
Chapter 4

EGUE(2)-SC/(4): Group Theoretical 

Results

4.1 Introduction
Spin-isospin SU(4) supermultiplet scheme for nuclei was introduced by Wigner [Wi- 

37] and there is good evidence for the goodness of this symmetry in some parts of the 

nuclear chart [Pa-78, Va-95, Na-01,Va-05,Ko-07a,Va-99,Va-07] and also more recently 

there is new interest in SU(4) symmetry for heavy N ~ Z nuclei [Va-95, Na-01, Va- 

05, Ko-07a]. Therefore, it is important to define and study EGE’s generated by random 

two-body interactions with SU(4) symmetry [EGUE(2)-SC/(4)]. Given m fermions 

(nucleons) in O number of sp orbitals with spin and isospin degrees of freedom, for 

SU(4) scalar Hamiltonians, the symmetry algebra is C/(4Q) 3 U(Q.) ® SU{4) and all 

the states within an SCJ(4) [but not C/CO)] irrep will be degenerate in energy. In the 

past, applying Wigner-Racah algebra of the embedding algebra C/(20) => U{Q.)®SU(2) 

some analytical results are derived for EGUE(2)-s; see Appendix C for some details. 

Going beyond the spin ensemble (discussed in Chapters 2, 3 and Appendix C), our 

purpose in the present chapter is to define EGUE(2)-Sf/(4), develop analytical for­

mulation for solving the ensemble and derive analytical formulas, for the lower or­

der moments of the one-point (density of eigenvalues) and two-point (defining level 

fluctuations) functions, for some simple class of SC/(4) irreps. In addition, analytical 

formulation developed in the chapter allows one to consider all these, numerically, 

for any SU(4) [or U{Q,)] irrep. Using these, studied are: ensemble averaged spec-
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tral variances, expectation values of the quadratic Casimir invariant of SU(4) algebra, 

four periodicity in the gs energies and lower order cross-correlations in energy cen­

troids and spectral variances generated by this ensemble. Before proceeding further, 

let us mention that a preliminary report of some of the results in this chapter is given 

in [Ma-09a] and all the details are published in the long paper [Ma-lOb].

4.2 Preliminaries of U(40) => C/(0) 0 SU(4) Algebra
Although all the results in this section are well-known [Pa-78, He-69, He-74a], we will 

discuss these here for completeness and also for introducing various quantities and 

notations used in the reminder of the chapter*.

4.2.1 Generators of U(O) and SU{4) algebras

Let us begin with m fermions distributed in 40 number of sp states. Then the spec­

trum generating algebra is U(40). Associating two quantum numbers i (/-space) and 

a (a-space) to each sp state, the sp states are denoted by \i,a), where i = 1,2, ...,0 

and a = 1,2,3,4. In nuclear applications, the i-space corresponds to the orbital space 

and the a-space corresponds to the spin(s)-isospin(t) space, then |a) = |ms,mt) = 

\\>\), 1^,-5), |-|,|) and [respectively. From now on in this section we will 

present results both in single state representation defined by | i, a) states and also 

in the spin-isospin representation defined by |i;s = ms;t = |, mt) states. For the 

EGUE(2)-St/(4) ensemble, the former will suffice. However the later (spin-isospin) 

representation is useful for understanding the physical relevance of the ensemble. In 

the single state representation, the (40)2 number of operators Qa-,ip generate U(40) 

algebra and with respect to this algebra, all the m fermion states transform as the ir- 
rep {lm}. In terms of the creation operators a\a and the annihilation operators aj^, 

the generators Qa;jp and their commutation relations are,

Ciorjp — a\aaj,P > [Cia;jp>Cka';lp'] = Cia\ip'$jk$pa' ~~ Cka'ijpSliSp<a . (4.2.1)

It is possible to define commuting unitary transformations in the i-space and a- 

space separately and then we have U(Q) and U(4) algebras describing unitary trans- 

aWe use different notations in this chapter for mathematical ease
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formations in the two respective spaces. With this we have the direct product group- 

subgroup structure C/(40) 3 U (£2) ® 1/(4). We can easily write the generators Atj and 

Bap for the t/(O) and C/(4) algebras, respectively, using the fact that the generators of 

C/(Q) are scalars in a-space and similarly the 17(4) generators in the /-space,

4 a
Aij = Cia;ja > Baft = ^ ^ia;ip • (4.2.2)

a~l i-1

Their commutation relations can be derived using Eq. (4.2.1) by summing over the 

appropriate indices,

[Atj, Aid] — AiiSjic AfcjSu , 

[Baf}>Ba’p'\ = Bapi6paf — Ba’pSapi.
(4.2.3)

Also the A’s commute with the B’s. Instead of 1/(4), it is possible to consider SC/(4) by 

making the generators B’s traceless [see Eq. (4.2.11) ahead].

In the orbital x spin-isospin realization of the C/(4D) 3 U(Q) ® SC/(4) algebra, 

SC/(4) corresponds to the Wigner’s supermultiplet algebra [Wi-37]. In this physically 

relevant spin-isospin representation, the SU(4) generators can be written in terms of 

the one-body operators ^ where,

K *,r
morn's),

ms-ms | s/is ) ( -mt-mt | ) a

(4.2.4)

Note that a},_w. The operators generate

C/(40) algebra. Similarly, the operators (O2 in number) and Li •s^’fRs (16 in 

number) generate the C/(Q) and C/(4) algebras, respectively. The 16 generators of C/(4) 

can be written in terms of the number operator n, the three spin generators S*, the 

three isospin generators and the nine components (or)*’^, of the Gamow-Teller 

operator at. Dropping the number operator, we obtain the SU(4) algebra. Given a 

one-body operator <8, it can be expressed in terms of the creation and annihilation
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operators,

Starting with Eq. (4.2.5), applying the angular-momentum algebra [Ed-74] and using 

Eq. (4.2.4), will give [Ko-06b]

n

T1

21L /;0,0 ’ >

i i

Linin’
(4.2.6)

Commutation relations for the SU(4) generators in the spin-isospin (sometimes 

called spherical) representation are,

'pi 'rl i/j.) V2 <1//!^! 1 // + //') ^,,

SL ltrr))'},j, •\/2 <l/llju'[ 1/1 + //') (or)*’*

-V2 (l/ilju"I 1/1 + ju") (OT)^+^, ,

(4.2.7)

= V2 (-1)W+1 <l/i2l/J4l lju2 + M4> <W3 7j2+M4

+ n/2 (-l)/i2+1 <1 /*! 1 /13 I 1 fH + Ms) <Wm4 SJ
+1+M3

Now we will consider the quadratic Casimir invariants (C2) of 1/(0) and St/(4) and 

their physical interpretation. However we will not consider here the cubic (C3) and 

quartic (C4) invariants of SU(4) although they are needed for some purposes as dis­

cussed ahead; see for example [Pa-78] for C3 and C4 operators.
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4.2.2 Quadratic Casimir operators of U (O) and S U(4) and the Majo- 

rana operator

In the | i, a) representation it is easy to write down the quadratic Casimir invariant of 

U( 4),

Qj l.U(4)] = Y, = in + Y, • (4.2.8)
a,p

The operator C2 [1/(4)] commutes with the generators Ba>p or equivalently with ft, S*, 

Tl and (or)*;*.. Just as C2 [1/(4)], the quadratic Casimir invariant of (7(0) is,

C2[U {n)] = Yj At i Aji^hD.- Y al cta] Bai>«ahp • (4-2.9)
*.J hj,a,p

Combining Eqs. (4.2.8) and (4.2.9) we have

C2 [(7(0)] + C2 [(7(4)] = n (O + 4) . (4.2.10)

It is also easy to see that the C2 [S(7(4)] can be written in terms of C2 [(7(4)] and 

C2[(7(0)],

C2[SC/(4)] =
a,p

Tr(B) Sa.fi, Tl(B)=YBa,a

= c2im 4)]
n (4.2.11)

C2[(7(0)]-n(0 + 4) + ^- 
4

In the angular-momentum coupled representation, C2 [S(7(4)] = S2 + TZ + (err) ■ (err). 

In order to obtain a physical interpretation for C2 [S(7(4)]> we will consider the space 

exchange or the Majorana operator M, with strength k, that exchanges the spatial 

coordinates of the particles (the index i) and leaves the index a (equivalently spin- 

isospin quantum numbers) unchanged. Then [Pa-78],

M\i,a-,j,p) = K\j,a-,i,p) (4.2.12)
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As | i, a; j,fi) = |G), Eq. (4.2.12) gives, with k a constant,

(4.2.13)

|{C2[D(Q)]-£M}.

Eqs. (4.2.11) and (4.2.13) allow us to write the M operator in terms of C2 [Sf/(4)). 

Then, we have

Using Eq. (4.2.14) one can identify the St/(4) [or U(4)] irrep for gs, assuming that the 

Hamiltonian is represented by the Majorana operator. Towards this end, now we will 

consider the SU(4) and t/(0) irreps and the reduction of the SU(4) irreps to (S, T).

4.2.3 St/(4) and £7(0) irreps and identification of the ground state

With m fermions in 40 sp states, we can decompose the basis space with dimension 
(^) into irreps of U{4) [or SU{4)] and t/(O) and further the U{4) irreps into (S, T). 

Firstly, the U{4) irreps are represented by the Young tableaux (see Fig. 4.2) or the 

partitions {F},

Note that Fa are the eigenvalues of Baa defined in Eq. (4.2.2). As the total m-particle 

wavefunctions are antisymmetric, the U (O) irreps {/} are uniquely defined by {F} and 

{/} = {F} (alternatively {F} = {/}) which is obtained by changing rows to columns in 

the Young tableaux {F}; see for example [Pa-78, Wy-70, Ha-62]. Due to this symmetry 

constraint, Fj < O, j = 1,2,3,4 and ft < 4, i = 1,2,...,Q. Given the U{4) irrep {F}, the 

corresponding SU{4) irrep {F'}, which is three rowed Young tableaux, can be defined

(4.2.14)

£7(0) or S£7(4) irreps

4
{F} = [Fi,F2,F3,F4} , Fi >F2 >F3 >Fj >0, m='*£dFi' (4.2.15)
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by

{F'} = (F{, F^, F'} = {Fi - F4,Fz - Fa,F3-F4}. (4.2.16)

The {F} -* (S, T) reductions can be obtained using group theoretical methods [Wy- 

70, Ha-62]. Alternatively a physically intuitive procedure, easy to implement on a 

machine, is as follows. First, the {F} -» (S,T) reductions for a symmetric 17(4) ir- 

rep {F} = {Fi, 0,0,0} can be obtained by distributing m = F\ identical bosons in the 

four spin-isospin orbitals labeled by | msmt). From these distributions, the Sz and Tz 

eigenvalues Ms = Z; m2(ms)2 and Mj = Z2 m2(mf)2 and the corresponding degen­

eracies d{m: Ms, Mr) follow easily. Here m2- are the number of bosons in the zth orbit 

with ms = (ms)2 and mt = (rat)2. Let us denote the number of times (S, T) appears 

in a given {F} by D{{F] :S,T). It is easy to see that D{{m, 0,0,0}: S, T) is given by the 

double difference,

£>({m, 0,0,0}: S, T) = d(m :Ms = S,Mt = T)~ d{m :Ms = S,Mr = T +1)

-d(m:Ms = S+1,MT = T) + d{m: Ms = S +1,Mr =T+1).

