Appendix D

$U(2\Omega) \supset [U(\Omega) \supset SO(\Omega)] \otimes SU(2)$ pairing symmetry

With the $4\Omega^2$ number of one-body operators $u^r_{\mu}(i, j)$; r = 0, 1, defined in Sec. 3.2, generating $U(2\Omega)$ algebra, it is easily seen that the operators $u^0(i, j)$, which are Ω^2 in number, generate $U(\Omega)$ algebra. Similarly the operators $C(i, j) = u^0(i, j) - u^0(j, i)$, i > j, which are $\Omega(\Omega - 1)/2$ in number, generate the $SO(\Omega)$ sub-algebra of $U(\Omega)$. The spin operator $\hat{S} = S^1_{\mu}$, the number operator \hat{n} and the quadratic Casimir operators C_2 's of $U(\Omega)$ and $SO(\Omega)$ are

$$S_{\mu}^{1} = \frac{1}{\sqrt{2}} \sum_{i=1}^{\Omega} u_{\mu}^{1}(i,i) ,$$

$$\hat{n} = \sum_{i} n_{i}, \quad n_{i} = \sqrt{2} u^{0}(i,i) ,$$

$$C_{2}(U(\Omega)) = 2 \sum_{i,j} u^{0}(i,j) u^{0}(j,i) ,$$

$$C_{2}(SO(\Omega)) = 2 \sum_{i>j} C(i,j) C(j,i) .$$

(D1)

The structure of $C_2(U(\Omega))$ in terms of the number operator and the $\hat{S} \cdot \hat{S} = \hat{S}^2$ operator is,

$$C_{2}(U(\Omega)) = \hat{n} \left(\Omega + 2 - \frac{\hat{n}}{2}\right) - 2\hat{S}^{2} ,$$
(D2)

$$\langle C_{2}(U(\Omega)) \rangle^{m,S} = m \left(\Omega + 2 - \frac{m}{2}\right) - 2S(S+1) .$$

Note that $\langle C_2(U(\Omega)) \rangle^{\{f\}} = \sum_i f_i(f_i + \Omega + 1 - 2i)$. As $U(2\Omega) \supset U(\Omega) \otimes SU(2)$ with the SU(2) algebra generating total spin S, the $U(\Omega)$ irreps are labeled by two column irreps $\{2^{p}1^{q}\}$ with m = 2p + q, S = q/2. As a consequence, the $SO(\Omega)$ irreps are also of two column type and we will denote them by $[2^{\nu_1}1^{\nu_2}]$. Here, $\nu_S = 2\nu_1 + \nu_2$ is called seniority and $\tilde{s} = \nu_2/2$ is called reduced spin. We also have [Wy-74]

$$\langle C_2(SO(\Omega)) \rangle^{\langle \omega \rangle} = \sum_i \omega_i (\omega_i + \Omega - 2i)$$

$$\Rightarrow \langle C_2(SO(\Omega)) \rangle^{\langle 2^{\nu_1} 1^{\nu_2} \rangle} = \nu_S \left(\Omega + 1 - \frac{\nu_S}{2} \right) - 2\tilde{s}(\tilde{s} + 1) .$$
(D3)

After some commutator algebra it can be shown that,

$$2H_p = -C_2(SO(\Omega)) + \hat{n}\left(\Omega + 1 - \frac{\hat{n}}{2}\right) - 2\hat{S}^2,$$
(D4)

$$\langle H_p \rangle^{(m,S,v_S,\tilde{s})} = \frac{1}{4}(m - v_S)(2\Omega + 2 - m - v_S) + [\tilde{s}(\tilde{s}+1) - S(S+1)],$$

where the pairing Hamiltonian H_p is defined by Eq. (3.2.2). Classification of $U(2\Omega) \supset$ $[U(\Omega) \supset SO(\Omega)] \otimes SU(2)$ states defined by (m, S, v_S, \tilde{s}) quantum numbers is needed, i.e., $(m, S) \rightarrow (v_S, \tilde{s})$ reductions are required and they are obtained by group theory. Using the tabulations in [Wy-70], results are given in Tables D.1 and D.2 for: (i) $m \leq$ $4, \Omega \geq 4$ and (ii) $m = 6, \Omega = 6$ and $m = 5 - 8, \Omega = 8$, respectively.

