial (m, v, S) densities, we need fixed-(m, v, S) cen­
troids Ec(m,v, S) = (H)m,v’s and variances <x2(m,v, S) = (H2)m,V,S - [Ec(m,v, S)]2. An 

important result here is, these parameters can be calculated for any (H, m, v, $) with 

m > 4 without recourse to H matrix construction in (m, S) spaces. This derives from 

the fact that simple (Casimir) propagation is possible for Ec(m,v,S) in terms of the 

corresponding Ec for m < 2 and for cr2(m, v, S) in terms of the corresponding a2 for 

m < 4. From Table 3.1 one can see that the number of (m,v, S) irreps A; is 5 for m 

up to 2 and there are 5 simple scalar operators Q of maximum body rank 2, Q = 1, 
h, (g), Hp, and S2 for i = 1-5, respectively. Note that (Hp}m’v,S and (S2)OT,V,S are 

Ep{m,v,S) [see Eq. (3.2.10)] and S(S+1), respectively. More remarkable is that, for 

m < 4, the number of (m, v, S) irreps Y, is 14 as seen from Table 3.1 and also the avail­

able simple scalars % of maximum body rank 4 are exactly 14. These are % = 1, h, 
{%)> (?)> hp> nHp, g)Hp, (Hp)2, HpS2, S2, ftS2, g)32 and (S2)2 for / = 1 -14, re­

spectively. Therefore, the spectral variances over (m, v, S) spaces propagate simply 

and they will be linear combinations of the eigenvalues of the 14 operators above. 

The constants in the expansion will follow from the variances for m< 4. Then, fixed- 

(m,v,S) energy centroids with 5^2 = S(S+ 1), X(m,S) = m(m + 2) -4S(S+ 1) and
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-3-2-1 0 1 2 3 -3-2-1 0 1 2 3 -3-2-1 0 1 2 3
(E-£)/0

Figure 3.2: Partial densities pm,v,s(E) vs E for a EGOE(l+2)-s ensemble H defined in the text. 
The values of (v, S), dimension D, width a and y2 for the densities are given in the figure. 
Note that fi ~ 0 in all cases. The energies E are zero centered with respect to the centroid e 
and scaled with the width a of pm'v,s[E). The histograms (with 0.2 bin size) are exact results, 
dashed curves are Gaussians and the continuous curves are Edgeworth corrected Gaussians. 
See text for further details.

Y(m, S) = m{m - 2) - 4S(S +1), are given by

(H)m,v's = Ec(m, v,S] = Oq + ainiE az m
2

+ fls^2 + a^Epim, v, S)

(3.3.3)

■ Ec[fn, v, S) = —■(w — l)(m — 2) Ec(0,0,0) — m{m — 2) EC{1,1, —) 
£ &
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+^r [-8Ep{m, v,S)+QX{m,S)]Ec(2,2>0) + ~ Ep{m, v,S) Ec{2,0,0) 
812 12

+- [4m{m - 2) - Y{m, S)] £c(2,2,1).
8

Similarly, fixed- (m,v,S) spectral variances are

(fl2>,",v's = ~(m-1)(OT-2)(m-3)(m-4) (H2)0,0,0

—m(m-2)(m-3)(m-4) (H2)1’1'2

+r^r(m -3)(m - 4) [OX(m, S) - 8Ep(m, v, S)} (H2) 
lol 2

-2 \ 2,2,0

+ 20(m_3Km"4)J5p(m'I/’S) '-2 v 2,0,0

+7-(m - 3) (m - 4) [3m(m - 2) + 4^2] (H2)2,2,1 
16

[(0-l)X(m,S)-12£p(m, y,S)] <tf2)3,3’*

1 . —. -- — - —

o-
—(m-2)(m-4)£p(m,v,S) (Hzy

12
(m - 2)(m - 4) [m(m - 4) + 4^2] (H2)3’3’2

+-
192(0-2)(0-l)

96 {Ep{m, v, S)}2 + 24 {-(O - l)m2 + 2(0 + l)ra

+ 4(0 -l)^2 - 4(0 + 2)} Ep{m, v, S)

+(O -1) (O - 2)X{m, S) Y(m, S)) (jy2)4'4,0

+
1

80(0-2)
Ep(m,v,S)

x [0{m(m-2)-4«S*2 + 8}-8{Ep(m, v,S) + m-2}] (h2)4,2’0

(3.3.4)
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+ 2Q(Q-l)i?p(m,V’® {E^m> v>s^ + m-^‘~2} (H2)*’0,0

[3m(w-6) + 4^2 + 24]
+ 128(0-2)

x [(O - 2)X(m,S) -16Ep{m, v,S)] <H2)4,4,1 

+ 1I^--gp(m> v, S) [3m(m - 6) + 4^2 + 24] (fl2)4'2'1

+— f 16(,5^2)2 + 40m25^2 - 240m^2 + 288<5*2 384 1

+5m(m-2)(m-4)(/n-6)] (H2)4,4,2 .