Carrying out this exercise on a machine for many m values, we obtain the following 

(well known in literature) general result,

It is important to note that here D({m,0,0,0}: S,T) = 1 for all allowed (S, T) values 

(i.e., multiplicity is unity). The reductions for a general 1/(4) irrep {F} = {Fi,F2,F3,F4} 

follow by writing {F} as a determinant involving only totally symmetric irreps with the 

multiplication of the elements in the determinant replaced by outer products. Then 

we have [Wy-70, Ja-81]

{F} = \&ij \ , &fJ = {Ft + j-i, 0,0,0}; {0} = 1, {-X, 0,0,0} = 0. (4.2.19)

Substituting the dimensions for symmetric irreps in the above determinant gives the

(4.2.17)

„ tm m\ im m \{m, 0,0,0} - (S, T) = (y, —), [j -1, — -1),..., (0,0) or (4.2.18)
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dimension formula for 17(4) irreps,

(km) = \dij\, dij =
(Fi + j-i + 3)

(4.2.20)

Also the corresponding (S, T) values and their multiplicities can be obtained by sub­

stituting the (S, T) values for *U in the determinant in Eq. (4.2.19) and evalu­

ating the determinant by applying angular-momentum coupling rules. Note that 

di(.{F}) = Es,r(2S +1) (2T + 1)D({F} :S,T). In carrying out the algebra we can exploit 

the equivalence between SU(4) and 17(4) irreps and employ just 3 rowed 17(4) irreps. 

This procedure is used in constructing Tables 4.1 and 4.2. For a realistic system such 

as the atomic nucleus, given the O value and the number of valence nucleons m, we 

can enumerate all the allowed f7(4) or SU(4) irreps using Eqs. (4.2.15) and (4.2.16). 

Table 4.1 gives all the possible 17(4) irreps for O = 10 and m- 0-6 along with their 

spin-isospin structure.

Assuming that the Majorana operator is the Hamiltonian with k in Eq. (4.2.14) 

negative, we can identify the S17(4) irreps labeling gs as follows. Using the formulas 

for the eigenvalues of C2 [17(4)] and C2 [17(0)],

Q
<c2 mm™ = Lw*+5-20, <c2 [um){f] = £/<(/*+g+1 -2/), (4.2.21)

i-1 2=1

and applying Eq. (4.2.14), we can order the S17(4) irreps. For physical systems, gener­

ally, the 17(0) (spatial) irrep for the ground states should be the most symmetric one. 

The symmetric irrep, as seen from Eq. (4.2.21), will have the largest eigenvalue for 

C2 [17(0)]. From Eqs. (4.2.13) and (4.2.14), then it follows that the Sf7(4) irrep for gs 

should be the one with the lowest eigenvalue for C2 [S17(4)] and these eigenvalues can 

be obtained by combining Eq. (4.2.11) with Eq. (4.2.21). Now, for a given (m, Tz) with 

T = \TZ\ and Tz = (N-Z) 12 for a nucleus with N neutrons and Z protons, enumerating 

{F} — (S, T) reductions, we can determine the 17(4) irreps labeling gs, by applying Eq. 

(4.2.14) with k negative. In Table 4.2,17(4) and 17(0) irreps for gs are listed for O = 10 

and m = 4 -11 for all Tz values. As it is well known and also seen from Table 4.2, for 

the Majorana operator or equivalently for the SU(4) invariant Hamiltonians, for N=Z 

even-even (m = 4r), N=Z odd-odd (m = 4r+ 2) andN=Z±l (m = 4r ± 1) odd-A nuclei,
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Table 4.1; m-+{F}-+ (S, T) reductions for £1 = 10 and m - 0 - 6. In the table, r in (S, T)r gives 
the multiplicity of the irrep (S, T).

m {Fi,F2,F3,F4} (S,T)

0 10,0,0,0} (0,0)
1 11,0,0,0} fl I)

^2’ 2}

2 11,1,0,0} (1,0), (0,1)
12,0,0,0} (1,1), (0,0)

3 11,1,1,0}
12,1,0,0}
13,0,0,0}

a i)
(3 I) (T 1) (1 1}
*■2’ 2’’ '-2’ 2)a2’ 2j 

(•3 3-, a 1a '■2’ 2hv2' 2J
4 11,1,1,1} (0,0)

12,1,1,0} (1,1),(1,0),(0,1)
12,2,0,0} (2,0),(1,1),(0,2),(0,0)
13,1,0,0} (2,1),(1,2),(1,1),(1,0), (0,1)
14,0,0,0} (2,2),(1,1),(0,0)

5 12,1,1,1}
12,2,1,0}
13,1,1,0}
13.2.0. 0}
14.1.0. 0}
15.0. 0.0}

rl It(31j (r I) (i i}
'■2' 2h '•2’ 2-'A2’ 2‘(3 3a ,3 U A 3a fl 1a2h k2’ 2iA2’ 2h (2’2J 

r5 1a f3 3a (5 Ta /I 3a ft 3a fl 1a

I’l' I'i ’ i’l ' 5’Oi ' !'?^2’2^’ ^2’ 2^’^2’ 2)’ ^2’ 2^2' 2^’ ^2' 2)

^2'2^' ^■2,2^’^2,2^
6 12,2,1,1} (1,0),(0,1)

12,2,2,0} (1,1),(0,0)
13,1,1,1} (1,1), (0,0)
13,2,1,0} (2,1),(2,0),(1,2), (1, l)z,(l,0),(0,2),(0,1)
13,3,0,0} (3,0),(2,1),(1,2), (1,0),(0,3),(0,1)
14,1,1,0} (2,2),(2,1),(1,2), (1,1),(1,0),(0,1)
14,2,0,0} (3,1),(2,2),(2,1), (2,0),(1,3),(1,2),(1, l)z,(0,2) ,(0,0)
15,1,0,0} (3,2),(2,3),(2,2), (2,1),(1,2),(1,1),(1,0), (0,1)
16,0,0,0} (3,3),(2,2),(1,1), (0,0)

the 17(0) irreps for the gs, with lowest T, are {4r}, {4r,2}, {4r, 1} and {4r,3} with spin- 

isospin structure (see Table 4.1) being (0,0), (1,0) © (0,1), (|, |) and (g, |), respectively. 

For convenience, we introduce the notation {/^f}} where

{fin'} = {4r,p}; m = 4r + p and p = mod(m,4) (4.2.22)

and this is used in the reminder of the chapter. We shall see ahead that for the special 

17(0) irreps in Eq. (4.2.22), analytical formulas are much simpler than for a general 

1/(0) irrep.
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Having described some of the essential properties of the (7(Q) ® SU(4) algebra, 

now we will introduce the EGUE(2)-St/(4) random matrix ensemble and analyze in 

some detail its properties. From now on we denote the irreps {/} and {F} as / and F, 

respectively when there is no confusion.

4.3 Definition and Basic Properties of EGUE(2)-SLT(4)

4.3.1 Definition of EGUE(2)-St/(4)

Let us begin with the normalized two-particle states \f2V2-,F2P2) where the U{ 4) ir­

reps F2 = {l2} and {2} and the corresponding (7(Q) irreps f2 are {2} (symmetric) and 

{l2} (antisymmetric), respectively. Similarly v2 are the additional quantum numbers 

that belong to f2 and p2 belong to Fz. As f2 uniquely defines F2, from now on we will 

drop F2 unless they are explicitly needed and also we will use the f2 ** F2 equivalence

Table 4.2: U(4) and (7(0) irreps Fm and fm, respectively, with the smallest value for 
(C2[S(/(4)]>for a given (m, Tz) value in the (2pl/)-shell [O = 10]. For the results in the 
Table, isospin T = \TZ\.
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whenever needed. With A^ifzv2fi2) and A{f2v2fi2) denoting creation and annihila­

tion operators for the normalized two-particle states, a general two-body Hamilto­

nian operator H that is SU{4) scalar can be written as

H = H{z] + H[j2j = £ Hhvivf{2) AHf2v{p2)A{f2v[p2) • (4.3.1)
h,vl4,fc-j2=miz}

In Eq. (4.3.1), the two-body matrix elements H^yt y/(2) = (f2v{$z I H | f2vl2^zj are 

independent of the /Vs. The uniform summation over in Eq. (4.3.1) ensures that 

H is SU(4) scalar and therefore it will not connect states with different f2’s. However, 

H is not a SC/(4) invariant operator. Just as the two-particle states, we can denote the 

m-particle states by fm Vmfirn)’ Fm = fm. Action of H on these states generates states 
that are degenerate with respect to but not v{n. Therefore for a given fm, there will

be da{fm) number of levels each with d^{fm) number of degenerate states. Formula 

for the dimension daifm) is [Wy-70],

/j -//+/- I
daifm) = II .---- , (4-3.2)

i<j ii J-*

where, fm = {fi.fz,---}- Equation (4.3.2) also gives d4(Fm) with the product ranging 

from i = 1 to 4 and replacing /) by F,-. As H is a SLC(4) scalar, the m-particle H matrix 

will be a direct sum of matrices with each of them labeled by the fm’s with dimension 

daifm). Thus
Him) = £ Hfm{rri) © . (4.3.3)

fm
Figure 4.1 shows an example for Eq. (4.3,3). As seen from Eq. (4.3.1), the H matrix in 

two-particle spaces is a direct sum of two matrices Hf2{ 2), one in the f2 = {2} space 
and the other in {l2} space. Similarly, for the 6 particle example shown in Fig. 4.1, 

there are 9 fm’s and therefore the H matrix is a direct sum of 9 matrices. It should be 

noted that the matrix elements of Hfm{rri) matrices receive contributions from both 

H{2} (2) and H{12}(2).

Embedded random matrix ensemble EGUE(2)-St/(4) for a m fermion systems 

with a fixed fm, i.e., {H/m(m)}, is generated by the ensemble of H operators given 

in Eq. (4.3.1) with Ifz) (2) and H{i 2} (2) matrices replaced by independent GUE ensem-
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{4,2}, 5 

19305
0 0 0 0 0 0 0 0

0
{4,12},9

17160
0 0 0 0 0 0 0

0 0 {4 9 
9075

0 0 0 0 0 0

0 0 0 [3,2,1}, 15 
21120

0 0 0 0 0

0 0 0 0
{3,13}, 21 

9240
0 0 0 0

0 0 0 0 0
{23}, 21 

4950
0 0 0

0 0 0 0 0 0
{22,12},25

6930
0 0

0 0 0 0 0 0 0 {2,4 33 
2310

0

0 0 0 0 0 0 0 0
{4,45

210

Figure 4.1: Direct sum matrix structure for a SU(4) scalar Hamiltonian. The example in the 
figure is for m = 6 particles in O = 10 sp orbitals. The LT(O) irreps and the corresponding 
eigenvalues for the quadratic Casimir invariant of SU(4) along with the dimensions for the 
diagonal blocks are shown in the figure. For example, for the block that corresponds to the 
irrep fm = {3,2,1}, we have {Cz [Si/(4)])^OT = 15 and da = 21120. As shown in the figure (with all 
the off-diagonal blocks having all matrix elements zero), Him) = T.fmHfm (m)© and for each 
diagonal block, we have a EGUE(2) -S£/(4) matrix ensemble labeled by (m, fm).

bles of random matrices,

{Hi2)} = {Hm (2)}GUE © {HU2}(2)}gue . (4.3.4)

Random variables defining the real and imaginary parts of the matrix elements of 

IIf2 (2) are independent Gaussian variables with zero center and variance given by 

(with bar representing ensemble average),

Hj2v\vfl) Hf'v\v^ = 5hti5v\v\5vlvl (%) (4.3.5)
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Also, the independence of the {H^} (2)} and {H{12}(2)} GUE ensembles imply,

Hmv]v*S2)f \H{i2}vliiW\Q = ° for P or Q odd,

(4.3.6)
= | [%*!»!(2)]P | { [H{i2}vlvf^\Q } for P and Q even.

