Appendix G

Further extensions of BEGOE(1+2)

For completeness, we briefly outline here extension of BEGOE(1+2) to BEGOE(1+2)- M_S and BEGOE(1+2)-p; here p corresponds to spin $\mathbf{s} = 1$ bosons and M_S is the S_z quantum number for spin $\mathbf{s} = \frac{1}{2}$ bosons. We restrict our discussion to the definition and construction of these ensembles using the results for spinless BEGOE(1+2) discussed in Chapter 1.

BEGOE(1+2)-*M_S*

Consider a system of *m* bosons occupying Ω number of sp orbitals each with spin $\mathbf{s} = \frac{1}{2}$ so that the number of sp states $N = 2\Omega$. The sp states are denoted by $|v_i, m_s\rangle$, $i = 1, 2, ..., \Omega$ and $m_s = \pm \frac{1}{2}$. The average spacing between the v_i states is assumed to be Δ and between two m_s states for a given v_i to be Δ_{m_s} . For constructing the *H* matrix in good M_S representation, we arrange the sp states $|i, m_s = \pm \frac{1}{2}\rangle$ in such a way that the first Ω states have $m_s = \frac{1}{2}$ and the remaining Ω states have $m_s = -\frac{1}{2}$. Many-particle states for *m* bosons in the 2Ω sp states, arranged as explained above, can be obtained by distributing m_1 bosons in the $m_s = \frac{1}{2}$ sp states (Ω in number) and similarly, m_2 fermions in the $m_s = -\frac{1}{2}$ sp states (Ω in number) with $m = m_1 + m_2$. Thus, $M_S = (m_1 - m_2)/2$. Let us denote each distribution of m_1 fermions in $m_s = \frac{1}{2}$ sp states by \mathbf{m}_1 and similarly, \mathbf{m}_2 for m_2 fermions in $m_s = -\frac{1}{2}$ sp states. Many-particle basis defined by ($\mathbf{m}_1, \mathbf{m}_2$) with $m_1 - m_2 = 2M_S$ will form the basis for BEGOE(1+2)- M_S . As the two-particle m_s can take values ± 1 and 0, the two-body part of the Hamiltonian preserving M_S will be $\hat{V}(2) = \lambda_0 \hat{V}^{m_s=0}(2) + \lambda_1 \hat{V}^{m_s=1}(2) + \lambda_{-1} \hat{V}^{m_s=-1}(2)$ with the corresponding two-particle matrix being a direct sum matrix generated by $\hat{V}^{m_s}(2)$. Therefore, the

Hamiltonian is

$$\widehat{H} = \widehat{h}(1) + \lambda_0 \left\{ \widehat{V}^{m_s=0}(2) \right\} + \lambda_1 \left\{ \widehat{V}^{m_s=1}(2) \right\} + \lambda_{-1} \left\{ \widehat{V}^{m_s=-1}(2) \right\}.$$
(G1)

In Eq. (G1), the { $\hat{V}^{m_s}(2)$ } ensembles in two-particle spaces are represented by independent GOE(1)'s [see Eq. (1.2.4)] and λ_{m_s} 's are their corresponding strengths. The action of the Hamiltonian operator defined by Eq. (G1) on the ($\mathbf{m}_1, \mathbf{m}_2$) basis states with a given M_S generates the BEGOE(1+2)- M_S ensemble in *m*-particle spaces. Therefore, BEGOE(1+2)- M_S is defined by six parameters ($\Omega, m, \Delta_{m_s}, \lambda_0, \lambda_1, \lambda_{-1}$) [we put $\Delta = 1$ so that Δ_{m_s} and λ_{m_s} 's are in the units of Δ]. In the ($\mathbf{m}_1, \mathbf{m}_2$) basis with a given M_S , the *H* matrix construction reduces to the matrix construction for spinless boson systems; see Chapter 1. The *H* matrix dimension for a given M_S is $\sum_{S \ge M_S} d_b(\Omega, m, S)$. Finally, pairing can also be introduced in this ensemble using the algebra $U(2\Omega) \supset SO(2\Omega) \supset SO(\Omega) \otimes SO(2)$ with SO(2) generating M_S ; see [Ko-06c].