(<i>m</i> , <i>S</i>)	(v_S, \tilde{s})
(0,0)	(0,0)
$(1, \frac{1}{2})$	$(1, \frac{1}{2})$
(2, Õ)	(2,0), (0,0)
(2,1)	(2, 1)
$(3, \frac{1}{2})$ $(3, \frac{3}{2})$	$(3, \frac{1}{2}), (1, \frac{1}{2})$
$(3, \frac{3}{2})$	$\{(1,\frac{1}{2})_{\Omega=4}; (2,1)_{\Omega=5}; (3,\frac{3}{2})_{\Omega\geq 6}\}$
(4,0)	(4,0), (2,0), (0,0)
(4,1)	$\{(2,0)_{\Omega=4}; (3,\frac{1}{2})_{\Omega=5}; (4,1)_{\Omega\geq 6}\}, (2,1)$
(4,2)	$\{(0,0)_{\Omega=4}; (1,\frac{1}{2})_{\Omega=5}; (2,1)_{\Omega=6}, (3,\frac{3}{2})_{\Omega=7}; (4,2)_{\Omega\geq 8}\}$

Table D.1: $(m, S) \rightarrow (v_S, \tilde{s})$ reductions for $m \le 4$ and $\Omega \ge 4$.

$(\nu_S, \tilde{s})_{d(\Omega, \nu_S, \tilde{s})}$	$(m,S)_{d_f(\Omega,m,S)}$	Ω
$(6,0)_{70}, (4,0)_{84}, (2,0)_{20}, (0,0)_1$	(6,0) ₁₇₅	6
$(4,1)_{90}, (4,0)_{84}, (2,1)_{15}$	(6, 1) ₁₈₉	
$(2,1)_{15}, (2,0)_{20}$	(6,2) ₃₅	
(0,0)1	(6,3) ₁	
$(5, \frac{1}{2})_{840}, (3, \frac{1}{2})_{160}, (1, \frac{1}{2})_{8}$	$(5, \frac{1}{2})_{1008}$	8
$(5, \frac{3}{2})_{448}, (3, \frac{3}{2})_{56}$	$(5, \frac{3}{2})_{504}$	
$(3, \frac{3}{2})_{56}$	$(5, \frac{5}{2})_{56}$	
$(6,0)_{840}, (4,0)_{300}, (2,0)_{35}, (0,0)_{1}$	(6, 0) ₁₁₇₆	
$(6,1)_{1134}, (4,1)_{350}, (2,1)_{28}$	(6 , 1) ₁₅₁₂	
$(4,1)_{350}, (4,2)_{70}$	(6,2) ₄₂₀	
(2, 1) ₂₈	(6,3) ₂₈	
$(7, \frac{1}{2})_{1344}, (5, \frac{1}{2})_{840}, (3, \frac{1}{2})_{160}, (1, \frac{1}{2})_{840}$	$(7, \frac{1}{2})_{2352}$	
$(5, \frac{1}{2})_{840}, (5, \frac{3}{2})_{448}, (3, \frac{3}{2})_{56}$	$(7, \frac{3}{2})_{1344}$	
$(3, \frac{1}{2})_{160}, (3, \frac{3}{2})_{56}$	$(7, \frac{5}{2})_{216}$	
$(1,\frac{1}{2})_{E}$	$(7, \frac{7}{2})_8$	
$(8,0)_{588}, (6,0)_{840}, (4,0)_{300}, (2,0)_{35}, (0,0)_{10}$	(8,0) ₁₇₆₄	
$(6,0)_{840}, (6,1)_{1134}, (4,1)_{350}, (2,1)_{28}$	(8,1) ₂₃₅₂	
$(4,0)_{300}, (4,1)_{350}, (4,2)_{70}$	(8,2) ₇₂₀	
$(2,0)_{35}, (2,1)_{28}$	(8,3) ₆₃	
(0,0)1	(8,4)1	

Table D.2: $(m, S) \rightarrow (v_S, \tilde{s})$ irrep reductions for $(\Omega = 6; m = 6)$ and $(\Omega = 8; m = 5 - 8)$. Note that the dimensions $d_f(\Omega, m, S)$ of the (m, S) and $d(\Omega, v_S, \tilde{s})$ of the (v_S, \tilde{s}) space are given as subscripts; $d_f(\Omega, m, S) = \sum_{v_S, \tilde{s}} d(\Omega, v_S, \tilde{s})$.