Action of H defined by Eq. (4.3.1) on m-particle basis states with a fixed fm, along 

withEqs. (4.3.4)-(4.3.6) generates EGUE(2)-SU(4) ensemble {Hfm(rn)}; it is labeled by 

the U{Q) irrep fm with matrix dimension dn(fm).

4.3.2 Matrix structure

For a better understanding of the size of the EGUE (2)-S (7(4) matrices and the num­

ber of independent matrix elements they contain, let us consider the example of 8 

fermions in N = 24 sp states. For spinless fermion systems, we have EGUE® with 

a two-particle GUE of dimension 276 and the number of independent variables [de­

noted by z2(0)J is 76176. These generate the m fermion EGUE® ensemble with H 

matrices of dimension d{8) = 735471. For fermions with spin symmetry, we have 

EGUE(2)-s with O = 12. This ensemble is generated by independent GUE's in two- 

particle spin s = 0 and s = 1 spaces with dimensions 78 and 66, respectively. Then 

the number of independent variables [denoted by i2®[ for this system is 10440. The 

if matrix dimensions for EGUE(2)-s ensembles for the 8 particle system with spins 

S = 0, 1, 2, 3 and 4 are d{8,S) = 70785, 113256, 51480, 9009, and 495, respectively. 

Going further, with S(7(4) symmetry we have EGUE®-S(7(4) ensembles with 0 = 6. 

These ensembles are generated by two independent GUE’s in /2 = {2} and {l2} spaces 

with dimensions 21 and 15 respectively. Then the number of independent variables 

[denoted by z2(4)] forthis system is 666. The H matrix dimensions for EGUE(2)-S(/(4) 

ensembles for the 8 particle system with fs = [22, l4}, {23,12}, {24}, [3, l5}, {3.2, l3}, 

[3,22,1}, {32, l2}, {32,2}, [4, l4}, [4,2, l2}, (4,22}, [4,3,1}, and{42} are 15,105,105,21,384, 

1050,1176,1470,315,2430,2520,4410, and 1764, respectively. Thus z2 will be consid­

erably reduced as the symmetry increases (with fixed N), i.e., i2(4) « z2® « z2(0). 

Similarly the H matrix dimensions decrease as we go from EGUE® to EGUE® -s to 

EGUE(2)-S(7(4). For further insight, let us consider the fraction of independent ma-
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trix elements J^(m,/m), for m» 2 for the EGUE(2)-St/(4) ensemble, defined as the 

ratio of h (4) to the total number (without counting the hermitian conjugates) of ma­

trix elements,
i-i (4)^(m,/m) = Ay (4.3.7)

Idaifm)]2

Similarly, for EGUE(2) and EGUE(2)-s ensembles, we can define the fraction of in­

dependent matrix elements as J’im) = i2(0)/[d(m)]2 and J^(m,S) = i2(2)/[d(m,S)]2, 

respectively. In our above example, for EGUB(2), EGUE(2)-s with S = 0 and EGUE(2)- 

SU{4) with /b = {42}, we have J - 1.4 x 10~7,2 x 10“6, and 2 x 10“4, respectively. There­

fore the H matrices with more symmetry are characterized by relatively large fraction 

of independent matrix elements.

Due to the two-body selection rules, many of the m-particle matrix elements of 

the EGUE(2) 's will be zero. In order to understand the sparse nature of the EGUE ma­

trices we employ the sparsity index S with S_1 defined as the ratio of number of m- 

particle states that are directly coupled by the two-body interaction to the m-particle 

matrix dimension. The number of many-particle states that are coupled by the two- 

body interaction, i.e., the connectivity factor K{m,fm), is given by the spectral vari­

ances; see Chapter 2 and LJa-97]. Therefore, for the EGUE(2)-SL/(4) ensemble,

__i, j. . K(m,fm) ,. „
S im,fm) = •■■•••• . (4.3.8)

da(fm)

Similarly, S-1(m) = K{m)Id{m) for EGUE(2) and S_1(m,S) = K{m,S)/d(m,S) for 

EGUE(2)-s. Formulas for the K(m) and K(m,S) are given in ( [Fl-96], [Ko-05]) and 

([Ko-07], Chapter 2), respectively. For EGUE(2)-S(7(4), given the two-particle vari­

ances to be = X2, the variances in m-particle space are <r2(rn,/m) =

X2;Kim, fm) with K(m, fm) propagating the two-particle variances to m-particle spaces. 

Results in Table 4.6 ahead give formulas for the variance propagator K(m, fm) for the 
U(O) irreps/^fJ. For example, K(m = 4r,/m = {4r}) = r(0-r+4){2r(20-2r + 9) - 0-8}, 

and K{m = 4r + l,fm = {4r, 1}) = r(Q - r + 4) {4r(2Q - 2r + 7) + 2Q -15} 12. For the 

8 particle example (with N = 24) considered before, the connectivity factors K are 

4284, 1440, and 864, respectively for EGUE(2), EGUE(2)-s with S = 0 and EGUE(2)- 

SU{4) with /a = {42}. These give S_1 = 5.8 x 10-3,0.02, and 0.49, respectively for these
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ensembles. Therefore as symmetry increases, in general, the many-particle EGUE 

matrices will become more dense. Consequences of this will be discussed further in 

Section 4.7.

4.3.3 Matrix construction

Before proceeding to the analytical formulation, we will briefly outline a method for 

numerical construction of EGUE(2)-Sf/(4) ensemble for a given (O, m,fm). Consider 

m fermions in O number of sp orbitals each four-fold degenerate. Then in the spin- 

isospin representation, the sp states are denoted by | i; ms; |, mt) as discussed be­

fore, where i = 1,2,..., Q. We arrange the sp states in such a way that the first O states 

have (ms, mt) = (|, g), Q + 1 to 20 sp states have (ms, mt) = (|, -|), 20 +1 to 30 sp 

states have (ms, mt) = (-|, |) and 30 +1 to 40 sp states have (ms, mt) = (-§> -f )• In 

this single state representation we denote the sp states as |fcr), r = 1,2...,40. Now 

distributing in all possible ways the m fermions in these 40 sp states will generate 

the m-particle configurations m = [m(fci), mik-i), .... mik^a)], with m(fcr) = 0 or 1 

and m{kr) = m. The corresponding (M$,Mt) values are Ms = [Efi=i m{kri) + 

Er2=n+i m(kr2) - L3rf=2n+i m^rz) - Er4=3a+i m(kr4)}l2 and Mr = E°1=1 m{kn) - 

Er2=Q+i m(kn) + L3r%2n+i W(fcr3) -Er4=3n+1 m{kr^]l2. The m-particle H matrix in 

the basis defined by m's with {M™in, M™in) = (0,0) will contain states with all (S, T) 

values for even m and similarly with {M”un, M!pin) = (|, ~) for odd m. The dimension 

of this basis space, called ®{Mfin, Mjin), is E fm da{fm) Es,r D[fm: S, T). In the {st) 

coupled representation the two-particle matrix elements of H are

{(i,j)s,ms,t,mt\H\ {k,l)s’,msi,tr,mt>) .

As the SU{4) irreps {2} -* (sf) = (11) © (00) and {l2} -* (10) © (01), it is easy to put these 

matrix elements in one to one correspondence with the two-body matrix elements 

Hf i f{2) in Eq. (4.3.1). Applying angular-momentum algebra, it is then possible 

to transform these matrix elements into two-body matrix elements (kckd\H\kakb) 

in the single state representation. Then the construction of the m-particle H matrix 

in the m-basis with (M™rt, M™in) defined above reduces to the problem of EGUE(2) 

for spinless fermion systems. The construction of EGUE (2) for spinless fermion sys-
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terns on a machine is straightforward. For instance, the dimensions of the matri­

ces 2i{Mfin = 0,Mjlin = 0) for m = 6, 8 and 12, with O = 6, are 17000, 79875, and 

263844, respectively. On the other hand, the total m-particle matrix dimensions are 

d{6) = 134596, d{8) = 735471, and d{12) = 2704156. Therefore, the m-basis formula­

tion reduces the matrix dimensions considerably.

After constructing this matrix, it is possible to generate the H matrix defined over 

a fixed fm space, for some special fm’s easily, using the C2[SLT(4)] operator as the 

projection operator; eigenvalues of [St/ (4)] will in general have degeneracies with 

respect to fm. Some of the special irreps that can be identified uniquely by C2 [SI/(4)j 

are the following: (a) for m = 4r, the irreps {4r}, {4r_1,3,1} and |4r~1,22} with eigenval­

ues 0,8, and 12, respectively; (b) for m = 4r+2, the irreps {4r,2} and {4r_1,3,2,1} with 

eigenvalues 5, and 15, respectively; (c) for m = 4r +1, the irreps {4r, 1}, {4r-1,3,2} and 

{4r“1,3, l2} with eigenvalues 3,9, and 13, respectively; and (d) for m = 4r+3, the irreps 

{4r,3}, {4r,2,1}, and {4r_1,32,1} with eigenvalues 3,9, and 13, respectively. For conve­

nience, we denote these special irreps by fm- It should be noted that belong to fm-

For the C2[Sf/(4)] operator, the m-particle matrix in the m-basis can be constructed 

by identifying the two-particle matrix elements, in single state representation, using 

Eqs. (4.2.8M4.2.11). Diagonalizing this matrix gives a direct sum of unitary matri­

ces and the unitary matrix that corresponds to a given fm can be identified from the 

eigenvalues of Cz [SI/(4)]. Applying the unitary transformation defined by this unitary 

matrix, the m-particle H matrix with (Ms, My) = (0,0) for even m [{Ms, Mr) = |)

for odd m] can be transformed to the basis with good fm- This method can be suc­

cessfully implemented on a machine for the irreps fm- Results in Section 4.2 are suf­

ficient for constructing EGUE(2)-SUr(4) for these irreps. It is important to note that 

the C'zlSUiA)} alone will not suffice to identify the matrices corresponding to all the 

fm s. To distinguish them, we need to construct the m-particie matrices for the cu­

bic and quartic Casimir invariants of Sf/(4) algebra and these are more complicated. 

