
Chapter 8

Hamiltonian Matrix Structure

8.1 Introduction
In Chapters 2-7, our focus is in analyzing extended embedded ensembles for iso­

lated finite interacting quantum systems. As discussed in Chapter 1, the classical 

GOE is universally regarded as the model for fluctuation properties of generic chaotic 

quantum systems. However for a complete statistical description of systems such 

as nuclei and atoms, as the interactions for these systems are two-body, as already 

emphasized in the previous chapters, EGOE is expected to be most appropriate. On 

the other hand, banded random matrix ensembles (BRME) [Wi-55, Wi-57, Ca-90, Ca- 

93, Fy-91, Fy-92] are also employed by some groups. One can infer the appropriate­

ness of GOE, BRME or EGOE representation, for describing statistical properties, by 

analyzing eigenvalue densities, strength functions, chaos measures such as informa­

tion entropy, transition strength distributions, expectation values of operators, level 

and strength fluctuations and so on [Br-81, Ko-01, Fl-99, Go-01, Go-04]. However, an 

important question is: is it possible to infer the random matrix structure by directly 

examining the Hamiltonian matrix itself.

Some of the earlier studies of GOE and EGOE structure of nuclear shell-model 

Hamiltonian matrices were due to Gervois [Ge-68], French and Wong [Fr-70, Fr- 

71a, Wo-72] and Bohigas and Flores [Bo-71]. Similarly, for atoms, they were due to 

Rosenzweig and Porter [Ro-60] and Parikh [Pa-78a]. In many of these studies, the 

matrix dimensions are quite small (in most cases they are 10-50 dimensional). More 

recently (in the 90’s) there has been renewed interest in examining Hamiltonian ma-
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trices in nuclear and atomic examples as it is now possible to construct much larger 

size matrices and more importantly, because random matrix theory has been well es­

tablished in the 80’s. For example, characteristic features, in terms of GOE and EGOE, 

of the shell-model Hamiltonian matrix of 22Na, (J71 T) = (2+0) with dimension d = 307, 

were studied by French et al [Fr-88, To-86]. Similarly, Zelevinsky et al analyzed GOE 

and BRME structure of 28Si, Un T) = (2+0) and (0+0) shell-model Hamiltonian matri­

ces, with d = 3276 and 839, respectively [Ze-96]. On the other hand, Flambaum et 

al fFl-94, Gr-95] using Is coupling studied, in terms of GOE and BRME, the structure 

of Hamiltonian matrices of Cel, J71 = 4±, with dimension d = 260 for odd parity and 

276 for even parity. Similarly, both Is and j j coupling schemes were investigated for 

Hamiltonian matrices of Cel, J* = 4±; PrI, J” = 11/2* with dimension for PrI being 

d = 887 and 737 for odd and even parities, respectively, by Cummings and collabora­

tors [Cu-01]. Going beyond these studies, our purpose in this chapter is to carry out 

a comprehensive analysis of the structure of nuclear Hamiltonian matrices, with two 

shell-model examples (22Na, 24Mg), by employing all the measures, for GOE, BRME 

and EGOE, that are introduced in the literature at various times. For comparison, we 

have employed SmI atomic example, as this appears to be, from the past analysis [An- 

03,An-05] , the best atomic example for EGOE. All the results presented in this chapter 

are published in [Ma- 10c].

8.2 Matrix Structure by Visualization
With the advances in computer graphics, it is now possible to visualize the coarse 

grained structure of the H matrices. Given the many-particle matrix elements Htj (in 

J71 T basis for nuclei and in J31 basis for atoms) one can make a plot of the squares of 

the matrix elements Iljj as a function of (i,j). In general, there are many choices for 

the indices i. Most commonly employed one for i are the basis states indices defined 

by the ordering of the basis states as used in the shell-model codes. Note that the 

Hamiltonian operator is one plus two body, i.e., H = h{ 1) + V(2) and the basis states 

used for constructing the H matrix are the eigenstates of the one-body part [/i(l)l of 

H. This exercise has been carried out: (i) for lanthanide atoms Cel and PrI by Flam­

baum et al [Fl-94] and Cummings et al [Cu-01]; (ii) for the lanthanide atoms Ndl, Pml 

and SmI by Angom and Kota [An-05a]; (iii) for 28Si nucleus by Zelevinsky et al [Ze-96].
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Alternatively it is also possible to plot the same as a function of the basis state energies 

et ~ Hjj. Physically the basis states indices do not carry any significant information. 

