Appendix G
Further extensions of BEGOE(1+2)

For completeness, we briefly outline here extension of BEGOE(1+2) to BEGOE(1+2)-
M;s and BEGOE(1+2)-p; here p corresponds to spin s = 1 bosons and Mg is the S,
quantum number for spin s = -12— bosons. We restrict our discussion to the definition
and construction of these ensembles using the results for spinless BEGOE(1+2) dis-

cussed in Chapter 1.
BEGOE(1+2)-Mg

Consider a system of m bosons occupying 2 number of sp orbitals each with spin
s= % so that the number of sp states N = 2Q. The sp states are denoted by |v;, mg), i =
1,2,...,Qand mg = i%. The average spacing between the v; states is assumed to be A
and between two m states for a given v; to be Ap,,. For constructing the H matrix in
good M representation, we arrange the sp states |i, ms = £3 ) in such a way that the
first Q states have mg = é— and the remaining Q states have mg = ——-21—. Many-particle
states for m bosons in the 2Q) sp states, arranged as explained above, can be obtained
by distributing m; bosons in the mg = 3_,1- sp states (Q in number) and similarly, m,
fermions in the myg = —% sp states (Q2 in number) with m = m; + my. Thus, Mg =
(my—my) /2. Let us denote each distribution of 7, fermions in mg = % sp states by my
and similarly, mp for m, fermions in mg = ——% sp states. Many-particle basis defined
by (m;, myp) with m; — my = 2 Mg will form the basis for BEGOE(1+2)-Ms. As the two-
particle m; can take values 1 and 0, the two-body part of the Hamiltonian preserving
Mg will be V(2) = AgV™=0(2) + A, V™=1(2) + A_, V="1(2) with the corresponding

two-particle matrix being a direct sum matrix generated by V"(2). Therefore, the
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Hamiltonian is
H=h)+ 2 {V™02)} + 4, {V™=1 @)} + A, {T™=1(2)} . (GD)

In Eq. (G1), the {V™s(2)} ensembles in two-particle spaces are represented by in-
dependent GOE(1)’s [see Eq. (1.2.4)] and A, s are their corresponding strengths.
The action of the Hamiltonian operator defined by Eq. (G1) on the (m;, my) basis
states with a given Mg generates the BEGOE(1+2)- Mg ensemble in m-particle spaces.
Therefore, BEGOE(1+2)- Mg is defined by six parameters (Q, m, Ap,, Ao, A1, A1) [we
put A =1 so that Ay, and Ay, 's are in the units of A]. In the (my,my) basis with
a given Mg, the H matrix construction reduces to the matrix construction for spin-
less boson systems; see Chapter 1. The H matrix dimension for a given Mg is
2.5=M; Ap(£2, m, S). Finally, pairing can also be introduced in this ensemble using the

algebra U(2Q2) o S0O{2Q2) o SO(Q) ® SO(2) with SO(2) generating Ms; see [Ko-06c].
BEGOE(1+2)-p

Let us begin with a system of m bosons distributed say in Q number of sp orbitals
each with spin s = 1 so that the number of sp states N = 3Q2. The sp states are
denoted by [i,mg) with mg = 0,+1 and i = 1,2,...,Q. For a one plus two-body
Hamiltonians preserving m-particle spin S, the one-body Hamiltonian %(1) is de-
fined by the sp energies ¢;; I = 1,2,...,Q, with average spacing A. Similarly the
two-body Hamiltonian V(2) is defined by the two-body matrix elements A V:} o=
(kl)ys,ms| V(2) | (ij)s, ms) with the two-particle spins s = 0,1 and 2. These matrix
elements are independent of the m; quantum number. Note that the A; are param-
eters. For generating the many-particle states, firstly, the sp states are arranged such
that the first QO number of sp states have mg = 1, next Q number of sp states have
ms = 0 and the remaining {2 sp states have ms = —1. Now, the many-particle states
for m bosons can be obtained by distributing m; bosons in the mg = 1 sp states, m;
bosons in the mg = 0 sp states and similarly, m3 bosons in the mg = —1 sp states with
m = my + my + mg. Thus, Mg = (m; — ma}. Let us denote each distribution of m;
bosons in mg = 1 sp states by my, m; bosons in m, = 0 sp states by mp and similarly,

mg for m3 bosons in mg = —1 sp states. Many-particle basis defined by (m;, m2, m3)
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will form a basis for BEGOE(1+2)-p. The V matrix in two-particle spaces will be a di-
rect sum matrix and the V(2) operator is V(2) = 1oV5=0(2) + 1, V*=1(2) + 1, V*=2(2)
with three parameters (1, A1,4,). Now, BEGOE(1+2)-p for a given (m, S) system
is generated by defining the three parts of the two-body Hamiltonian to be inde-
pendent GOE(1)’s in two-particle spaces and then propagating the V(2) ensemble
(V@)1 = AlV=002)} + A1 {V=1(2)} + 2,{V=2(2)} to the m-particle spaces with a given
spin S by using the geometry (direct product structure) of the m-particle spaces. The
embedding algebra is U(3Q) o G o G1 ® SO(3) with SO(3) generating spin S. Thus
BEGOE(1+2)-p is defined by the operator

H=h)+ A (V0@ + A {7120} + 4, {7572 (2)}. (G2)

The sp levels defined by k(1) will be triply degenerate. The action of the Hamiltonian
operator defined by Eq. (G2) on (m;, mg, mg) basis states with fixed-(m, Ms = M, g’i")
generates the ensemble in (m, Ms) spaces. It is important to note that the construc-
tion of the m-particle H matrix in fixed-(m, Mg = Mg"i "y spaces reduces to the prob-
lem of BEGOE(1+2) for spinless boson systems and hence Egs. (1.3.1)- (1.3.3) of
Chapter 1 will apply. Then the §? operator is used for projecting states with good
S. Therefore, BEGOE(1+2)-p ensemble is defined by five parameters (2, m, A, A1, A2)
with A; in units of A. Finally, it is important to mention that it is also possible to
study the pairing symmetry in the space defined by BEGOE(1+2)-p ensemble. For
this, there are two possible algebras (each defining a particular type of pairing),
UBQ) o [UKQ) o SOQ)] & [UB) 2 SO3)] and UBQ) > SOBQ) o SOK) ® SO3)
and they can be studied in detail by extending the results for IBM-3 model in nu-
clear structure where Q = 6 [Ga-99, Ko-96]. Exploiting the group chain U(3Q) >
U(Q) ® [U(3) > SO(3)], it is possible to write the dimension formulas for the H ma-

trices for a given (m, S) as it was done in Sec. 4.2.3 for SU(4) — ST reductions.
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