Numerical investigations of EGUE(2)-Si7(4) by matrix construction are impractical 

as the dimensions @(M|*in, Mfin) are prohibitively large (even for Q = 6 and m = 6, 

@ = 17000). Therefore our focus in this chapter is in developing analytical formula­

tion for solving the EGUE(2)-5T/(4) ensemble (Secs. 4.4 and 4.5 and Appendix F) and 

using this we have carried out some numerical investigations (Secs. 4.6 and 4.7).
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4.4 U(40) 3 U(O) ® SU{4) Wigner-Racah Algebra for Solv­

ing EGUE(2)-St/(4)
Analytical solutions for EGUE(2)-Sf/(4) follow, as discussed before for EGUE(fc) and 

EGUE(2)-s (see Sec. 1.2.3 and Appendix C), from the tensorial decomposition of the 
H operator [equivalently A^A in Eq. (4.3.1)] with respect to U(Q) ® SU(4). As H is a 

St/(4) scalar, it transforms as the irrep (0} with respect to the SU(4) algebra. However 

with respect to SU(O), the tensorial characters, in the Young tableaux notation, for 
fz = {2} are Fv = {0}, {21n“2} and {42n_2} with v = 0,1, and 2, respectively. Note that 

Fv follow from the Kronecker product of the t/(Q) irreps {2} and {2a_1} as A* and A 

transform as these irreps. Similarly for fz = {l2}, Fv = {0}, {21°~2} and |221Q_4} with 

v = 0,1,2, respectively. Then we can introduce unitary tensors B’s,

B(.fzFv(x>v) =
L AHfzv[p2)A{fzvl2pz) (f2v{Tz4 I Fvwv) (f2/32/^| {0}o) , (4-41)

V‘2,vfp2

and expand H in terms of these tensor operators. In Eq. (4.4.1), {fz----- ) are SU{Q)

Wigner coefficients and (F2----- ) are SU{4) Wigner coefficients. Some properties of

the Wigner coefficients are discussed in Appendix E. Note that in Eq. (4.4.1), irreps 

fz are complex conjugate of the irreps fz [Bu-81]. For example, for the U(Q) irrep 
/ = {2r}, the irrep that corresponds to / is |2n“r}. Similarly, / = |4n-r} for / = {4r}, 

/ = {4Q“r~2,2,1} for / = {4r, 3,2} and so on. Using the orthonormal properties of the 

Wigner coefficients appearing in Eq. (4.4.1) and the action of operators A and A+ on 

the vaccum and two-particle states respectively, it can be proved that the tensors B’s 

are orthonormal with respect to the traces over fixed f2 spaces,

<<B(/2FvWv)B(/2'FX)>>/2 = 8f2f.’8FvF'vSuWv ■ (4.4.2)

Expanding H in terms of B’s will give the expansion coefficients W’s,

H= E W{fzFv(ov)B{f2Fv(ov), (4.4.3)
fltPvftov
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and they can be written in terms of the H{2) matrix elements using Eq. (4.4.2),

W{f2Fva>v) = ((HB{fzFvwv)))h

= £ )J^^)(f2vlJ4\Fva>v)Hf2V;vfm. (4.4.4)

Now the most significant result is that the W’s axe also independent Gaussian vari­

ables just as H(2}'s with ensemble averaged variances given by,

W(f2Fvo)v)W{%F'v<o'v) = Sf2fi8FvF>v8q>vQ)'v ahfd4{F2). (4.4.5)

Above result is derived using Eq. (4.3.5) and (4.4.4). As we will see ahead, Eq. (4.4.5) 

and the -space matrix elements of H as given by the Wigner-Eckart theorem

applied using SU(Q) ® St/(4) Wigner-Racah algebra, will completely solve EGUE(2)- 

Sl/(4).

Analysis of the random matrix ensemble EGUE(2)-St/(4) involves construction of 

the one-point function pm’fm (E), the ensemble averaged density of eigenvalues given 

byEq. (2.3.1)withF = fm and the two-point and other higher point functions defining 

fluctuations. The two-point function is given by,

sm,T:m',V ^ _ pm,V{E)pm',V {£') - {pm'r(£’)J > (4_4_6)

with pm,v{E) defining fixed-(m,D density of eigenvalues. The two-point function 

generates ‘self-correlations’ when m-m' and T = T' and ‘cross-correlations’ 

between states with m ^ m' and/or T / T'. For EGUE(2)-Sf/(4) ensemble, T = fm. In 

Chapter 6, T corresponds to the m-particle spin S. Therefore, for EGUE(2)-SE/(4), the 

two-point function generates self-correlations when m-m' and fm = fmi

and cross-correlations between states with m = m! and fm £ fm> and also between 

states with m m! and fm ^ fm> ■ It should be emphasized that with m = m' it is pos­

sible to have fm fmi and this should not be confused as fm = fm/ (confiision may 

arise if one substitutes the numerical value for m = m'}. Towards deriving the forms 

for the one and two-point functions (discussion of higher point functions is beyond 

the scope of the present thesis), the moment approach is adopted and the lower or-

98



der moments are analyzed. By definition, all odd moments of pm>fm(E) will vanish 

and therefore the lower order moments of interest are the ensemble averaged spec­
tral variances (H2)m’^m and the fourth moment giving the excess parameter

Tzitnjm) where,

YzimJm) (4.4.7)

Similarly the two lower order normalized bivariate moments of the two-point func­

tion are Irr, r = 1, 2 give the covariances in energy centroids and spectral variances 

respectively. The formulas for these are given by,

Zn(m,r;m',r') =
(H)mX

Z22(m,r;m',r') =
([H]z)m’T (H2)m'r 

j(fl2)m,rj |<H2>m'’r'|

(4.4.8)

with F = fm and F' = fm> for EGUE(2)-St/(4). For m = m' and fm = fmt, the In and 

I22 give the first two terms in the normal mode decomposition of the level motion in 

the ensemble [Br-81, Pa-00] and hence they are of importance. Similarly for {m = m', 

fm 7s fm0 and (m ^ m1, fm -£ fmi), the In and I22 are important as they generate 

non-zero cross-correlations that are zero if the m-particle H matrices for each fm are 

represented by independent GUE’s.

In order to derive the analytical results for the moments of the one and two-point 

functions, the basic quantity that is needed is the ensemble averaged covariance be­

tween any two m-particle matrix elements of H, i.e.,

(4.4.9)
= (fmPmvLP \H\fmFmvlmP) (fm’Fm'V^ I H| fm>Fm>V1̂ ) ■

Using the expansion given by Eq. (4.4.3) and applying Eq. (4.4.5) for the ensemble
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average of the product of two W's, H H reduces to the matrix elements of the unit 

tensors B’s.,Wigrier-Eckart theorem in Si/(Q) and SU{4) spaces will give [He-74a],

{fmFmvhfi i BifzFv(Ov) I fmFmvlmp)

: £ ifm II B(fZFv) II fm)p (^fmVmPvWv I fmvrn}

\Jdaifz)d4{fz) p
T. (fm III B{f2Fv) III fm)p I fmvm^ >

(4.4.10)

{fm ill B(fzFv) HI fm)p = £ F(m)
frn-2

^fm-2

•*tm
U (fmflfmfz > fm-2 Fy)p

mfmTlfrnfcfrn-im ’

where the summation is over the multiplicity index p and this arises as fm ® Fv gives 

in general more than once the irrep fm. In Eq. (4.4.10), F(m) = -m(m- l)/2 and 

[/(----- ) are the SU{O) Racah coefficients. Similarly, the standard double-barred ma­

trix elements (called reduced matrix elements) are changed into triple-barred matrix 

elements in Eq. (4.4.10) for convenience. The formula for the dimension dn(fm) is 

given by Eq. (4.3.2) and the dimension Jffm of fm with respect to the Sm group is [Wy-

70],
ml f] {£i~-£k) 

i<b= 1______
ei\ez\..jr\

£i- fi + r-i. (4.4.11)

Here, r denotes total number of rows in the Young tableaux for fm. Correlations gen­

erated by EGUE(2)-SU(4) between states with (m,fm) and {m!,fm>) follow from the 

covariances between the m-particle matrix elements of H. Applying Eqs. (4.4.9), 

(4.4.3), (4.4.5) and (4.4.10) in that order, the final expression for H H is,

HfmVlmvL Hfm’vimiVfrni

= £ ^77-r £ {fm 111 BifzFy) III fm) {fm, 111 B(f2Fv) III fm,) , (4.4.12)
fz,Fv,(ov daii2) P,P'

x (fmvL Fv<Dv I fmvfn)p {fm'V^ Fv0Jv | fm<VfJ)p, .
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In the following section, we will consider (^fp-)m^m and (H in
i'sS5> \ •

It is important to mention here that in evaluating these moments, th^^|gner*c9eip’ 

ficients appearing in Eq, (4.4.12) will eventually disappear due to the orthonormal

properties of these coefficients [see Eqs. (E6a) and (E6b)] and therefore the final re­

sults for these moments will involve only the St/(O) Racah coefficients given in Eq. 

(4.4.10). In Appendix F, we will consider (H4) and the algebra here is more com­

plicated giving additional Racah coefficients than in Eq. (4.4.10).

From now onwards, we drop the “hat” symbol over the H operator when there is 

no confusion.

4.5 Exact Expressions for Spectral Variances, Lower Or­

der Cross-correlations and Analytical Results for Low 

est U(Q) Irreps

4.5.1 Covariances in energy centroids <//)m, lm {II) m'^m'

Firstly the ensemble averaged energy centroid (H)m‘fm = 0 by the definition of 

EGUE(2)-SU(4) ensemble. As (H)m’I'n is the trace of H (divided by the dimension­

ality) in (m,/m) space, only Fv = {0} will generate this. Therefore for (//) (H), the 

Wigner coefficients in Eq. (4.4.12) and the ratio of the (/-coefficients in Eq. (4.4.10) 

will be unity. Then trivially,

{H)m’’fm’ F(m)F(m')

^ t-2X- (a/2) (4.5.1)

where,
pfz (rn, fm) = F(m)Y . (4.5.2)

fm-2 ^fm

Table 4.3 gives the expression for pP(m, fm) for the irreps /^f5. It is possible to derive 

Eq. (4.5.1) using the trace propagation formula for the energy centroids [Pa-78],

Ec{m,fm) = {H)mFm = Oi) +aim + a2mz + a3 <C2 [SU{ 4)]>^m
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^ Ecim, fm) ~~
3m2 + 12m-4<C2[SLT(4)])^ 2>{2}

16 '

Smz-2Qrn + A{Cz[SUm)fm (H)2,n2}
(4.5.3)

Note that <C2 [S(/(4)))^m = (C2 [1/(4)])-m2 /4 with <C2 [U{4)])fm given by Eq. (4.2.21). 

We have verified that Eq. (4.5.3) reproduces the results given in Table 4.3.

Table 4.3: pE{m,fm) for fm = f = {4r,p) and /2 = {2} and {l2}. See Eq. (4.5.2) for the 
definition of P& (m, fm).

Pf2(m,fS’5)

f(pi
Jm h = {2} /2 = {12}

m -3r(r + l) -5r(r-l)

I4M) 3r
-y(2r + 3)

{4r, 2} -(3r2 + 6r +1) -5 r2

{4r, 3} -|(r + 2)(2r + l) 5 r-TEr+u

4.5.2 Spectral variances (H2)m,fm

Writing explicitly in terms of the m-particle H matrix elements,

(fl2) E HfmVlmV2mHfmV2mVlm >
Vm.Vm

(4.5.4)

and then applying Eqs. (4.4.10) and (4.4.12) and the orthonormal properties of the 

SU(Ql) Wigner coefficients (see Appendix E) lead to

m
rn,fm

LtTF; E E (fm\\\B{f2,Fv)l\lfm)ff2 «mj2) v=0,l,2 p

% dn(f2) v=Vi,2

(4.5.5)
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The functions Bv{f2: m,fm) involve SU{O) U-coefficients and the explicit expression 

is,

■ m,fm) = [Fim)}2 £ i_^iXro(/2;/m„2,/4_2;Fv);
fm-2,frn~2 ^ ^

Xuu(f2;fm-2,f^2>Fv)= __ (4.5.6)

y. U(fm, f2, fm, fr, fm-2, Fy)p U(fm, ft, fm, fofm-2, Fv)p 

P U{fmJ2 >fm,f2> fm-2,10}) mfm, f2, fm,fF, fm_2, {0})

Tabulations for Xjju (also for Yuu defined ahead) or equivalently SU{Q,)U-coefficients, 

though in a complex form, are available in [He-74a]. However to gain insight into the 

spectral variances and the cross-correlations Zrr, we derive analytical results by re­

stricting ourselves to the physically relevant (in nuclear structure; see Section 4.2)
• Ap)irreps /WF .