However the basis state energies e, ’s give the location of the corresponding strength 

functions [see Eq. (8.4.2) ahead] and hence they are more meaningful. This exer­

cise has been carried out for the lanthanide atoms Ndl, Pml and SmI by Angom and 

Kota [An-05]. Following this, for visualization we plot Hjj as a function of (e,-, ej).

-2

Figure 8.1: Intensity plot showing natural logarithm of the squares of the off-diagonal ma­
trix elements \(f \ H \ i)\2 (whose value is determined by the color with scale as indicated 
in the figure) as a function of the single-particle basis state energies e,- = (i\H\i) and 
ef = (/ | H | /} for 22Na nucleus. Note that diagonal matrix elements {i \ H \ i) are put to zero 
in calculating £;,/ | (/ ] H \ i) \2 in a given bin. Bin-size is 0.5 x 0.5. All matrix elements are in 
MeV units and d stands for the matrix dimension. Calculation used Kuo interaction with 1' O 
sp energies; see [Ko-98] for details.

We show in Figs. 8.1 and 8.2 for 22Na (Jn T = 2+0, d = 307) and 24Mg {Jn T = 0+0, 

d = 325) nuclei, respectively, the plot of squares of matrix elements Hby averaging 

over an area in the ek - ei plane, as a function of the basis state energies erf. For
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24Mg: J,IT=0+0; d=325

Figure 8.2: Same as Fig. 8.1 but for 24Mg. Bin-size is 0.5 x 0.5. All matrix elements are in MeV 
units. Calculation used Kuo interaction with 170 sp energies; see [Ko-02] for details.

details of the nuclear shell-model calculations for 22Na and 24Mg see Refs. [Ko-98] 

and [Ko-02], respectively. In the plots, we employ a color code for better visualiza­

tion. Similarly, in Fig. 8.3, H matrix plot for SmI U71 = 4+, d = 7325) atom is shown. 

Only the first 6300 basis states are taken into consideration in the plot as discussed in 

Ref. [An-05] and unlike in [An-05], we have used a color code for the plot for better vi­

sualization. For 22Na and 24Mg examples, the matrix is more spread compared to that 

for SmI. This is because, unlike in SmI example (also in many other atomic examples 

as discussed in [An-05]), in the nuclear shell-model all excitations within the model 

space are taken into account. Figs. 8.1 and 8.2 show a sparse, band-like structure 

with block structure within the band. As seen from Fig. 8.3 for SmI H matrix, there 

are prominent diagonal blocks and streaks of large matrix elements parallel to the 

diagonal but far away from the diagonal. Also, there is a sparse, band like structure
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with block structures within the bands. It is seen from Figs. 8.1, 8.2 and 8.3 that, in 

general, strictly speaking the H matrices are neither GOE nor banded. Also, from the 

visualization in Figs. 8.1, 8.2 and 8.3, it is not possible to infer the two-body selection 

rules which form the basis for EGOE description.

Sml: Jlt=4+; d=6300

0 0.2 0.4 0.6 0.8 1 1.2
e. (Hartree)

Figure 8.3: Same as Fig. 8.1 but for Sml. The bin-size used is 0.03 x 0.03. The matrix construc­
tion was discussed in [An-05] and these results are used to construct the color plot. Note that 
all the matrix elements are in Hartree units.

In order to bring out the two-body selection rules clearly, we consider the follow­

ing representation. In the nuclear shell-model, for m fermions distributed over r sub 

shells with total angular momentum ji, l = 1,2,..., r, the many-particle states are la­

beled by the spherical configurations m = (mi, m2,..., mr), total angular momentum 

/, isospin T and the multiplicity label a. Note that m = £/=1 m;-. The m-particle basis 

states \maJT) can be ordered according to the m’s. Then the H matrix will contain 

diagonal blocks which couple the states within same spherical configuration and off-
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diagonal blocks which couple states with different spherical configurations. As the 

interaction is two-body in nature, there will be only two types of off-diagonal blocks 

containing non-zero matrix elements which can mix configurations differing in po­

sition of one or two particles. All other off-diagonal blocks will contain zero matrix 

elements. For visual demonstration of this result, we have shown in Chapter 1 in Fig. 