Using EG0E(l+2)-s computer codes, it is easy to construct, even for large O values, 
the input averages (fl)m,v,s, m < 2 for centroids and (FI2)m'v'S, m < 4 for variances 

propagation. For a 100 member ensemble with 0 = 12 and m changing from 8 to 12, 

we have calculated, for three lowest spins (i.e., for even m, with S = 0, 1 and 2 and 

odd m with S = | and |), the ensemble averaged variances using Eq. (3.3.4). We

use the EG0E(l+2)-s Hamiltonian defined by Eq. (2.2.1) with A = 0.3. The ensemble 

averaged centroids do not change with V as expected and therefore we will discuss 

the structure of variances. The results are shown in Fig. 3.3. It is observed that as the 

V value increases from 2S to m, there is decrease in the variances. However the di­

mensions increase as V increases. For example, for S = 0 and m = 10 the widths and 

dimensions are (<7,D) = (20.93,1), (18.6,77), (17,1638), (16,14014), (15.44,55055), and 

(15.17,99099) for v = 0,2,..., 10. The decrease in variances with increasing V is neces­

sary for the gs to be dominated by v = 0, i.e., by pairing structure. As we shall discuss 

later, this indeed happens. Going beyond the averages, we have also calculated the 

variation over the ensemble for both centroids and variances as they will give infor­

mation about fluctuations and ergodicity [Br-81, Be-Ola, Ko-07]. We have calculated 

the ensemble variances for these, say 72[Ec(m,v, S)] and 72[<72(m,v, S)], respectively 

and then the corresponding scaled widths Ac (m, v, S)-T [Ec (m, v, S)] / (cr2 (m, v, S)}1/2 

and A.s(m,v,S) = ?"[cr2(m,v,S)]/<72(m,v,S). It is observed that Ac varies from 5 - 7% 

for m = 8, 7 - 9% for m = 9, 8 -10% for m = 10,9 -13% for m = 11 and 10 -14% for
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Figure 3.3: Ensemble averaged widths a(m,v,S) vs ‘v’ for EG0E(l+2)-s ensembles with Q = 12 
and (m,S) values as given in the figures. Shown also in the figures are the r.m.s. deviations 
(over the ensemble) in the widths as error bars. For m = 12, the results are shifted by one unit 
to avoid overlapping of the error bars. See text for details.

m = 12. Thus centroid fluctuations are large just as the situation with EGOE for spin­

less fermion systems [Br-81, Be-01a]. However the variance fluctuations, as given by
1/2

\s are small, ^ 5%. Therefore the widths are cr(m,v, S) cr2(m,v, S) {1 + f }• In

Fig. 3.3 shown also are the fluctuations in widths.
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E3.4 Expectation Values (PPf) of the Pairing Operator 

as Signature of Chaos
A series of studies in the past, using Gamow-Teller, electric quadrupole and magnetic 

dipole transition operators, have established that transition strength sums can be 

considered as a statistic able to distinguish between regular and chaotic motion [Ko- 

99a, Go-01, Go-03]. Moreover, for EGOE(l+2) for spinless fermions in the strong cou­

pling region, it is well understood that the strength sums vary with the excitation en­

ergy as ratio of two Gaussians [Fr-88, Ko-00, Ko-01, Ko-03]. This result was derived 

using the fact that (proved using the so-called binary correlation approximation) the 

transition strength densities, transition strengths multiplied by the state densities at 

the two energies involved, for EGOE(l+2) with X > Xp, take bivariate Gaussian form 

and hence, being the marginal densities, the strength sum densities (see ahead for the 

definition) will be Gaussian; see Chapter 7 for transition strength densities. It is now 

well established that the EGOE(l+2) (but not the GOE) provides a good description of 

strength sums in nuclear shell-model in the chaotic domain [Ko-99a, Go-01, Go-03]. 