Summation over the multiplicity index p appearing in Eq. (4.5.6) [alsoEq. (4.5.17) 

ahead] arises naturally in applications to physical problems as all the physically rel­

evant results should be independent of p which is a label for equivalent SU{Zl) ir- 

reps. Hecht derived formulas for the sums in Xjju (also Yuu defined ahead) in 

the context of spectral distribution methods in nuclei [He-74a]. Tabulations for 

Xuu(f2'>fm-2>fm~2>Fv) are collected in Table 4.4 and they are given in terms of the 

so-called axial distances r ij for the boxes i and j in a given Young tableaux. Given a 

Young tableaux {fm}, the axial distance t/y between the last box in row i and the last 

box in row j is T,y = f- fj+j- i, with /* being the number of boxes in the row k. The 

fm-2 irreps are obtained by removing the two-particle symmetric (f2 = {2}) or anti­

symmetric {f2 = {l2}) irreps from fm. Figure 4.2 shows all the allowed fm-2’s for the 

irreps In the figure, a and b (or c) denote the last boxes in the rows a and b (or 

c), respectively, that are to be removed from the Young tableaux {4r, p] to obtain the 

allowed fm-2 irreps for f2 = {2} and {l2}. It is seen that unlike for EGUE(2)-s studied 

in [Ko-07], for the EGUE(2)-S[/(4) ensemble we need a much wider variety of Xuu’s- 

Results in Table 4.4 (also Table 4.7) for any fm are given in terms of the following func-
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fm={4r}; f2={2}
2=[4r 2, 32}

a
b

fm={4r,1 }; f2={2} fm = [4r, 1}; f2={2},{12} fm={4r,1}; f ={12}

f„^={4r"\ 2, 1} fm_2={4r-\ 3} fra_2=£4r“2, 3\ 1}

f„={4r,2}; f2={2} 
»m-2=£4r’,22}

fm = {4r,2}; f2={2},{12} 

fm-2={4r 3, 1}

fm={4r,2}; f2={2} 
fm_2={4r}

fm = {4r,3}; f2={2} fra={4r,3}; f2={2},{12} fn1={4%3}; f2={12}

f™-2={4r,1> fm_2={4r 3,2} fm_2={4r-2,33}

Figure 4.2: Schematic representation of the Young tableaux fm = = {4r ,p] with p - 0, 1, 2
and 3. Shown are the boxes with filled squares denoted by a, b and c whose removal from the 
irrep fm generates the irreps /m_2 by action of /2 where /2 = {2} and {l2}.

tions,
n® = n (1-1 iTai),

i=\,2,...,D.;i^a,i^b

(4.5.7a)

njf = n (1-1/Tw).
i=\,2,...,Cl-,i^a,i^b
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(4.5.7b)
nfa = n (i — iijai),8=1,2„..,£W«

n" = ]1 (1-2/T ai).
i=l,2,,..,Cl;i^a

II®c) = f| (1 -UTai); a^btc. (4.5.7c)

In [He-74a], the functions IT® and II® are called na and Ilf,, respectively and some­

times this (Ila, Ilf,) notation is confusing. Further, we have introduced the functions 

n'a, II" and II®5. These and the notation II® and fl® simplify considerably the for­

mulas given by Hecht [He-74a] and therefore the results in Table 4.4 (also Table 4.7) 

are much easier to use in practice. Table 4.5 gives Taj„ II®, n®, YL'a, n" and II®5 for 
the irreps /® which are required for deriving analytical formulas for the correspond­

ing Xuuifi; fm-2, frn-2’ Fv) and also Yuuifm-2, Fv) defined ahead. Also given in

the table are obtained by simplifying Eq. (4.4.11). Combining the results
in Tables 4.4 and 4.5 and carrying out simplifications, final formulas for (H2)™®” 

are obtained and they are given in Table 4.6. In principle, the operator generating 
{Hz ) m®"* for any two or (1+2) -body H, will be a polynomial of maximum body rank 4 

in the number operator h and the quadratic, cubic and quartic invariants of the SU(4) 
algebra. The expansion coefficients in the resulting formula will involve (//2)w®m 

with m = 0 to 4 [Pa-73, Pa-72] and they can be calculated by constructing the ensem­

ble, for a fixed Q, on a computer. Using these inputs, the propagation equation can be 

used to compute spectral variances for any (m,/m). However Eqs. (4.5.5) and (4.5.6) 

give the ensemble averaged variances directly in terms of SU(O) [/-coefficients.

Table 4.4: Formulas for Xuuifz'> fm-2> fm-2’>Fv) defined in Eq. (4.5.6). Note that {f(ab)}{f{ab)} 

entries satisfy the a *-* b symmetry correctly. Similarly the entries {f{ab)}{f{ac)} are indepen­

dent office interchange as required by the Xuu function. See text for details.

tfm-2) {&_2} *w(U2};/m-2,.4_2;{2, l0"2})

f 0(0-1) U l)

2(0 2) | v T^ab)
1
- , Hhn®

( 1)1 4 )
l1 ?«Jn® of
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Table 4.4 - continued

{f(ab)}{f(ac}}
0(0-1) 1 41
2(0-2) \u^ Oj

{f(cd)}{f(ab)}
2(0-1)
(0-2)

(22, ln“4})

{f(ab)}{f(ab)}
0 [ (O-lXQ-2) (0-1)

(o-2) [ 2n®n“ 2

Jf1+ n ) +(i_1) ;ll

1 Tab hlf \ TabJnfll

{f(ab)}{f(ac)}
0(0-1) 1 2 1 ]

2(0-2) (0-1 n(abc)j

{f(cd)}{f(ab)}
o

(0-2)

{fm.2H/;_2} Xjju ({2}; fm-2 >f'm-2> la-2})

{f(ab)}{f(ab)}
0(0+1) (Tab — l)2 1 ! (Tab + lf 1 4|
2(0 + 2) \Tab(Tab+Vllf ' Tab(Tab- Dn®

if(aa)}{f(aa)}
20(0+1) f 1 1 |

(0+2) (n'fl of

{f(aa)}{f(bb)}

or
2(0 + 1)
(0 + 2)

if(aa) }{f(bc)}

{f(aa)}{f(ab)}
0(0 + 1) f (t db + 1) 1 2 |
(0 + 2) \(Tab-l)Yl{b)

{f(ab)}{f(ac)i
0(0+1) f(Tfli + l)(Tac + l) 1 4 |

2(0 + 2) ((Tab - 1) (*«c - 1) Il%c) « j

{f(ab)}{f(cd)}
2(0 + 1)
(0 + 2)

Xuu(Q}) fm~2> f'm-2’ 14,2Q_2})
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Table 4.4 - continued

{/(abMfiab)}

{f(aa)}{f(aa)}

if(aa)}{f(bb)}

or

{/(««)} {f{bc)} 

{f{aa)}{f{ab)}

{f(ab)}{f(ac)}

if(ab)}{f(cd)}

Q(Q+1) 1 2
2 |n®if + (n+iKn+23

(O 4- 2)
(Tab-1)2 1 , (Tab + if 1

■ Hr ‘
TabiTab + D iff Tab(Tab ~ D nf

Q
(Q + 2)

jl-2(Q+l)~ +1 (Q+l)(Q + 2) 1
n"

Q
(Q + 2)

Q K (Q+l)(Tflfr + l)

® + 2U (Tab-mf

Q j1_ (Q+l)(Tab+lHTM + l) 1

(Q + 2) 2{rab-mrac-l)

Q
(Q + 2)

4.5.3 Cross-correlations in energy centroids 2n(m, fm; m', fm<)

Analysis of the random matrix ensembles with various symmetries involves construc­

tion of the one-point function pm’r(E) given by Eq. (2,3.1) and the two-point and 

other higher point functions defining fluctuations. Covariances in energy centroids 

2+1 (m,fm;m',fmi) follow from Eqs. (4.4.8), (4.5.1) and (4.5.5),

2ii (m,/m;m',/OT0

LT771pfz(m>fm) Ph(m',fm') 
f2 «nl/2)

(H2) m.fm (fl2>m'.fm
1/2 (4.5.8)

For the irreps fj£\ formulas for the functions P?2 (m,fm) and the variances (H2)m'^nt 

are given in Tables 4.3 and 4.6, respectively. Table 4.4 gives X\ju required for calcu­

lating the covariances for any general fm. To gain some insight into the structure
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of In(ra,/OT;m',/TO0, we consider the dilute limit defined by O -♦ oo, r » 1 and 

r/Q-+0. Then the variance formulas in Table 4.6 take a simple form for all

<«2)m,ff o2 A; 2}
P^W^ + A2

d2}- (4.5.9)

CombiningEqs. (4.5.8) and (4.5.9), we have

4
a1

E A|P/z (m, /4P))P/2 (m', /#>)
/2 _________________________

£A|p/2(m,/if3)| jE4p/2Cm'’//?) j

(4.5.10)

Thus, Zn (m, ; m', fff) will be zero as O -> oo and there will be no cross-correlations.

However for finite O, there will be correlations between energy centroids of different 

states and some examples are discussed ahead.

Table 4.6: Ensemble averaged spectral variances (H2)m'^m for various fm = /,c(p) 
fm *

Jm (h2) m,f,(p)

{4r} 

{4r, 1}

{4r, 2}

r(0-r+ 4) A|>3 (r +1)(0 - r + 3) + A2 2}5(r - 1)(Q - r + 5)

r(0-r + 4) r o
—------------- - [Ap} {6r (O - r +1) + 90 +15}

4
+A2 2}5{2r (O - r + 5) - a - 9}

A|}l [3r4 - 6(0 + 2)r3 + (3Q2 + 60- 5)r2 

+(0 + 2)(60 + 17)r+ 0(0 + 1)]
5t*

+A22}y(0-r + 4){(0 + 4)r-r2-3}

{4r,3}
1

4
A22j3(r + 2) (O - r + 2) (2rO - 2r2 + 6r + O +1) 

+A2 2}5r (O - r + 4)(2rO - 2r2 + 6r + O -1)
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4.5.4 Cross-correlations in spectral variances S22(^, fm> mr, fm>)

Expression for Z22 (m, fm; m', fm>) given by Eq. (4.4.8) involves evaluation of

As the two-body H operator defined in Eq. (4.3.1) is a sum of H’s in two-particle 

spaces defined by /2 = {2} and {l2}, we have H{2) = H\z}{2) + H{12}(2). The Hf2’s are 

independent and the variables defining the matrix elements of IIf2 are independent 

Gaussian variables with zero center and variance given by Eq. (4.3.5). Expanding 
(H2)m’^m {II2)m and using Eqs. (4.3.5) and (4.3.6), we obtain

= <(.Hm)2)m’fm {(H{2})2)m',fm' + <(H{12])2)m’fm {{H{12})2)m'’fm'

(4.5.11)
+1{{Hm)2)m’fm| j((H{12})2)m'’/m'j + j<(%2})2)m,/m j |<(/l{2))2)m',/m' j-

Similarly, expanding } {(H2)m''^m'} gives,

= j<(H{2})2>m’/*1| |((T/i2})2>m'/-'}-

+ {((%2})2)m’/'”||<(H{2})2)m'/-'}

+ |<(iT{12})2)m’/mj- |<(H{l2))2)m'/'”j .