1.3, a plot of the II matrix for the 24Mg example displaying the structure due to the 

two-body selection rules. For this nucleus, there are 8 valence nucleons occupying 

the three spherical orbits (ld5/2, ld3/2, 2s\/2). Therefore the spherical configurations 

are (mi, m2, m3) with mi number of nucleons in ld3/2 orbit, m2 in 10(3/2 orbit and m3 

in 2si/2 orbit. There are 33 configurations generating the 325 dimensional [JnT = 0+0) 

H matrix. Their dimensions are 35, 34, 28, 27, 23, 20,19,152,14,12,10, 92, 72, 5, 44, 

3, 26 and l5; here dn means there are n number of configurations with dimension 

d. The configurations are ordered such that the block matrices start from the max­

imum size (35 x 35) and go to the minimum (1 x l). Figure 1.3 clearly shows the 

diagonal blocks and the off-diagonal blocks that involve change of occupancy of one 

and two nucleons, respectively. The regions that correspond to all other off-diagonal 

blocks are forbidden by the two-body selection rules. A similar figure was given ear­

lier in [Pa-05] for 28Si with {JnT) = (0+0). Although Fig. 1.3 brings out clearly the 

structure due to two-body selection rules, it will not give any further insight into the 

EGOE structure of the matrix. Therefore, for a quantitative understanding of GOE, 

BRME and EGOE structures of the matrices, we employ various measures introduced 

in the literature for the structure of these ensembles. Now we will turn to this analysis.

8.3 Analysis in Terms of GOE and BRME
Hamiltonian matrices, prior to the actual diagonalization, are analyzed for the nu­

clear and atomic examples using measures defining GOE and BRME. To ascertain the 

GOE character, the distribution of off-diagonal elements is studied. As discussed in 

Sec. 8.2, the 3D matrix plots show a banded structure. In order to quantify the banded 

structure, we calculate the bandwidth and the sparsity parameters.
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8.3.1 GOE structure: distribution of the off-diagonal matrix ele­

ments

Figure 8.4 shows the probability densities P(x) for the off-diagonal matrix elements 

x = Hu = Hid, k^liot 22Na, 24Mg and SmI examples. Figure shows that there are 

large number of small matrix elements and almost half of these are zeroes. This 

also implies the leading role of the diagonal matrix elements in forming the spec­

trum which we will discuss in detail in Sec. 8.4. For GOE, P{x) should be a Gaussian. 

However, for large Hki, it was found that the distribution P(x) is well described by the 

Porter-Thomas (P- T) distribution [Fl-94],

But, the agreement is not good when Iffi ~ 0. A better proposition is to use a gener­

alized P-T distribution as suggested first by Zelevinsky et al [Ze-96],

Note that xo = wI2{k +1) and w is given in Eq. (8.3.1). Equation (8.3.2) is found to 

explain the distribution of the off-diagonal elements in the nuclear examples consid­

ered in [Ze-96]. Our examples substantiate this further as discussed below. Note that 

K = -l/2inEq. (8.3.2) will give Eq. (8.3.1).

For 22 Na, 24Mg and Sml examples that correspond to Figs. 8.1,8.2, and 8.3, respec­

tively, we have carried out fits to Eq. (8.3.2) with k = 0, -1/2, -1 and -2 and found 

that there is good agreement for k = -1 but not for the other values. The fits with 

ic = -1 are shown in Fig. 8,4 as continuous curves. In the fits to Eq. (8.3.2), a small 

region around x = 0 is not considered as PK(x) will not be regular at x = 0 for k < -1. 