Our interest is in calculating the expectation value of PP^ over fixed-(m,S) spaces, 

which is a measure of the pairing correlations, and this is nothing but the strength 

sum for pair removal,

(PPrAB=(^uipp* i ***> 1 ** i "-*■*)

(3.4.1)

Recently Horoi and Zelevinsky [Ho-07] re-emphasized, in the context of pairing cor­
relations in nuclei, the importance of (PP^f measure. Given a transition operator 0, 

in terms of the transition strength sum density p0t& (E), the expectation value (0^0 ) 

is
= (6*0} p0f0{E)lp(E). (3.4.2)

As stated before, the normalized density p0t0 also takes Gaussian form for 

EGOE(l+2) with X> Xp and it is defined by the centroid e0t0 = (0*0H) / {0^0) and 

variance a2&f& = (0*0 H2) / (0^0) -e20,0. Similarly, skewness Ti(0'0) and excess 

72 (0*0) for the 0*0-density are defined. The normalization factor (0^0) is the aver-
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age value of 6^0 over the complete space [in our examples this is fixed-(m, S) space]. 

Therefore the ensemble averaged strength sum density reduces to the ratio of two 

Gaussians or two ED corrected Gaussians [Fr-88, Ko-00, Ko-01, Ko-03],

{0^0)B EGOE(l+2)
P&*0;ED !PED (E). (3.4.3)

We will now test how well the EGOE(l+2) theory given by Eq. (3.4.3) extends to sys­

tems with spin, i.e,, for EGOE(l+2)-s in the strong coupling regime and for the oper­

ator 6 = Ph Note that in applying Eq. (3.4.3), all the averages and the densities will 

be over fixed-(m, S) spaces. As Hp = PP1" generates a highly skewed distribution for 

density of states, a priori it is expected that Eq. (3.4.3) may not be a good statistical 
formula for {PPt)m’S’B. Now we will investigate this using three numerical examples.

Just as in Section 3.3, first we have used the random EGOE(l+2)-s Hamiltonian 
defined in Eq. (2.2.1) and calculated (PPt)m,S,B for various values of the A parameter 

using a 500 member ensemble for 6 fermions [m = 6) in 6 orbits (Q = 6) and total spins 

S = 0 and 1. Results are shown in Fig. 3.4(a). Numerical results are compared with 

the EGOE(l+2) formula given by Eq. (3.4.3) both with and without ED corrections. 

For A = 0.1, we have ePPt ~ 0, |yi(PPt)| ~ 0, aPPi = crpptlan ~ 1.07, y2(.PP+) —0.47 

and (pp+)m’s ~ i.7i for S = 0. Similarly, for A = 0.3, y2(PPf) ~ -0.55 for S = 0 and 

—0.63 for S = 1. Large values of y2 (PP+) imply that ED corrections are important in 

the examples considered and this is clearly seen in Fig. 3.4(a). The average value of 

PP+ follows easily from the centroid formula given by Eq. (3.3.3),

2
O+l

m(m + 2) 
8

s(s+ir (3.4.4)

and this has been used to verify numerical calculations. As expected, the EGOE(l+2) 

smoothed form is not a good approximation to the exact results in the case of reg­

ular motion. Here there are large fluctuations due to approximate good quantum 

numbers and the level fluctuations will be close to that of Poisson. However, as A 

increases and after the onset of chaos, in our example for A k 0.1, the interacting par­

ticle system is chaotic, giving a smoothed form for pair transfer strength sums (with 

fluctuations following GOE). This behavior is clearly seen in Fig. 3.4(a). To strengthen
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(E-e)/a
Figure 3.4: Ensemble averaged pairing expectation value (pp^)m’s'E vs E for 3 different 
EGOE(l+2)-s examples, (a) For various values of X in Eq. (2.2.1) with Q = m = 6 and S = 0,1. 
(b) For various values of X in Eq. (2.2.1) with O = m = 8 and S = 0,1. (c) For various values of 
a in Eq. (3.4.5) with O = m = 6 and S = 0. Results are compared with the EGOE(l+2) formula 
given by Eq. (3.4.3), using Gaussian (dashed curves) and Edgeworth corrected Gaussian (solid 
curves) forms. The energies E are zero centered with respect to the centroid e and scaled with 
the width a of pm,s(E). See text for details.
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these observations, calculations are repeated for a 50 member EGOE(l+2)-s ensem­

ble with Q = m = 8 and total spins S = 0 and 1. The results are shown in Fig. 3.4(b). 