(4.5.12)

Using Eqs. (4.5.11) and (4.5.12) in the expression for Z22 given by Eq. (4.4.8), the 

numerator simplifies to give
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(H2)™’^ (H2)

<(«a)2)m',fm/

+ \{iH{lz})2)m’fm({H{12})2)m''fm' - {(H(12S)2)m’/m {(H{l2])2)m'’fm'

+4{HmH{l2))m’fm (HmHm)m’’fm' 

= X{2} + X{12} + 4Xri2H2}.

Then, we have

(4.5.13)

(H2) (H2)
(4.5.14)

To evaluate X{2\ and X{12}, we use Eq. (4.4.3) and carry out the ensemble averaging 

over W’s using the fact that W’s are Gaussian random variables with zero center and 

variance given by Eq. (4.4.5). Then, Eq. (4.4.10) and the sum rules for Sf/(0) Wigner 

coefficients [see Eqs. (E6a) and (E6b)] will give,

xh = r2(A/z)l2 £ IdiFy)]-1 £v{fi: m,/m)^v(/2: m'.fa). (4.5.15)
[daifz)] v=o,i,2

Similarly, we have

v A{2(A{l2}
{l2},2> da({2})dQ({l2})

(4.5.16)

x £ WCFv)]"1 i?v«lZH2}: m,fm) J?V({12}{2}: m',fm0 . 

v=0,l
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Note that i2v(/2 : m,fm) are defined in Eq. (4.5.6). The functions Rv({lz}{2}: m,fm) 

also involve SU{Q) [/-coefficients and the explicit expression for Rv is,

i?v({l2H2}: m,fm) = [F(m)]z £
fm-Z,f'm^2

Jffm-Z ^f'm-2

Sfm
Yuu(fm-2>fm--2>Fv) >

Yuuifm-tofm-vFv) =
U(fm, {1Q~2}, fm, {l2}; fm-2> Py)p t/(/m>{2Q-1},/m,{2};/^_2,Fy)p 

7 C/(/m,aQ-2},/m,{l2};/m-2,{0})[/(/m,{2Q-1},/m,{2};/);_2,{0}) '

(4.5.17)

In Yvu(/m-2< //n-2>Fv)> fm-2 comes from fm ® {ln 2} and f'm_2 comes from fm ® 

{2q_1}. In Eq. (4.5.16), the summation is over v = 0 and 1 only as v = 2 parts for 

fi = {2} and {l2} are different Here d(Fv) are dimension of the irrep Fv, and we have 

d({0}) = 1, d«21Q“2}) = Q2- 1, d({42a~2}) = Q2(D + 3)(Q- l)/4, and d({22lQ"4}) = 

n2(n - 3)(0 +1)/4. Tables for Xuuifz'< fm-2> f'm-2'>Fv) are already discussed before 

(see Table 4.4). Formulas for YuiAfm-z, fm~2’ Y’v) are tabulated in Table 4.7 and they 

also involve Tab> n®, n^, U'a, H" and n«fcc) introduced before.

Table 4.7: Formulas for Yuu(fm-2> f'm-2> Fv) defined in Eq. (4.5.17). Note that {f{ab)\ if(ab)} 
entries satisfy the a *■+ b symmetry. See text for details.

{f{ab)}{f{ab)} n
2

Yuu {fm-2, f'm-2> (2. lfl~2}) 

(02-l)|1/2[( 1| 1

(n2-4)J TflfcJn®

{ftab)}{f{ac)\

{,f(ab)}{f(aa)}

{f{ab)}{f{cc)}

or
{/(ah)H/M)}

+
r
1

—1 — Tab) lif
4_
Q

n
2

(ft2-l) 1/2

(O2 - 4)

(O2 -1) 1/2 ( 1 2]

(O2 - 4) }n® Oj

2
(Q2-!)

(C2 — 4)

1/2
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Using the results in Tables 4.4 and 4.7 and simplifying Eqs. (4.5.6) and (4.5.17), 

expressions for ^2.v{fz: m, fm) and jRv({12}{2} : m, fm) are derived for the irreps It 

is found that, with P?2 defined in Eq. (4.5.2),

^v=°(/2:

J?v=0({12}{2} : m,ff)

p/2(m,/if3)]2 ,
(4.5.18)

The final results for 3v=l,2(f2: m,/^f3) and J?V=1({12}{2}: m,/^f}) are given in Tables 

4.8 and 4.9, respectively. Formulas in these Tables are verified numerically in many 

examples by directly programming Tables 4.4 and 4.7. In the dilute limit (Q ->■ oo, 

r » 1, r/O 0), the cross term X{12^{2] will be very small compared to the di­
rect terms Xfz. Dominant contribution to Xf2 comes from i2v=2(/2 : m,/^f3) which 

has the form -~fl4P^2(m,/4P))/4 (while the other terms i.e., ^v=1(/2 : m./^f3) and 

1?V=1({12}{2}: m,/4P)) have O2 dependence). Then in the dilute limit, for the irreps 

\ simplifying the results given in Tables 4.8 and 4.9, the covariances in spectral 

variances take a simple form,

£l*pA(m,/*”)pA(m',/W) (4.5.19)
8 h

D4 | E A22P/2 (m, ff) 111 A|P/2 (rn', f%) |
As O -* oo, ^22 m',fff) -* 0 and there will be no correlations. For finite O,

there will be correlations between states with different or same (m, fm) and examples 

for these are discussed ahead.

Table 4.8: S.v{fz : m, fm) for fm = and v = 1 and 2. See Eq. (4.5.6) for the definition of i2v.

ftp)
Jm fz V iT(/2:

{4r} {2} 1
9r (r +1)2 (O - r) (O +1) (O + 4)

JL
2(0+2)

O
3r0(r + l)(0-r + l)(0-r)(0 + 4)(0 + 5)

4(0 + 2)
U2} I

25 r (r -1)2(0 - r) (O -1) (O+4)
I

2(0-2)
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Table 4.8 - continued

fm h V

2
5r0(r-l)(0 + 3)(0 + 4)(0-r)(0-r-l)

4(0-2)

W, 1} {2} 1 3r(0 + l) r 9~ J [-12(0 + 4)r3 +12(0 - 3)(O + 4)r2 
o(i2-b2j

+(3302 + 100Q -108) r + 200(0 + 4) ]

2
3jrQ•— (Q - r +1) (O + 4) [-2(0 + 5) r2 

o(12 4* 2)

{l2} 1

+2(0 - 2) (Q + 5) r + 0(30 +11) -10]
--r^2~.- [20(0 + 4) r3 -20(O2 + 50 + 4)r2

8(0-2) 1

2

+(2502 +1320 + 20) r -120(0 + 4)]

—[2(Q + 3)r3 -2(202 + 50-3)r2
8(122)

+(203 + 502 + 0 - 6)r - O3 - 6O2 +130 - 6)]

{4r,2} {2} 1 [-8(3r2 + 6r +1)2 + (3r + 4)(6r2 + 13r +1)02 
4(0 + 2) 1

2

-2(9r4 - 79 r2 - 88r - 2)0]
j ; [3(O + 4) (O + 5) r4 - 6(0 -1) (Q + 4) (Q + 5) r3 

4(0 + 2) L
+0(0 + 4) (302 + 30 - 56) r2

+(O -1) (O + 4) (6O2 + 290 +15) r

{l2} 1

+0(0-1) (0 + 2) (0 + 3)]
- ^ 2) [10(0 + 4) r3 -100(0 + 4)r2

2

+0(50 + 38) r - 30(0 + 4)]
5r0(0 + 4)(0-r-l)

------- -------------------- - [3(0 -1) - r (O - r -1)(0 + 3)]
4(0 - 2)

{4r,3} {2} 1 3(r 4" 2)(Q 41) r 9 0*?—i----- 11------ L 12 (r + 2) (2 r +1)2 - 02(12r2 + 27 r + 8)
8(0 + 2) L

2

+4(3r3 - 3r2 - 19r - 4)0]
3Q(r + 2)(0 + 4)(0-r-l) r ,( n n } 2r2(0 + 5) 2Qr(0 + 5)

8(0 + 2) ^

{l2} 1

-0(0 + 3)]
5r(0-l) , o o o----- ------- - 20(0 + 4)r3 - 20rz(O2 + 30-4)8(0-2) 1

+r(-502 +120 + 20) - 20(0 + 4)]
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Table 4.8 - continued

Ap)
Jm h ■2v(f2: m,f[v])

5r0(0 + 4)(0 - r-1)
8(0-2)

[2(0 + 3) r2 - 2r (O2 + 0-6)

-0(0-3)]

Table 4.9: Rv~l ({12}{2}: m, fm) for fm - . See Eq. (4.5.17) for the definition of Rv~l.

ftp) ______________________

{4r} -H^y^l(r2-1)(0-r)(0+4)

1n r / _1
{4r, 1} — y I4r3 (°+-4r2 (D+4) - «

-3 r(Q + 2)2 + 40 (Q + 4) ]

5 _1{4r,2} —4" y 02Z4 [-6r3(0 + 4) -30(0 + 6)

+6r2 (O - 2) (O + 4) + r (902 + 280 - 8) ]

. 15r / O2 -1 r o
{4r,3} -—(r + 2)y^2--j[-4r2(0 + 4)

+4r (O -1) (O + 4) + O2 - 4]

4.6 Numerical Results for Spectral Variances, Expecta­

tion Values of C2 [SIT(4)] and Four Periodicity in GS
Employing the analytical formulation described in Secs. 4.4 and 4.5 along with the 
results in Table 4.6 for fm = f '^] irreps and Table 4.4 for general fm irreps, numerical 

calculations are carried out for { H2)m,^m. In our examples, we have chosen 0 = 6 and 

O = 10 and they correspond to nuclear (25Id) and {2plf) shells, respectively. Results 

for spectral variances are used to analyze expectation values of C2 [S U(4) ] and the four 

periodicity in the gs energies. Conclusions from these studies are summarized at the 

end.
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4.6.1 Spectral variances

m
20 40 60 80 100

<C2[SU(4)]>

Figure 4.3: Variation of spectral widths
1/2

as a function of m with fixed fm and

similarly variation as a function of fm with fixed m. (a) Cl = 6, fm = (b) Cl = 10, fm =
(c) ST2 = 6 and m - 8 and 10, and (d) Cl = 10 and m = 12 and 14. Note that - {4r,p] where 
m-Ar + p. Similarly, instead of showing fm in (c) and (d) we have used (C2[SU(4)])fm. We 
have marked by filled symbols in (c) and (d) the irreps fm that give (S, T) = (0,0) for m-Ar 
systems and (S, T) = (1,0) © (0,1) for m = 4r + 2 systems. See text for details.