Note that the deviations are larger for Sml example as compared to the nuclear ex­

amples. Therefore, our two nuclear examples (to some extent, even the atomic ex­

ample) are in conformity with the conclusion of Zelevinsky et al. They state [Ze-96]: 

Eq. (8.3.2) implies that the normally distributed quantities in the realistic cases are not 

the off-diagonal matrix elements themselves as would be the case in canonical ran-

(8.3.1)

(8.3.2)
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Figure 8.4: Plot showing distribution P(x) of the off-diagonal matrix elements for 22Na, 24Mg 
and SmI. Note that P{x) gives number of x = in a given energy bin. The bin-size in the 
figures is 0.25 for 22Na and 24Mg and 0.025 for SmI. In the figure, exact results are shown as 
histograms and the best fits PK=_i (x) are shown as continuous curves. The function P(x) is 
normalized to did -1), the number of off-diagonal matrix elements. Finally, note that the 
plots are for ln[P(x)] vs x. The units for x are MeVfor 22Na and 24Mg and Hartree for SmI.

dom matrix ensembles but rather some quantities resembling square roots of them. As 

they have argued, it is possible that the multipole-multipole form of the nuclear in­

teractions could be the physical reason for this. Hence, it is clear that GOE is not an 

appropriate representation for the nuclear (also atomic) Hamiltonian matrices.

8.3.2 BRME structure: bandwidths and sparsity

As seen from Figs. 8.1, 8.2 and 8.3, the II matrices have a band-like structure. We 

calculate a measure for sparsity and also the energy bandwidths for testing the BRME 

representation for the nuclear and atomic Hamiltonian examples.

Gribankina et al [Gr-95] and Cummings et al [Cu-01] defined the sparsity S as a 

function of A, the difference in the indices of the basis states connected by the Hamil-

240



0.6 u i rii.n-rp 11 i i m.i.pm 11 i iit

0.4

0.2

2000 4000 6000

(b) k
Figure 8.5: (a) Sparsity S(A) defined by Eq. (8.3.3) as a function of A = \k -1\ for 22Na, 24Mg 
and SmI matrices. Results are shown for A > 5, Note that for calculating sparsity, all the 
matrix elements whose absolute value is > 10-5 and 10~8, respectively for the nuclear and 
atomic examples are taken as non-zero, (b) Energy bandwidths AE\- defined by Eq. (8.3.4) as 
a function of state index k along with mean values of A(dashed lines) for 22Na, 24Mg and 
SmI matrices. The units for AEk are MeV for 22Na and 24Mg and Hartree for SmI. The values 
of the bandwidths b are shown in the figures.

toman, as a measure for band-like structure. The definition of S is,

number of | Hja I ^ 0
S(A) =

number of all Hu
\k-l\ = &. (8.3.3)

For a BRME of bandwidth b, the sparsity S = 1 for A < b and zero for A > b, thus it is 

a step function. Figure 8.5(a) shows the results for S(A) for the three examples 22Na,
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24Mg and SmI. In the nuclear examples, S(A) essentially decreases as a function of 

A with approximate linear dependence on A up to A ~ 150 and then falls sharply to 

zero. However, there are sizeable fluctuations in S as a function of A. On the other 

hand, for SmI, the structure is quite different with large fluctuations and a peak at 

A ~ 2250. The latter may be due to the large off-diagonal streaks seen in Fig. 8.3. 

Thus, S(A) shows clear deviation from band-like structure in all the examples. This is 

further substantiated by the energy bandwidths for the basis states and we will turn 

to this now.

Energy bandwidth b gives the energy interval in which the basis states are strongly 

mixed. The energy bandwidths A.Ek for each basis state k are defined as [Fe-91],

Z(Hkk-Hu)2\Hki\2 

A = -5-------Eihw|2
l*k

(8.3.4)

In Fig. 8.5(b) we show the results for AEk for the 22Na, 24Mg and SmI examples. The 

value of the average bandwidth b is given as the ratio of the mean value of AEk and 

the mean level spacing of the unperturbed energy levels D, i.e., b = AEk /D; in general 

b can be energy dependent as D can be defined as the local mean spacing of the 

energy levels. The values of b are given in Fig. 8.5(b) and for all the three examples, 

b is smaller than the matrix dimension d by a factor of ~ 4. The number b can also 

be calculated by fitting the mean squared matrix elements to the simple exponential 

ansatz [Fy-91,Fy-92],
= <8-3-5>

The values obtained using Eq. (8.3.5) are almost same as those obtained using Eq. 