BEGOE(1+2)-p

Let us begin with a system of *m* bosons distributed say in Ω number of sp orbitals each with spin s = 1 so that the number of sp states $N = 3\Omega$. The sp states are denoted by $|i, m_s\rangle$ with $m_s = 0, \pm 1$ and $i = 1, 2, \dots, \Omega$. For a one plus two-body Hamiltonians preserving *m*-particle spin S, the one-body Hamiltonian $\hat{h}(1)$ is defined by the sp energies ϵ_i ; $i = 1, 2, ..., \Omega$, with average spacing Δ . Similarly the two-body Hamiltonian $\hat{V}(2)$ is defined by the two-body matrix elements $\lambda_s V_{ijkl}^s =$ $\langle (kl)s, m_s | \hat{V}(2) | (ij)s, m_s \rangle$ with the two-particle spins s = 0, 1 and 2. These matrix elements are independent of the m_s quantum number. Note that the λ_s are parameters. For generating the many-particle states, firstly, the sp states are arranged such that the first Ω number of sp states have $m_s = 1$, next Ω number of sp states have $m_{\rm s} = 0$ and the remaining Ω sp states have $m_{\rm s} = -1$. Now, the many-particle states for *m* bosons can be obtained by distributing m_1 bosons in the $m_s = 1$ sp states, m_2 bosons in the $m_s = 0$ sp states and similarly, m_3 bosons in the $m_s = -1$ sp states with $m = m_1 + m_2 + m_3$. Thus, $M_S = (m_1 - m_3)$. Let us denote each distribution of m_1 bosons in $m_s = 1$ sp states by m_1 , m_2 bosons in $m_s = 0$ sp states by m_2 and similarly, m_3 for m_3 bosons in $m_s = -1$ sp states. Many-particle basis defined by (m_1, m_2, m_3)

will form a basis for BEGOE(1+2)-*p*. The *V* matrix in two-particle spaces will be a direct sum matrix and the *V*(2) operator is $\hat{V}(2) = \lambda_0 \hat{V}^{s=0}(2) + \lambda_1 \hat{V}^{s=1}(2) + \lambda_2 \hat{V}^{s=2}(2)$ with three parameters $(\lambda_0, \lambda_1, \lambda_2)$. Now, BEGOE(1+2)-*p* for a given (m, S) system is generated by defining the three parts of the two-body Hamiltonian to be independent GOE(1)'s in two-particle spaces and then propagating the *V*(2) ensemble $\{\hat{V}(2)\} = \lambda_0 \{\hat{V}^{s=0}(2)\} + \lambda_1 \{\hat{V}^{s=1}(2)\} + \lambda_2 \{\hat{V}^{s=2}(2)\}$ to the *m*-particle spaces with a given spin *S* by using the geometry (direct product structure) of the *m*-particle spaces. The embedding algebra is $U(3\Omega) \supset G \supset G1 \otimes SO(3)$ with SO(3) generating spin *S*. Thus BEGOE(1+2)-*p* is defined by the operator

$$\widehat{H} = \widehat{h}(1) + \lambda_0 \{\widehat{V}^{s=0}(2)\} + \lambda_1 \{\widehat{V}^{s=1}(2)\} + \lambda_2 \{\widehat{V}^{s=2}(2)\}.$$
(G2)

The sp levels defined by $\hat{h}(1)$ will be triply degenerate. The action of the Hamiltonian operator defined by Eq. (G2) on $(\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3)$ basis states with fixed- $(m, M_S = M_S^{min})$ generates the ensemble in (m, M_S) spaces. It is important to note that the construction of the *m*-particle *H* matrix in fixed- $(m, M_S = M_S^{min})$ spaces reduces to the problem of BEGOE(1+2) for spinless boson systems and hence Eqs. (1.3.1)- (1.3.3) of Chapter 1 will apply. Then the \hat{S}^2 operator is used for projecting states with good *S*. Therefore, BEGOE(1+2)-*p* ensemble is defined by five parameters $(\Omega, m, \lambda_0, \lambda_1, \lambda_2)$ with λ_s in units of Δ . Finally, it is important to mention that it is also possible to study the pairing symmetry in the space defined by BEGOE(1+2)-*p* ensemble. For this, there are two possible algebras (each defining a particular type of pairing), $U(3\Omega) \supset [U(\Omega) \supset SO(\Omega)] \otimes [U(3) \supset SO(3)]$ and $U(3\Omega) \supseteq SO(3\Omega) \supseteq SO(\Omega) \otimes SO(3)$ and they can be studied in detail by extending the results for IBM-3 model in nuclear structure where $\Omega = 6$ [Ga-99, Ko-96]. Exploiting the group chain $U(3\Omega) \supset U(\Omega) \otimes [U(3) \supset SO(3)]$, it is possible to write the dimension formulas for the *H* matrices for a given (m, S) as it was done in Sec. 4.2.3 for SU(4) - ST reductions.