Figures 4.3(a) and (b) show variation in the spectral widths ]1/2

as a function of the particle number m with fixed fm = Notice the peaks at

m = 4r; r = 2,3...... Except for this structure, there are no other differences between

{4r} and {4r, 2} systems or equivalently between even-even and odd-odd N=Z nuclei. 

Figures 4.3(c) and (d) show variation in the spectral widths a[m,fm) as a function of
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fm with fixed m values. Results are shown for m — 8 and 10 for 0 = 6 and m- 12 

and 14 for O = 10. In the figures, we have used the physically more appropriate 

<C2 [S t/{4)] )^m label for the x- axis instead of showing fm. It is clearly seen that the vari­

ation in the spectral widths is almost linear. Considering the eigenvalue density to be 

Gaussian [extrapolating from the results known for EGUE(2), EGOE(2) and EGOE(2)- 

s] and neglecting the dimension effects, energy of the lowest state that belong to a 

given fm follows from the Jacquod and Stone prescription [Pa-08, Ja-01]. This gives

Egs(fm) - Ec(m, fm) oc -aim.fm). (4.6.1)

This follows from Eq. (4.6.4) given ahead if we restrict it to a given fm. Combin­

ing Eq. (4.6.1) with the results in Figs. 4.3(c) and (d), we can identify the irreps 

that label the gs generated by EGUE(2)-SDr(4). As cr{m,fm) vs {CziSU {4)})fm curves 

are linear, clearly EGUE(2)-St/(4) generates gs labeled by the irreps that have low­

est {CziSTJ{A)})f,H. Therefore random interactions, which are SU{4) scalar, carry the 

properties of C2[St/(4)], the St/(4) invariant or the Majorana force. In Figs. 4.3(c) 

and (d), we have marked the irreps that give (S, T) = (0,0) for m = 4r and (S, T) = 

(1,0) © (0,1) for m = 4r + 2 systems. If we restrict to these irreps, the second irrep is 

forbidden in both cases i.e., there is a gap between the lowest and next allowed irrep. 
This implies that even with random interactions we obtain gs with fm = fm • We will 

further substantiate this result by calculating the expectation values (C2 [St/(4)]}£ and 

also analyzing the four periodicity in Egs.

4.6.2 Expectation values <C2[St/(4))>£

In order to examine the extent to which random interactions with St/(4) symmetry 

carry the properties of the Majorana operator, we have studied expectation values 

(smoothed with respect to E) of the quadratic Casimir invariant of SU(4) using the 

Hamiltonian Ha,

{Ha} = C2 [S£/(4)[ + a{H}. (4.6.2)
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wherefH} is defined by Eq. (4.3.1) with A^} = A^ 2) = 1. In order to study (C2[SU (4)])E, 

we decompose it in terms of <C2[SU(4)]>^m (see Eq. (3.4.6) and [Pa-78]),

Jm>fm tj?\
<C2[SC/(4)])£ = £ ..<C2[SC/(4)])^ ; (4.6.3a)

fm ' J

rm=YJCfmiE)=ZdaifMifm) . (4.6.3b)
fm fm

In Eq. (4.6.3a), (E) are partial eigenvalue densities defined over a fixed fm
space, IE) = {{8{H- E)))m,fm and Im(E) is the total eigenvalue density. Equa­

tion (4.6.3a) is exact if we remove CS, as fm (equivalently fm) label the eigenstates 

of C2[St/(4)]. For smoothed expectation values, based on the SU(4) partial densities 

that are studied within the nuclear shell-model (with 0 = 6) [Pa-73, Pa-72], we assume 

that pm,fm{E) will be close to a Gaussian (W). Numerical calculations of y2 using H 

matrix construction as discussed in Section 4.3.3 or using the analytical formulation 

discussed in Appendix F, will verify this assumption. However, at present both these 

methods are not feasible in practice. For the Hamiltonian in Eq. (4.6.2), the centroid 
of py’fm(E) is <C2[Sf/(4)]>^m and the variance is (H2)m’^m.

As an example, for O = 6 and m = 8 and 10, the expectation values are calculated 

as a function of energy for various values of a in Eq. (4.6.2) and the results are shown 

in Figs. 4.4(a) and (b). It is seen that with the increase in the strength a, fluctuations 

decrease and the staircase form for a ~ 0 turns into a smooth curve for a ac = 0.3. 

This conclusion remains same even when we consider U{Q) irreps with (S, T) = (0,0) 
for m even and (S, T) = (1,0) © (0,1) for m odd. Then the normalization for I™,fm (E) 

is dnifm) x dgs. Note that the degeneracy dgs = 1, 6, and 4, respectively for m = 4r 

(even-even nuclei), m = 4r + 2 (odd-odd nuclei) and m = 4r +1 or 4r + 3 (odd-Anu­

clei). Just as for EGOE(l+2) and EGOE(l+2)-s, it is expected that the transition point 

ac oc WK{m,fm) and the variance propagator K{m,fm), as mentioned in Section 

4.3.2, follows from the formulas in Table 4.6 for irreps and for general irreps from

Eq. (4.5.5) and Table 4.4 with A^2} = A?2} = 1. From the results in Table 4.6, for the 

irreps, it follows that in the dilute limit, -> m2Qz. Thus, ac cx 1 / m20 and

this result is same as those derived before for EGOE(l+2) and EGOE(l+2) -s; see Chap­

ter 2 for details. Therefore, with fixed m, ac = 0.3 for Q = 6 corresponds to ac ~ 0.2 for
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Figure 4.4
excitation energy for the Ha Hamiltonian ensemble defined in Eq. (4.6.2). Results are shown 
for four values of interaction strength a: (a) for m = 8 and (b) for m = 10. Note that the 
energies are zero centered with respect to the centroid e and scaled with the width a defined 
by first and second moments of the total density of states. All the results are for Q = 6. Similar 
results are obtained even when we consider, in Eq. (4.6.3b), the irreps fm that give (S, T) = 
(0,0) for m = 8 and (S, T) = (1,0) ® (0,1) for m = 10.

Q = 10. We have verified this by comparing the numerical results for F2 = 6 and 10.

Results in Figs. 4.4(a) and (b) confirm that even with random interactions that 

are SU{4) scalar, ground states have lowest value for (C2[SU [4)])E and therefore they 

carry the property of the Majorana force. Also beyond a critical strength (ac) of the 

random part in Eq. (4.6.2), expectation values will be smooth with respect to energy.

4.6.3 Four-periodicity in the ground state energies

An evidence for effective space symmetry for nuclear ground states is derived from 

the four periodicity in the gs energies Egs per particle [Pa-78]. An important question 

is: will this feature survive even in the presence of random interactions. To test this, as 

a model, we consider the Hamiltonian Ha in Eq. (4.6.2) where a is the strength of the 

random interaction with SU(4) symmetry. For the strength a - 0, H reduces to the 

quadratic Casimir invariant of the SU(4) group and this, as it is well-known, produces 

oscillations in Egs (m)lm with minima at m = 4r (this is called four periodicity) as 

seen clearly from Fig. 4.5. When the strength a is non-zero, for given number of 

particles m, all the irreps fm, with (S, T) = (0,0) for m = 4r, (S, T) = (1,0) © (0,1) for

{HJ=C2[SU(4)]+a{H}
Q = 6

(E-e)/a
: Expectation values of the quadratic Casimir invariant of S(/(4) as a function of

<C
2[

SU
(4

)]>
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£2= 10
1

-2

-3

-10 -

8 12 16 20

Figure 4.5: Ground state energy Egs{m) per particle m as a function of m for different values 
of the interaction strength a in Eq. (4.6.2). Results are shown for a < 0.4. The variation of 
Egs{m)lm shown in the figure brings out the four periodicity effect in the gs energies. See text 
for details.

m = 4r + 2 and (S, T) = j) for m = 4r + 1 and 4r + 3, contribute to the sum in Eq. 

(4.6.3b) in generating the total density of states. Using Eq. (4.6.3b), Egs{m) for a fixed 

m is determined numerically by inverting the integral,

1 rEgsim)
-= Zdn (/m) (E)dE. (4.6.4)
^ J —OO fJm

This is known as “Ratcliff procedure" in nuclear physics literature [Ra-71, Wo-86], We 

show in Fig. 4.5, the variation of Egs{m)l m vs m for different interaction strengths a. 

In the calculations, Q = 10 and m = 4- 20. It is clearly seen that the four periodicity 

produced by C2 [ S t/(4) ] is preserved by random Hamiltonian Ha for a < 0.2. The kinks 

in the spectral widths at m = 4r as a function of m as seen from Fig. 4.3(a) and (b) and 

similarly, their monotonic decrease with (C2[St/(4)])^m as seen from Fig. 4.3(c) and 

(d), together explain the four periodicity in the gs energies.
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Beyond a = 0.2, this structure starts disappearing as the difference A between the 

centroids, produced by C2[S(/(4)| for the lowest two irreps, becomes comparable to 

the width of the gs irrep {4r}; m = 4r. Therefore, with a regular part that is close to 

C2[S[/(4)], random interactions that are not too strong [a £ a'c ~ 0.2 in Eq. (4.6.2)] 

generate, in the Q = 10 example, ground states that are spatially symmetric. Thus, 

ac ~ a'c (see Section 4.6.2 for ac) and therefore, the region of onset of smooth be­

havior for {CzlSU (4)])-fm also marks the onset of diminishing four periodicity effect in 

the gs energies. As ac <x l/m2D, the four periodicity effect should diminish faster for 

large m and this is clearly seen from Fig. 4.5.

4.6.4 Conclusions
Thus, ensemble averaged spectral variances (H2)m^m, expectation values {C2ISU {4}})E 

and the four periodicity in Egs (m) / m discussed in Secs. 4.6.1-4.6.3 establish that ran­

dom interactions with SU{4) symmetry keep intact all the essential features of the 

Majorana force (see Section 4.8 for further discussion on the importance of this re­

sult). Therefore the EGUE(2)-S[/(4) and the corresponding EGOE (2)-SLT(4) ensemble 

should be useful in nuclear structure.

4.7 Numerical Results for Correlations in Energy Cen­

troids and Spectral Variances
Using the results in Tables 4.3, 4.6, 4.8 and 4.9 for fm = irreps and Tables 4.4 

and 4.7 for general fm irreps, the self and cross-correlations in energy centroids and 

spectral variances [i.e., In and I22 inEq. (4.4.8)] are calculated. See [Br-81,Fl-00, Pa- 

00] for a detailed discussion on the significance of self-correlations (they affect level 

motion in the ensemble) and [Pa-07, Ko-07, Ko-06] on the significance of the cross­

correlations (they will vanish for GE’s) generated by embedded ensembles. Results 

for In and I22 are discussed in Secs. 4.7.1-4.7.3 and a summary is given at the end.

4.7.1 Self-correlations

Results for self-correlations (m = m!, fm = fmi) are shown in Table 4.10 for fm = 

and fl = 6 and 10. For O = 6 we have, [In]1/2 ~ 12 - 28% and [I22]1/2 ~ 7 - 15% as
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m changes from 6 to 12. Similarly, for Q = 10 and m ranging from 12 to 20, they 

decrease to 10 - 22% for [Xu]1/2 and 4 - 9% for [X22]1/2• We can also infer from Table 

4.10 that as m increases, the self-correlations also increase. Therefore, fluctuations 

in the level motion in the ensemble increase with m and as a result the ensemble 

averages deviate from spectral averages with increasing m. This feature has been 

studied before for EGOE(2) andEGOE(2)-s [Br-81,Fl-00,Le-08].