(8.3.4). Significant observation from the figures is as follows. For a BRME, the band­

width AEk should be independent of k. However, there are significant fluctuations in 

the energy bandwidths in the nuclear examples and quite large fluctuations in SmI 

example. Note that it is impossible to reach a banded form even by reordering the 

basis states and this is due to the two-body selection rules. By combining the results 

for sparsity S(A) and the energy bandwidths AEk shown in Fig. 8.5, we can conclude 

that BRME is not a good representation for the H matrices.
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8.4 Analysis Using Measures for EGOE Structure
Going further, we analyze three measures for quantifying the EGOE structure of the 

II matrices for the two nuclear examples and the one atomic example in the present 

section.

8.4.1 Correlations between diagonal matrix elements and eigenval­

ues

Large number of numerical calculations in the past in the context of statistical nu­

clear spectroscopy have clearly indicated [Fr-83, Ko-89] that the joint probability dis­

tribution p(E, Cfc) of the diagonal matrix elements and eigenvalues £ is a bivariate

Gaussian for EGOE. Therefore the marginal densities p(E) and p(et) will be close to 

Gaussians with same centroids but different widths. In addition, the widths of the 

conditional densities p{E\ejc) will be independent of e^. These results were used to 

derive a formula for the chaos measures, the number of principal components and 

information entropy in wavefimctions for embedded ensembles [Ko-Ola]. The close 

to Gaussian form of p{E) and p(e^) imply that the eigenvalues E and the diagonal el­

ements of the II matrix (or equivalently the basis state energies) will be correlated. 

Flambaum et al examined, for Cel, eigenvalue spectrum vs the spectrum generated 

by ejc [Fl-94]. They found a close correlation between the two spectra.

There is recent interest in the topic of correlations between eigenvalues and di­

agonal matrix elements and several examples from nuclei and also random matrices 

have been discussed in [Sh-08, Yo-09a]. We show in Figs. 8.6 and 8.7, density of eigen­

values and density of diagonal matrix elements for the Hamiltonian matrices of 22Na, 

24Mg and SmI. The distributions are compared with the Gaussian form peg (x) and the 

Edgeworth (ED) corrected Gaussian form Ped(x)> see Eq.(2.3.2) for definitions. Here, 

x = (x- xc)!a where xc is the centroid and a is the width of the distribution of x. It is 

clearly seen that the eigenvalue distributions for the two nuclear examples are quite 

close to pcg(x) while the densities of the diagonal matrix elements are, with some 

deviations, close to PedO?)• However, there are stronger deviations from Ped(x) for 

the SmI example, both for the eigenvalue density and the density of the diagonal ele­

ments. Here, the eigenvalue density has a secondary peak and the density of diagonal
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Figure 8.6: Plot showing density of eigenvalues and density of diagonal matrix elements for 
the Hamiltonian matrices of 22Na and 24Mg. Values of the widths a, skewness j\ and excess 
Yz are given in the figures. The units for a are MeV. The centroid Ec = -32.77 MeV for 22Na and 
-52.59 MeV for 24Mg. Histograms are the exact results with bin size 2.5 MeV for all the exam­
ples. The dashed curves are the Gaussians with centroid Ec given above and width a whose 
value is given in the figure. Similarly continuous curves are Edgeworth corrected Gaussians 
defined in Eq. (2.3.2).

matrix elements displays a stronger bimodal form. Results in Fig. 8.6 reconfirm that 

in the nuclear examples, the eigenvalues and the diagonal matrix elements of the H 

matrix are highly correlated and their distributions are close to Gaussian forms. How­

ever, there are stronger deviations from this behavior for the SmI example.
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Figure 8.7: Same as Fig. 8.6 but for SmI matrix. The units for a are Hartree. The centroid 
is Ec = 0.7 Hartree (all energies are given with respect to the lowest energy). Histograms are 
the exact results with bin size 0.028 Hartree. The eigenvalue density for SmI is constructed by 
scaling appropriately the data taken from Fig. 3 in [An-05].