In this example, for A ^ 0.05 [note that for EGOE(l+2) there is scaling by ~ l/(m20)], 

the EGOE(l+2) form is in good agreement with numerical results. For A = 0.05, we 
have ePPf ~ 0, |yi(PP+)| ~ 0, o>pt ~ 1.06, y2(PP+) ~ -0.33 and {PP*)m,S ~ 2.22 for 

S = 0. Similarly, y2(PPt) —0.37 and (PPt)m,S ~ 2 for S = 1. For A = 0.3, we have 

y2(PP+) —0.44 for S = 0 and —0.47 for S = 1. Thus, as seen from Figs. 3.4(a) and 

3.4(b), pair expectation values follow, in the chaotic domain the simple EGOE(l+2) 

law given by Eq. (3.4.3). Also it is seen from the figures that at low energies the pair 

expectation value is large (but still much smaller than that for the pure pairing Hamil­

tonian) and then decreases as we go to the center (after that it will again increase as 

the space is finite). This trend is easily understood from the fact that app\ > 1. Also 

expectation values in the gs domain for S = 0 are always larger than for S = 1 and this 

is consistent with previously known results [Ho-07]. Thus random interactions, even 

in the chaotic domain, exhibit strong pairing correlations in the gs region and they 

decrease as we go up in the energy. Perhaps this explains the preponderance of 0+ 

ground states seen in nuclear shell-model examples [Ze-04].

Going further, to understand the interplay between random interactions and pair­
ing, calculations are carried out for (PPt)m,S,£ using the Hamiltonian,

a [{Fs=0} + {Vs=1}] + [~Hp/a] , (3.4.5)

which explicitly contains the pairing part. Here we divide Hp by O so that the pairing 

gap (the gap between v = 0 and v = 2 states generated by Hp) is unity. Therefore the 

parameter a in Eq. (3.4.5) is the strength of the random part of the Hamiltonian in 

units of the pairing gap. Using a 500 member EGOE(l+2)-s ensemble, with H given 

by Eq. (3.4.5), for Q = m = 6 and S = 0, pair transfer strength sums are calculated as a 

function of energy for various a values. Results are shown in Fig. 3.4(c). For a = 0, we 

have pure pairing Hamiltonian and this generates a staircase function. As the value 

of the strength of the random part increases to a > 0.3, there is a transition to chaotic 
domain with (pp^)m,s,E vs E taking a smoothed form (fluctuations being small and 

tending to that of GOE). The smooth behavior observed for a > 0.5 is explained to
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some extent by Eq. (3.4.3). For better description we use an expression (its derivation 

being straightforward) based on partial (m,v, S)-densities,

Note that the formula for {PPt)m,V'S is given by Eq. (3.2.10) and I^{E) is sum of 

/|^v,s(/?). Following Section 3.3, we have constructed the partial densities appearing 

in Eq. (3.4.6) as ED corrected Gaussians. The results obtained with these are shown in 

Fig. 3.4(c). It is seen that the agreements even at the spectrum ends are good (with­

out partitioning the expectation values are found to be much larger than the exact 

results). It can be concluded from Fig. 3.4(c) that for a of the order 0.5 times the pair­

ing gap, pairing effects get washed out and the structure of the expectation values is 

well explained by the EGOE(l+2) smoothed formula (3.4.6). It is plausible that unlike 

Eq. (3.4.3) that has worked well for the Hamiltonian defined by Eq. (2.2.1), the par­

titioned version given by Eq. (3.4.6) should be used for the Hamiltonian defined by 

Eq. (3.4.5) as this explicitly involves Hp, i,e., a regular part (as already discussed, Hp 

produces highly skewed density of states).

Partial densities give information about the composition, in terms of the V quan­

tum number, of the wavefunctions for a given E. Note that /(v) = Im,v,s{E)lIm,s(E) 

gives the fractional intensity of states with a given V in the eigenstate with energy 

E; see Eqs. (3.3.1) and (3.3.2). For the Hamiltonian in Eq. (3.4.5) with a = 0.3, for 

E = -3, the /(v) for v = 0,2,4 and 6 are 16%, 34%, 33%, and 17%, respectively. How­

ever for the random Hamiltonian given by Eq. (2.2.1) with X = 0.3, the /(v) values are 

7%, 33%, 42%, and 18%. Thus in the gs domain, although the pair expectation values 

are enhanced (see Fig. 3.4), the wavefunctions have relatively small strength for v = 0 

states, i.e., they are not close to pure Hp eigenstates. This result is consistent with the 

nuclear shell-model results with random interactions, possessing /-symmetry, pre­

sented in [Zh-04], Thus, some essential features of EGOE(l+2)-/ are reproduced by 

EGOE(l+2)-s,

(3.4.6)
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3.5 Distribution of A:. = 'u + ifg" 1-21^"] With Pair­

ing and Exchange Interactions

3.5.1 Brief introduction to mesoscopic systems

Mesoscopic systems are intermediate between microscopic systems (like nuclei and 

atoms) and macroscopic bulk matter. Quantum dots and ultrasmall metallic grains 

are good examples of mesoscopic systems whose transport properties can be mea­

sured [Im-97, Ja-01a]. When the electron’s phase coherence length is comparable to 

or larger than the system size, the system is called mesoscopic. As the electron phase 

is preserved in mesoscopic systems, these are ideal to observe new phenomenon gov­

erned by the laws of quantum mechanics not observed in macroscopic conductors. 