Further significance of the magnitude of the self-correlations follows by com­

paring the results with the corresponding ones for EGUE(2) and EGUE(2)-s for 

fixed number of sp states (iV). Using the analytical formulas given in [Ko-05] for 

EGUE©, [In(m, m)]1/2 and [Z22 (m,ra)]1/2 are calculated for various values of m 

with N - 24 and 40 and the results are shown in third and sixth columns of Table 

4.10. Similarly, using the formulas in [Ko-07] for EGUE©-s, [In(m, S;m,S)]1/2 and 

[Z22(m,S;m,S)]1/2 with S = 0 for even m and S =112 for odd m are calculated for 

various values of m with N = 24 (Q = 12) and 40 (D = 20) and the results are shown 

in fourth and seventh columns of Table 4.10. It is seen from Table 4.10 that the mag­

nitude of the covariances in energy centroids and spectral variances increases by a 

factor 3 when we go from EGUE© — EGUE(2)-s — EGUE(2)-St/(4).

As discussed in Section 4.3, the fraction of independent matrix elements J in­

creases with symmetry and also the sparsity (S) decreases and therefore the EGUE© - 

SU(4) matrices will be dense leading to a more complete mixing of the basis states 

compared to EGUE© and EGUE© -s. Therefore there is a correlation between (i) in­

crease in fluctuations defined by In and Z22 and (ii) the matrices IIfm (m) becoming 

more dense as we go from EGUE© -* EGUE(2)-s ->• EGUE©-SU(4). See Section 4.8 

for further discussion.

4.7.2 Cross-correlations

Results for cross-correlations in energy centroids 2n(m,/miand spectral 

variances X22(m,/m; with fm = as a function of m and m' are shown in

Fig. 4.6 for both Q = 6 and 10. It is seen that [Znl1/2 and [L22]112 increase almost 

linearly with m. At m = 4r, r = 2,3,... there is a slight dip in [Zn]1/2 as well as in 

[I22]1/2. For Q = 6 we have, [Xu]1/2 ~ 10 - 24% and [X22]1/2 ~ 6 - 12%. Similarly, for 

O = 10 these decrease to 5-16% for [Xu]1/2 and 2-6% for [Z22]1/2• The decrease in X’s
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m'

Figure 4.6: Self and cross-correlations in energy centroids and spectral variances as a function 
of m and m! (with fixed fm and fm0 for D. = 6 and = 10 examples: (a) [lii(m,/m;m',/m0]1/2 
for F2 = 6; (b) [l22(m,/m;1/2 for fi = 6; (c) [in(m, fm;m', fm’)]112 for Q = 10; (d) 
[l22(m,/m; for D. = 10. Results in the figure are for fm = and fm< = See
text for details.

with increasing Cl is in agreement with the results obtained for EGOE(2) for spinless 

fermions and EGOE(2)-s. Similarly, the covariances in spectral variances are always 

smaller compared to those for energy centroids.

Figures 4.7(a) and (b) show cross-correlations in energy centroids In and spectral 

variances Z22 as a function of fm and fmi with fixed m = m!. Results are shown for the 

first, second and fourth lowest U(Q) irreps, ordered according to (C2[Sf/(4)])^m, with 

all other fm's for m = 8 and 10 with E2 = 6. The correlations grow with increase in 

<C2[Sf/(4)])-'m. It is important to note that there is no correlation between variation
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= X 2 ^ {1 } = 1
0.30

0.25

0.20

0.15

0.10

0.05

(a) <C2[SU(4)]>

(b) <C2[SU(4)]>
Figure 4.7: (a) Self and cross-correlations in energy centroids fm'< m', fm')]lU and
spectral variances [Z22(nt,/m; 1/2 as a function of/mand /m- (withfixedm= m'). Re­
sults are shown for the first (circle), second (star) and fourth (square) lowest U{Q.) irreps (or­
dered according to <C2[Sf/(4)])^m) with all other irreps for m = m' = 8 (red) and 10 (blue) as a 
function of <C2[Sf/(4)])^m. (b) Dimension d^ifm) for m = 8, 10 vs the eigenvalue of C2[SC/(4)] 
in the corresponding Sf/(4) irrep. Note that for a given value of the eigenvalue of C2[Sf/(4)] in 
some cases there are more than one fm with the same eigenvalue. All results are for D = 6.

in covariances with the variation in the fm dimensions; see Figs. 4.7(a) and (b).

The increase in the cross-correlations with m! for fixed fm and similar increase 

with (C2[Sf/(4)])fm with fixed m, seen from Figs. 4.6 and 4.7, could possibly be 

exploited in deriving experimental signatures for cross-correlations. Note that the 

cross-correlations will be zero if we replace EGUE by GUE for Hfm (m) matrix.
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Figure 4.8: (a) Variation of spectral widths <r{m,fm) as a function of m with fm = (b)
Variation of spectral widths as a function of <C2[Sf/(4)])^m for m = 8 and 10. In (c), results 
are shown for the covariances in energy centroids [Zn]1'2 and spectral variances [Z.22V12 for 
some values of m and m' with fm = and fm' = fff. For the calculations in (a), £2 = 10 
and for (b) and (c), Q = 6. Note that in the figures A22( = 8/3, A2l2[ = 0 is denoted as ‘{2}’ and 
similarly A22( = 0, A2 2( = 8/5 is denoted as ‘f 12}’■ See text for details.

4.7.3 Results for X2{2] ^ A^2}

All the discussion in the Secs. 4.6, 4.7.1, and 4.7.2 is restricted to A2l2) = A22), i.e., 

for equal strengths for the symmetric and anti-symmetric parts of the interaction. 

For completeness, we have studied the variation of widths and covariances when 

Apq ^ by fixing the value for the ensemble averaged two-particle spectral vari-
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ance crzHm&) to a constant and then varying Ag} (or equivalently A{12}). The two- 

particle spectral variance for O » 1 is <J2Hm (2) = fl2[3A22} +5A22}]/16. Therefore 

calculations are carried out with the constraint [3A22} + 5A2 2}] = 8A2. All our previ­

ous results correspond to A22} = A2 2} = A2 = 1, Now we will discuss some results for 

the extreme cases: (i) A22} = 0, A22} = 8/3 (denoted by {2} in Fig. 4.8 and this corre­

sponds to H- H{2}) and (ii) A2i2j = 8/5, A22} = 0 (denoted by {l2} in Fig. 4.8 and this 

corresponds to H = H^). Figure 4.8(a) shows that the spectral widths have peaks 

at m = 4r and m = 4r +1 for H{2\ and 2}, respectively. The peak for /%} is much 

larger and for it appears at a wrong place when compared to the results shown 

in Fig. 4.3 for H = H{2\ © 1%2}. Similarly, it is seen from Fig. 4.8(b) that the variation in 

the spectral widths a(m, fm) = [ ]1/2 as a function of fm show more fluctu­

ations as compared to a good linear behavior for A2l2} = A22}. Figure 4.8(c) shows self 

and cross-correlations 2]1(w,/m;m,,/mi) and I22{m,fm;m'rfmi) with/m = as a 

function of m and m'. Results for Hg} and H{12} show more fluctuations and more 

importantly, the magnitude of correlations for H\2] is much larger and for F/{12, some­

what smaller compared to the results for H = H{2\ © H^. From this exercise, we can 

conclude that the results for spectral widths and lower order correlations will deviate 

strongly from those reported in Secs. 4.6 and 4.7 (A2i2j = A22} = A2) when A2 2} differs 

significantly from A22}.

4.7.4 Conclusions

Increase in the magnitude of self-correlations in energy centroids and spectral vari­

ances, defined by In and Z22 and the matrices becoming more dense as

we go from EGUE(2) — EGUE(2)-s — EGUE(2)-S(/(4) is an important result that de­

serves more investigation. The cross-correlations increase with m! for fixed fm and 

also with <C2[SDr(4)])jF"! with fixed m. For A22} ^ A2l2}, results for spectral widths and 

lower order correlations will deviate strongly from those with A22} = A2l2} only when 

A22[ differs significantly from A22}.

4.8 Summary
We have introduced in this chapter a new embedded ensemble, EGUE(2)-S(7(4), and 

it is defined for two-body Hamiltonians preserving SU{4) symmetry for a system of
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m fermions in Q number of levels each four-fold degenerate. We have developed, for 

this ensemble, an analytical formulation based on the Wigner-Racah algebra of the 

embedding U{Q.)®SU(4) algebra. Explicit formulas are derived for spectral variances 

and covariances in energy centroids and spectral variances for U (£2) irreps of the type 
fm^ - Wr, p), p = 0,1,2 and 3. Results in Tables 4.3,4.6,4.8 and 4.9 allow one to calcu­

late these for any m and O. For general [7(D) irreps fm> the analytical formulation in 

Secs. 4.3-4.S and the formulas in the Tables 4.4 and 4.7 (obtained by simplifying the 

tabulations due to Hecht [He-74a]), allows one to carry out numerical calculations 

and codes for the same are developed. The analytical formulas in the Tables led to 

simple expressions for the covariances in energy centroids and spectral variances in 

the dilute limit for the irreps Using the formulation in Secs. 4.3-4.S and the re­

sults in Tables 4.3-4.9, several numerical calculations are carried out and the results 

are presented in Secs. 4.6 and 4.7 and in Figs. 4.3-4.8. Main conclusions from these 

are as follows:

(i) Expectation values {C2[Sf/(4)])£ studied in Section 4.6.2 by constructing Gaussian

partial densities with centroids given by (C2[SU{4)])fm and variances given by 

{H2)m^m and similarly, the four periodicity in the gs energies studied in Sec­

tion 4.6.3, establish that random interactions with SLT(4) symmetry keep intact 

the essential features of the Majorana force. This conclusion is quite similar to 

the result derived for EGOE(2)-J (also called TBRE some times), the embedded 

ensemble with angular-momentum / symmetry. This ensemble is generated 

by (see also Sec. 7.4) random interactions that are / scalar [SO(3) scalar] and it 

is found that, for systems with even number of fermions, there is Jn - 0+ pre­

ponderance in the ground states. This feature has been investigated in many 

different ways [Zh-04,Zh-04a, Ze-04, Pa-04]. It should be noted that the SO(3) 

invariant operator is ]z and it gives (with H = Jz) J - 0 as gs, a property gener­

ated also by random interactions.

(ii) As shown in Section 4.7.1, there is increase in the magnitude of self-correlations

in energy centroids and spectral variances, defined by X \ \ and I22 in direct cor­

relation with the HfJjn) matrices becoming more dense (implying stronger 

mixing) as we gofromEGUE(2) -* EGUE(2)-s - EGUE(2)-S[/(4). Further inves-
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tigation of this feature may provide additional justification for the recent claim 

by Papenbrock and Weidenmiiller [Pa-05] that symmetries are responsible for 

chaos in nuclear shell-model spaces.

(iii) As shown in Section 4.7.2, there is a significant increase in cross-correlations 
with particle number m for a fixed U{0.) irrep fm and similarly with (C2[S[/(4)])^m 

for fixed m. This could be used as a signature for experimental detection of 

cross-correlations generated by EGUE(2)-SC/(4).

Finally, we conclude that the results presented in the present chapter represent a 

first detailed analytical study of an embedded ensemble with a non-trivial symmetry 

that is relevant in nuclear structure.
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