8.4.2 Fluctuations in the basis states spreading widths

Going beyond the diagonal matrix elements, it is also useful to consider the basis

state widths tr(fc) where

cr2® = <fc|H2lfc)-4=£[aiH!fc)|2,
l^k

(8.4.1)

It should be noted that a[k) are the widths of the strength functions Fk(E) and sim­

ilarly ek are their centroids. Given the mean field h( 1) basis states (denoted by |fc» 

expanded in the II eigenvalue (£) basis, I k) = C| IE), the strength functions Fk(E)

are defined by,

B'
6{E-E') = Ye?\Z I{E). (8.4.2)

In Eq. (8.4.2), \^f denotes the average of |C||2 over the eigenstates with the same 

energy E and all the quantities are defined over good JT (nuclei) or / (atoms) spaces; 

the strength functions over good spin spaces are also defined in Chapter 2. The 

strength functions define the spreading of the basis states over the eigenstates and 

for EGOE the spreadings are of Gaussian form in the strong coupling limit; see [Fr- 

83, Ko-01] and Chapter 2. Also as stated above, the bivariate Gaussian form of p (E, ek) 

implies cr2(fc) should be constant i.e., they are independent of k. We show in Fig. 8.8,
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results for cr(k) vs k for 22Na, 24Mg and SmI matrices. It is seen that the basis state 

widths a(k) are almost constant apart from small fluctuations in the nuclear exam­

ples. This result is in agreement with several previous numerical calculations [Ze- 

96,Fr-83, Ko-08]. Writing a{k) = a{k) (1 ± 5), it is seen that the relative rms deviation 

of the fluctuations from the mean values is 14% and 15% (i.e., 6 = 0.14 and 0.15, re­

spectively) and the mean values er(fc) = 7.5 MeV and 9.6 Me’V) respectively for 22Na and 

24Mg matrices. For SmI, a[k) = 0.14 Hartree and 6 = 0.25. Therefore, the fluctuations 

in a(k) are much larger for SmI as compared to those for the nuclear examples.

Figure 8.8: Plot showing the variation of width a(k) with the basis state index k for 22Na, 24Mg 
and SmI matrices. The units for a{k) are MeV for 22Na and 24Mg and Hartree for SmI.

It is possible to estimate the magnitude of the fluctuations in a (k). Say there are 

K number of many-particle states that are directly coupled by the two-body inter­

action. The connectivity factor K also defines the spectral variances; see [Fl-96, Fl- 

96a, Ja-01] and Chapter 2. Assuming that the coupling matrix elements are inde-
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pendent Gaussian random variables with zero centroid and variance v2, we have 

a2(k) = v2K. Now the relative rms fluctuations in the a2(k) are given by %/2TK. There­

fore, a{k) ~ [ cr2{k) ]1/2(1 ± I/VZK) giving 5 defined above to be Hs/lK, For embed­

ded ensembles for spinless fermion systems with m fermions in N sp states, the con­

nectivity factor K ~ m(m - 1) (IV- m) [N - m -1) 14 [FI-96, Fl-96a]. For example, for 6 

fermions in 12 sp states (N = 12, m — 6), S ~ 0.05. Going to embedded ensembles for 
fermion systems with spin (s = |) degree of freedom and assuming that the variances 

of the matrix elements in the two-particle spin s = 0 and s = 1 channels to be v2, we 

can relate vs to v by demanding that the two-particle spectral variance in both the 
models is same. This gives v2 = v2/4 for large N. Using this scaling and the result for 

the connectivity factor K(S) = K(C1, m, S) = P(Q, m, S) given in Chapter 2, we obtain 

6 ~ 0.1 for 6 fermions in 6 sp orbits (so that N = 12) with total spin S = 0. Therefore, 

going from embedded ensembles for spinless fermion systems to systems with spin, 

relative rms fluctuations in the basis states variances change from 5% to 10% (see also 

Table 4.10). We expect the EGOE results for nuclei with JT symmetrytobe larger than 

that of the embedded ensembles for spin systems and this explains the results in Fig. 