Also, the transport properties of mesoscopic systems are readily measured with al­

most all system parameters (like the shape and size of the system, number of elec­

trons in the system and the strength of coupling with the leads) under experimental 

control. The phase coherence length increases rapidly with decreasing temperature. 

For system size ~ 100 fim, the system becomes mesoscopic below ~ 100 mK.

Quantum dots are artificial devices obtained by confining a finite number of elec­

trons to regions with diameter ~ 100 nm by electrostatic potentials. Typically it con­

sists of 109 real atoms but the number of mobile electrons is much lower, ~ 100. Their 

level separation is ~ 10-4 eV If the transport in the quantum dot is dominated by 

electron scattering from impurities, the dot is said to be diffusive and if the transport 

is dominated by electron scattering from the structure boundaries, then dot is called 

ballistic. The coupling between a dot and its leads is experimentally controllable. 

When the dot is strongly coupled to the leads, the electron motion is classical and the 

dot is said to be open. In isolated or closed quantum dots, the coupling is weak and 

conductance occurs only by tunneling. Also the charge on the closed dot is quantized 

and they have discrete excitation spectrum. The tunneling of an electron into the dot 

is usually blocked by the classical Coulomb repulsion of the electrons already in the 

dot. This phenomenon is called Coulomb blockade. This repulsion can be overcome 

by changing the gate voltage. At appropriate gate voltage, the charge on the dot will 

fluctuate between m and m+1 electrons giving rise to a peak in the conductance. The
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oscillations in conductance as a function of gate voltage are called Coulomb block­

ade oscillations. At sufficiently low temperatures, these oscillations turn into sharp 

peaks. In Coulomb blockade regime kT « A << Ec, the tunneling occurs through 

a single resonance in the dot. Here, T is the temperature, A is the mean single par­

ticle level spacing and Ec is the charging energy. Ultrasmall metallic grains are small 

pieces of metals of size ~ 2 -10 nm. The level separation for nm-size metallic grains 

is smaller than in quantum dots of similar size and thus experiments can easily probe 

the Coulomb blockade regime in quantum dots. Also, some of the phenomena ob­

served in nm-size metallic grains are strikingly similar to those seen in quantum dots 

suggesting that quantum dots are generic systems for exploring physics of small co­

herent structures [Gu-98,Al-00a].

Although the quantum dots contain many electrons, their properties cannot be 

obtained by using thermodynamic limit. The description of transport through a 

quantum dot at low temperatures in terms of local material constants breaks down 

and the whole structure must be treated as a single coherent entity. The quantum 

limits of electrical conduction are revealed in quantum dots and conductivity ex­

hibits statistical properties which reflect the presence of one-body chaos, quantum 

interference and electron-electron interaction. The transport properties of a quan­

tum dot can be measured by coupling it to leads and passing current through the dot. 

The conductance through the dots displays mesoscopic fluctuations as a function of 

gate voltage, magnetic field and shape deformation. The techniques used to describe 

these fluctuations include semiclassical methods, random matrix theory and super- 

symmetric methods [Al-00a].

Mesoscopic fluctuations are universal dictated only by a few basic symmetries of 

the system. It is now widely appreciated that the universal conductance fluctuations 

are intimately related to the universal statistics of finite isolated quantum systems 

whose classical analogs are chaotic [Ko-01, Ko-03, Pa-07]. In describing transport 

through these coherent systems, we are interested in quantum manifestations of clas­

sical chaos. Scattering of electrons from impurities or irregular boundaries leads to 

single particle dynamics that are mostly chaotic. RMT describes the statistical fluctu­

ations in the universal regime i.e., at energy scales below the Thouless energy E = g A, 

g is the Thouless conductance. In this universal regime RMT addresses questions
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about statistical behavior of eigenvalues and eigenfunctions rather than their indi­

vidual description. We consider a closed mesoscopic system (quantum dot or small 

metallic grain) with chaotic single particle dynamics and with large Thouless conduc­

tance g. Such a structure is described by an effective Hamiltonian which comprises 

of a mean field and two-body interactions preserving spin degree of freedom. For 

chaotic isolated mesoscopic systems, randomness of single particle energies leads 

to randomness in effective interactions that are two-body in nature. Hence it is im­

portant to invoke the ideas of embedded ensembles to understand and also predict 

properties of these systems theoretically.

