
Appendix G

Further extensions of BEGOE(l+2)

For completeness, we briefly outline here extension of BEGOE(l+2) to BEGOE(l+2)- 

Ms and BEG0E(l+2)-p; here p corresponds to spin s = 1 bosons and Ms is the Sz 
quantum number for spin s = | bosons. We restrict our discussion to the definition 

and construction of these ensembles using the results for spinless BEGOE(l+2) dis­

cussed in Chapter 1.

BEGOE(l+2)-Ms

Consider a system of m bosons occupying O number of sp orbitals each with spin 
s = | so that the number of sp states N = 20. The sp states are denoted by | v*, ms>, i = 

1,2,...and ms = ±\. The average spacing between the v, states is assumed to be A 

and between two ms states for a given ve- to be Ams. For constructing the H matrix in 
good Ms representation, we arrange the sp states | i, ms - ± |) in such a way that the 

first Q states have ms = \ and the remaining O states have ms = Many-particle 

states for m bosons in the 2D. sp states, arranged as explained above, can be obtained 
by distributing mi bosons in the ms = | sp states (Q in number) and similarly, m2 

fermions in the ms = sp states (O in number) with m = m\ + m2. Thus, Ms = 
(mi - m2) 12, Let us denote each distribution of mi fermions in ms = \ sp states by mi 

and similarly, m2 for m2 fermions in ms = sp states. Many-particle basis defined 

by (mi,m2) with mi - m2 = 2Ms will form the basis for BEG0E(l+2)-Ms. As the two- 

particle ms can take values +1 and 0, the two-body part of the Hamiltonian preserving 
Ms will be 9(2) = A0Vm^°(2) + Ax Vm*=l (2) + A_x Fms=_1 (2) with the corresponding 

two-particle matrix being a direct sum matrix generated by t?Ws(2). Therefore, the
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Hamiltonian is

H = S(l) + Ao{Fms=0(2)} + A1{Fms=1(2)} + A_1{Fmi=“1(2)}. (Gl)

In Eq. (Gl), the {Fms(2)} ensembles in two-particle spaces are represented by in­

dependent GOE(l)’s [see Eq. (1.2.4)] and Am/s are their corresponding strengths. 

The action of the Hamiltonian operator defined by Eq. (Gl) on the (mi,m2) basis 

states with a given Ms generates the BEGOE(l+2) -Ms ensemble in m-particle spaces.

Therefore, BEGOE(l+2)-Ms is defined by six parameters (Q, m, Ams, Ao, Ai, A.1) [we

put A = 1 so that AWs and Am/s are in the units of A]. In the (mi,m2) basis with 

a given Ms, the H matrix construction reduces to the matrix construction for spin­

less boson systems; see Chapter 1. The H matrix dimension for a given Ms is 

£s>ms dbiO, m, S). Finally, pairing can also be introduced in this ensemble using the 

algebra 1/(20) => S0(20) ^ S0(0) ® S0(2) with S0(2) generating Mg; see [Ko-06c].

BEG0E(l+2)-p

Let us begin with a system of m bosons distributed say in O number of sp orbitals 

each with spin s = 1 so that the number of sp states N = 30. The sp states are 

denoted by with ms = 0,±1 and i = 1,2,...,0. For a one plus two-body

Hamiltonians preserving m-particle spin S, the one-body Hamiltonian h( 1) is de­

fined by the sp energies e*; i = 1,2,...,0, with average spacing A. Similarly the 
two-body Hamiltonian P(Z> is defined by the two-body matrix elements A, VJ„ = 

{(kl)s, ms | F(2) | (i j)s, ms) with the two-particle spins s = 0,1 and 2. These matrix 

elements are independent of the ms quantum number. Note that the Xs are param­

eters. For generating the many-particle states, firstly, the sp states are arranged such 

that the first O number of sp states have ms = 1, next O number of sp states have 

ms = 0 and the remaining O sp states have ms = -1. Now, the many-particle states 

for m bosons can be obtained by distributing m\ bosons in the ms = 1 sp states, m2 

bosons in the ms = 0 sp states and similarly, m3 bosons in the ms = -1 sp states with 

m = mi + m2 + m3. Thus, Ms = (mi - m3). Let us denote each distribution of mi 

bosons in ms = 1 sp states by mi, m2 bosons in ms = 0 sp states by m2 and similarly, 

m3 for m3 bosons in ms = -1 sp states. Many-particle basis defined by (mi,m2,m3)
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will form a basis for BEGOE(l+2)-p. The V matrix in two-particle spaces will be a di­

rect sum matrix and the V{2) operator is V(2) = A0F*=0(2) + Aj^=1(2) + X2VS=Z{2) 

with three parameters (Ao,Ai,A2). Now, BEGOE(l+2)-p for a given (m,S) system 

is generated by defining the three parts of the two-body Hamiltonian to be inde­

pendent GOE(l)'s in two-particle spaces and then propagating the V(2) ensemble 
{F(2)} = Ao {Fs=0 (2)} + Ai {Vs~1 (2)} + A2 {Vs=2 (2)} to the m-particle spaces with a given 

spin S by using the geometry (direct product structure) of the m-particle spaces. The 

embedding algebra is U (30) dGdGI® S0(3) with SO (3) generating spin S. Thus 

BEG0E(l+2) -p is defined by the operator

H = h{ 1) + Ao |Fi=0(2)} + Ai {Vs-1 (2)} + A2 {Vs=2 (2)}. (G2)

The sp levels defined by hi 1) will be triply degenerate. The action of the Hamiltonian 

operator defined by Eq. (G2) on (mi,m2,m3) basis states with fixed-(m, Ms = M™in) 

generates the ensemble in (m, Ms) spaces. It is important to note that the construc­

tion of the m-particle H matrix in fixed-(m, Ms = M™in) spaces reduces to the prob­

lem of BEG0E(l+2) for spinless boson systems and hence Eqs. (1.3.1)- (1.3.3) of 

Chapter 1 will apply. Then the S2 operator is used for projecting states with good 

S. Therefore, BEG0E(l+2)-p ensemble is defined by five parameters (O, m, Ao, Ai, A2) 
with As in units of A. Finally, it is important to mention that it is also possible to 

study the pairing symmetry in the space defined by BEG0E(l+2)-p ensemble. For 

this, there are two possible algebras (each defining a particular type of pairing), 

1/(30) d [f/(Q) 3 S0(O)] ® [LT(3) 3 S0(3)] and Ui3fl) s S0(30) 3 SO(H) 9 S0(3) 

and they can be studied in detail by extending the results for IBM-3 model in nu­

clear structure where 0 = 6 [Ga-99, Ko-96]. Exploiting the group chain 17(30) 

1/(0) ® [1/(3) 3 S0(3)], it is possible to write the dimension formulas for the H ma­

trices for a given (m, S) as it was done in Sec. 4.2.3 for Sf/(4) - ST reductions.
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