8.8 for the nuclear examples.

8.4.3 Structure of the two-body part of the Hamiltonian in the 

eigenvalue basis

In general, it is possible to examine the H matrices in different bases. For example for 

(2sld) shell nuclei, the (24) ^ [U(6) = SU(3) 3 S07j(3)I® [SU(4) => SUs{2}®SUT{2)} 3 

SO/(3) ® SUxi2) basis [El-58] will be interesting. Similarly, Zuker et al [Zu-01] exam­

ined the structure of Lanczos tridiagonal H matrices for nuclei. Unlike examining 

the total H matrix, it was suggested in [Fr-88] that it may be useful to analyze the 

pure two-body part V of H [V is defined by dropping the diagonal matrix elements 

of the two-body part F(2)] as this part is responsible for chaos (note that the one- 

body part of H generates Poisson fluctuations). The two natural basis to consider 

are the shell-model mean-field basis and the H eigenvalue basis. The structure of 

V in the mean-field basis is essentially same as that shown in Figs. 8.1, 8.2 and 8.3. 

Therefore new insight is expected from the structure of V in the H eigenvalue basis. 

Unlike the mean-field basis or the SU{3) basis mentioned above (or even any other

247



basis defined by a group symmetry), the H basis is expected to be the least biased 

and also it is the most natural basis. More importantly, EGOE has a prediction, as dis­

cussed ahead, for the structure of V in the H basis. As the 22Na nuclear example was 

discussed before [Fr-88, To-86] and the SmI example showed strong deviations from 

EGOE structure as discussed in Secs. 8.4.1 and 8.4.2, we restrict our discussion here 

to 24Mg example.

For 24Mg example, starting with the matrices for V and H in the mean-field ba­

sis [H operator consists of two-body matrix elements due to Kuo [Ku-67] defining 

V(2) and 170 sp energies -4.15 MeV 0.93 MeV and -3.28 MeV for ld5/2, W3/2 and 

2sh2 orbits defining h( 1)] we have constructed the matrix (Ef | V| £/). Using this 

we have analyzed the bivariate transition strength density generated by the opera­

tor V (we put (Et IV | £’/) = 0 as discussed in [Fr-88] so that we are dealing with the 

pure two-body part of H). Given the transition operator V, transition strength den­

sity Iy‘m(x,y) with the two variables x and y being eigenvalues of H is Iy’m(x,y) = 

IH>m(y)\{m,y\V\m,x)12IH'm{x). The bivariate moments of this distribution are 

Mpq = {(VHclVHp))m. Note that the normalization factor is Moo- Starting with MpCj, 

we can obtain normalized moments, the central moments, reduced moments and 

also the reduced cumulants krs, r + 5 > 3. It is possible to write down the Edgeworth 

corrected bivariate Gaussian that includes the cumulants krs with r + s = 3, 4 [Fr- 

88, Ko-95]. Following the spinless EGOE results in [Fr-88, To-86] and the new results 

in Chapter 7, it can be argued that EGOE gives in general close to bivariate Gaussian 

form with Edgeworth corrections for Iy'm{x, y). Equation (J3) in Appendix J gives the 

bivariate Gaussian form with ED corrections. This prediction of EGOE is tested in Fig. 

8.9 for 24Mg. The spectrum span for this nucleus is from -93.29 to -10.06 MeV The 

bivariate distribution Iv is shown in Fig. 8.9 and it is constructed using the bin-size 

5x5 MeV2. For comparison, we also show the corresponding ED corrected Gaussian 

distribution. The marginal centroids £;,e/ are equal and their value is -50.44 MeV 

Similarly, the marginal widths are 13.76 MeV and the bivariate correlation coefficient 

(biv = 0.61 MeV Thus, it is clear that the matrix can not be represented by a GOE as 

(p?E = 0. The bivariate cumulants {krs = kST due to symmetry of the V matrix) for 

r + s < 4 are k2i = 0.035, fc3o = 0.070, k22 = -0.092, foi - -0.053 and k40 = -0.015. 