A realistic Hamiltonian for mesoscopic systems conserves total spin S and there­

fore includes a mean field one-body part, (random) two-body interaction, pairing Hp 

and exchange interaction S2. In order to obtain physical interpretation of the S2 op­

erator, we consider the space exchange or the Majorana operator M that exchanges 

the spatial coordinates of the particles and leaves the spin unchanged, i.e.,

M\i,a;j,p) = \j,a;i,fi) . (3.5.1)

In Eq. (3.5.1), labels i, j and a, f5, respectively denote the spatial and spin labels. 

As the embedding algebra for EGOE(l+2) -s is U(20) =31/(0) ® SU(2) and | i, a; j, j0) = 

aa) p) I0>»we have

2M = C2 lU(m - On. (3.5.2)

InEq. (3.5.2), C2 [U(O)] = T.i,j,a,p a]a aj,a pis the quadratic Casimir invariant of 

the [/(O) group,
^2

c2 mm = n(o+2) - y - s2. 0.5.3)

Combining Eqs. (3.5.2) and (3.5.3), we have finally

M= -S2-#|-j-lj . (3.5.4)

Therefore, the interaction generated by the S2 operator is the exchange interaction 

with a number dependent term. This number dependent term becomes important 

when the particle number m changes. The H operator for isolated mesoscopic sys-
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terns in universal regime has the form (with Xp and As being positive),

{H(A0, Ab Ap, As)} = hi 1) + A0 {Vs=0(2)} + Ax {t^=1(2)| - ApHp- XsS2. (3.5.5)

The constant part arising due to charging energy Ec that depends on the number 

of fermions in the system can be easily incorporated in our model when required. 

For more details on two-body ensembles and mesoscopic systems see [Gu-98,A1-Q0a, 

Ko-01, Mi-00}. Before proceeding further, it is important to mention that, with the 

analytical formula for the propagator P(f2, m,S) given by Eq. (2.3.12), EGOE(l+2)- 

s generates odd-even staggering in gs energies and also explains preponderance of 

gs with spin 0 (ra even) for mesoscopic systems in a simple way. In other words, 

random interaction disfavor magnetized ground states; see Fig. 2.2. It is important to 

mention that even with the best available computing facilities, it is not yet feasible to 

numerically study the properties of large systems (O >> 10) modeled by EGOE(l+2)- 

s. As the minimum spin gs is favored by random interactions, the Stoner transition 

will be delayed in presence of a strong random two-body part in the Hamiltonian. 

The standard Stoner picture of ferromagnetism in itinerant systems is based on the 

competition between one-body kinetic energy [hi 1) in Eq. (3.5.5)] and the exchange 

interaction i§2). The probability P(S > 0) for the gs to be with S > 0 (for m even) is 

studied as a function of A in Eq. (3.5.5) with Xp = 0 and the results are given in Fig. 

3.5. Thus EGOE(l+2)-s also explains the strong bias for low-spin ground states and 

the delayed gs magnetization by random two-body interactions.

3.5.2 Conductance peak spacing (A2) distribution

Coulomb blockade oscillations yield detailed information about the energy and 

wavefunction statistics of mesoscopic systems. We consider a closed mesoscopic sys­

tem and study the distribution P(A2) of spacing A2 between two neighboring conduc­

tance peaks at temperatures less than the average level spacing. Also our focus is in 

the strong interaction regime (Ao = Aj = A > 0.3 in Eq. (3.5.5)] and we use fixed sp 

energies e,-. The spacing A2 between the peaks in conductance as a function of the 

gate voltage for T « A is second derivative of gs energies with respect to the number
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K
Figure 3.5: Probability P(S > 0) for ground states to have S > 0 as a function of exchange 
interaction strength As for A = 0 to 1.2 in steps of 0.15; used here is H{\, A,0, As) defined 
by Eq. (3.5.5). The calculations are for 200 member EGOE(2)-s ensemble with O = m = 8. 
Inset of figure shows the minimum exchange interaction strength As required for the ground 
states to have S> 0 with 100% probability as a function of A. It is seen from the results that 
the probability P(S > 0) for gs to have S > 0 is very small when A > As and it increases with 
increasing As- The results clearly bring out the demagnetizing effect of random interaction. 
Similar calculations have been performed in the past for smaller systems with Q = m = 6 [Ko- 
06,Ja-01],

of particles,

A2 = + E{™~1) - 2 E{™]. (3.5.6)

In Eq. (3.5.6), is the gs energyfor a m fermion system. The distribution P(A2) has

been used in the study of the distribution of conductance peak spacings in chaotic 

quantum dots [Al-05,A1-00,A1-01, Al-01a].