The overall normalization is 12933.25 MeV2. It is seen from Fig. 8.9 that the r.m.s.
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matrix elements of V in the H eigenvalue basis are well described by the EGOE bi­

variate Gaussian form. This along with the previous [Fr-88, To-86] 22Na example and 

all other results in Secs. 8.4.1 and 8.4.2 support the conjecture that EGOE is a good 

representation for nuclear Hamiltonians.

8.4.4 Comments on deviations from EGOE in the atomic example

Although both the nuclear and atomic shell-model Hamiltonians include a one-body 

and two-body parts, it is clearly seen that EGOE does not describe very well the 

atomic shell-model Hamiltonian while it is good for nuclei. Following are some of 

the differences in the two systems: (i) given the sp orbits and the number of valence 

fermions, only a few configurations (that correspond to single and double excitations 

with respect to the leading configuration) are included in atomic calculations [Fl- 

99, Cu-01, An-05] whereas all configurations allowed in the model space, just as in 

EGOE, are included in the nuclear examples; (ii) for atoms, both positive and neg­

ative parity (interwoven) sp orbits are included (and this is necessary) while in nu­

clear examples, orbits of only one parity are considered; (iii) the inter-configuration 

mixing is weak for atoms as discussed in earlier atomic calculations [Fl-99, Cu-01]; 

(iv) the Coulomb interaction is of long range while nuclear interactions are of short 

range. A simple plot of the distribution of the configuration centroids with degener­

acy given by the dimensions shows multimodal structure for atoms (see Fig. 4 of [An- 

05]). However, for nuclear examples it is essentially an unimodal distribution and 

this difference can be ascribed to (i) and (ii). Random matrix model taking into ac­

count (i), (ii) and (iii) corresponds to partitioned EGOE [Ko-01], A simpler version 

of this model shows that weak mixing between configurations generates bimodal (in 

general, multimodal) forms for density of states [Ko-99]. Similarly, in order to un­

derstand the effects due to (iv), the model considered by Bae et al [Ba-92] may be 

relevant. This model includes a parameter £, where <f is the ratio of the radius of the 

many-body system to the range of the interaction. It will be useful to examine the 

statistical properties considered in the present chapter using both partitioned EGOE 

and the Bae et al model. However, this analysis is beyond the scope of the present 

thesis.
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Figure 8.9: Plots showing the bivariate transition strength density for 24Mg with (JnT) - (0+0). 
Compared are the results from exact shell-model (denoted by Iv.sm in the figure) with the 
Edgeworth corrected bivariate Gaussian I\.ed in Eq. (J3) obtained using the bivariate cumu- 
lants given in the text. The units for Ej and Ef are MeV.
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8.5 Summary
In the present chapter, a comprehensive analysis of the structure of nuc; 

model Hamiltonian matrices has been carried out by employing all available mea­

sures for GOE, BRME and EGOE random matrix ensembles. To this end, consid­

ered are 22Na and 24Mg nuclear examples and for comparison the SmI atomic ex­

ample. In the nuclear examples, the matrix sizes are ~ 300 and comparing with some 

of the analysis carried out by Zelevinsky et al [Ze-96] and Papenbrock and Weiden- 

miiller [Pa-07] where much larger size matrices are used, it is clearly seen from the 

results in Secs. 8.2-8.4 that the present examples are adequate for bringing out all 

the essential features of the nuclear shell model Hamiltonians and in particular, the 

EGOE structure. Results for SmI in Secs. 8.2-8.4 indicate that further investigations 

are needed for establishing the extent to which EGOE can be applied for describing 

statistical properties of atomic levels. For nuclear Hamiltonians, it is possible to ar­

gue, using chaos measures applied to the diagonal blocks in Fig. 1.3, that there is a 

local GOE structure (i.e., each diagonal block is close to a GOE with weak admixings 

between these blocks) in the matrices although there is a global EGOE structure [Pa- 

05]. This aspect was also recognized in the earlier studies of H matrices by French 

et al [Fr-88]. The study presented in Secs. 8.2-8.4 together with the previous anal­

ysis in [Pa-07, Fr-88, Ze-96] clearly establishes that EGOE is the best random matrix 

representation for nuclear shell-model Hamiltonians.
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