Let us first consider non-interacting spinless finite Fermi systems i.e., H - h( 1) 

and say the sp energies are e/; i = 1,2,..., N. Then Eq. (3.5.6) gives, by applying Pauli 

principle, A2 = em+i ~ Cm, irrespective of whether m is even or odd. For chaotic sys­

tems it is possible to consider sp energies drawn from GOE eigenvalues [Al-05, Al- 

00, Al-01, Al-01a]. Therefore P(A2) corresponds to GOE spacing distribution Pw(A2)

Q=m=8,200 members
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Figure 3.6: Figure showing A2 values for systems with spin degree of freedom. For even-odd- 
even transitions, A2 = 0 and for odd-even-odd transitions, A2 = A. See text for details.

- the Wigner distribution. However recent experiments showed that P(A2) is a Gaus­

sian in many situations [Pa-98]. This calls for inclusion of two-body interactions and 

hence the importance of EGOE(l+2) (in [Al-00,Al-01,Al-01a] this is called RIMM) in 

the study of conductance fluctuations in mesoscopic systems. It was shown by Al- 

hassid et al [A1-00,A1-01, Al-Ola] that EGOE(l+2) indeed generates Gaussian form for 

P(A2).

As discussed in Sec. 3.5.1, Hamiltonian for interacting electron systems conserves 

total spin S and thus it is important to consider sp levels that are doubly degen­

erate; i.e., spin degree of freedom should be included in H. Again, we start with 

non-interacting finite Fermi systems with sp energies e*, i = 1,2...,0 and drawn 

from a GOE; total number of sp states N = 20. In this scenario A2 depends on 

whether m is odd or even. For m odd, say m = 2k + 1, the (m - 1) fermion gs en- 

ergy E{™~1] = 2£fL1e/, E(g™} = E^~l)+ek+1 and £^+1) = E(g™~1}+ 2 ek+i resulting in 

A2 = 0. Similar analysis for even m = 2k yields A2 = ek+l -ek; note that Egf = 2 e;,

Eg1-15 = Egf - ek and 4?+1) = Eg'f + ck+i- For odd m, A2 corresponds to even-odd- 

even transition and P(A2) is a delta function. For even m, we have odd-even-odd 

transitions with P(A2) following Wigner distribution. Figure 3.6 gives a pictorial illus-
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tration for A2 calculation for systems with spin. Therefore, by applying Pauli principle 

and using Eq. (3.5.6) gives A2 = 0 for m odd and A2 = e^+i - for even m(k = m/2). 

As we need to include, for real systems, both even and odd m’s, inclusion of spin de­

gree of freedom gives bimodal distribution for P(A2),

PiA2) = i [d(A2) + Pw(A2)] . (3.5.7)

Convolution of this bimodal form with a Gaussian has been used in the analysis 

of data for quantum dots obtained for situations that correspond to weak interac­

tions [Lu-01]. This shows that spin degree of freedom and pairing correlations are 

important for mesoscopic systems. Hence, it is imperative to study P(A2) with a 

Hamiltonian that includes mean field one-body part, (random) two-body interac­

tion, exchange interaction and pairing (defined by Hp). Therefore we have carried 

out EGOE(l+2)-s calculations using the Hamiltonian given in Eq. (3.5.5) (with Ap 

and As being positive) and constructed P(A2) by combining A2 values obtained for 

both even and odd m values. Before discussing these model calculations let us men­

tion that very recently, for small metalhc grains, P(A2) results are reported in [Sc-08]. 

These authors use a H consisting of pairing and exchange interactions just as in Eq.

(3.5.5) but with sp energies of h(l) drawn from GOE and a two-body interaction that is 

a function of m. More importantly a microscopic theory is used in [Sc-08] to construct 

P(A2) at finite temperatures. When the pairing interaction is dominant (compared to 

exchange interaction), the distribution is found to be bimodal whereas the distribu­

tion becomes unimodal for strong exchange interaction. Following our discussion in 

the previous sections, here we present results for the distribution of A2 defined by Eq.

(3.5.6) with two values for m and using H defined by Eq. (3.5.5). We use fixed hi 1) 

as in the previous sections and A = 0.3. Therefore our focus is in the strong interac­

tion regime. Though our calculations are restrictive and the model is simpler, we will 

show that they reproduce all the essential features of P(A2) reported in [Sc-08].

Using 1000 member EGOE(l+2)-s with II defined by Eq. (3.5.5), gs energies are 

calculated for A = 0.3 and for various values of Ap and As by diagonalizing the Hamil­

tonian in good spin basis for O = 6 and m - 3,4,5 and 6. Then A2 is computed using 

Eq. (3.5.6) for m = 4 and 5 and combining these, normalized histograms for P(A2)
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Figure 3.7: P(A2) vs A2 for various values of the pairing strength Ap and exchange interac­
tion strength As for the EGOE(l+2)-s system defined in the text. The distributions P(A2) are 
constructed (with bin size 0.2) by combining the results for A2 with m = 4 and 5. See text for 
further details.

are constructed. Results in Fig. 3.7 show that strong pairing correlations (As = 0) give 

rise to bimodal form for P(A2) with the two modes well separated. Increasing the 

exchange interaction reduces the separation between the two parts and they overlap 

when exchange interaction is dominant and pairing is wealc. In other words, pair­

ing correlations help distinguish between m even and m odd in Eq. (3.5.6). These 

conclusions are close to the results in Fig. 1 of [Sc-08]. A qualitative understanding 

of these results follows from the centroids (A2) of P{A2) for each m generated by H„
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Figure 3.8: Average peak spacing <A2> (a) as a function of exchange interaction strength As 
for several values of pairing strength Ap and (b) as a function of Ap for several values of As, 
for a 1000 member ensemble with 0 = 6. The curves in the upper part correspond to m = 4 
(3 — 4 -► 5) and those in the lower part to m = 5 (4 — 5 -+ 6) in Eq. (3.5.6). See text for details.

and S2 terms in if. When pairing is relatively stronger (Ap » As), gs has minimum 

spin and thus v = 0(1) for m even(odd) and when pairing is weaker (As » Ap), gs has 

maximum spin (S = ml2) and thus v = m. Using the pairing eigenvalues Ep{m,v, S) 

given by Eq. (3.2.10), it is easily seen that for weak pairing, (A2) = -As/2 for both m 

even and odd and for strong pairing, (A2) = (Q + 1)AP - 3/2As and -OAp + 3/2As for 

even m and odd m, respectively. Therefore, for fixed As, spacing between the peaks 

for m = 4 and m = 5 increases with sufficiently large Ap values as seen in Fig. 3.7.

Figure 3.8(a) shows the variation of average peak spacing with exchange inter­

action strength As for several Ap values. The curves in the upper part correspond 

to m - 4 and those in the lower part to m = 5. As the exchange strength increases, 

the average peak spacing <A2> is almost same for odd-even-odd and even-odd-even 

transitions. Value of average peak spacing and its variation with As is different for 

odd-even-odd and even-odd-even transitions when pairing correlations are strong. 

The curve for fixed value of Ap can be divided into two linear regions whose slopes 

can be determined considering only exchange interactions i.e., Egs = Co - As S (S +1). 

For weak exchange interaction strength, gs spin is 0(1/2) for m even(odd) and thus
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for this linear region, <A2) I As oc -312(3/2). The linear region where exchange in­

teractions are dominant, <A2) I As <x -1/2 as gs spin is m/2. Figure 3.8(b) shows the 

variation of average peak spacing with pairing strength for several As values. It clearly 

shows that the separation between the distributions becomes larger with increasing 

Ap. These results are in good agreement with the numerically obtained results for 

the P(A2) variation as a function of Ap and As in Fig. 3.7. Thus, EGOE(l+2)-s with 

H defined in Eq. (3.5.5) explains the interplay between exchange (favoring ferromag­

netism) and pairing (favoring superconductivity) interaction in the Gaussian domain 

as expected in mesoscopic systems and can be used for investigating transport prop­

erties of mesoscopic systems.

3.6 Summary
Going beyond the results reported in Chapter 2 for the random matrix ensemble 

EGOE(l+2)-s, in the present chapter, further results are presented with focus on pair­

ing correlations. Firstly, in the space defined by EGOE(l+2)-s ensemble, pairing sym­

metry defined by the algebra 1/(20) o Sp(20) 3 S0(0)® St/s (2) is identified and some 

of its properties are discussed. Using numerical calculations it is shown that in the 

strong coupling limit, partial densities defined over pairing subspaces are close to 

Gaussian form and propagation formulas for their centroids and variances are de­

rived. As a part of understanding pairing correlations in finite Fermi systems, we have 

shown that pair transfer strength sums (used in nuclear structure) as a function of ex­

citation energy (for fixed S), a statistic for onset of chaos (used in nuclei [Ho-07]), 

follows, for low spins, the form derived for spinless fermion systems i.e., it is close 

to a ratio of Gaussians. This is demonstrated using three detailed examples. Going 

further, we have considered a quantity in terms of gs energies, giving conductance 

peak spacings in mesoscopic systems at low temperatures, and studied its distribu­

tion over EGOE (1+2) -s by including both pairing and exchange interactions. We have 

shown that the random matrix model reproduces the main results that are observed 

recently in a realistic calculation for small metallic grains. Finally, results reported in 

this chapter establish that EG0E(l+2)-s can be used as a random matrix model for 

studying pairing correlations in finite quantum systems.
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