List of Figures

Figure 1.1	Spectral Range of Spectroscopic methods used in spectroscopy	20
Figure 2.1	Schematic Diagram of an Infrared Spectrophotometer	47
Figure 2.2	Analysis of IR spectroscopy data	47
Figure 2.3	Different molecular orbital transitions	49
Figure 2.4	Essential elements of UV-Vis Spectrophotometer	50
Figure 2.5	Schematic Diagram of UV-Vis Spectrophotometer	52
Figure 2.6	Tauc's plot of Indirect and Direct energy band gap	54
Figure 2.7	Energy level diagram of the states involved in Raman signal.	56
Figure 2.8	Scheme of Raman Spectrometer	58
Figure 2.9	A typical stress versus strain curve	60
Figure 2.10	Cross section of Power-compensation DSC	62
Figure 2.11	Cross section of main components of a typical heat-flux DSC cell.	63
Figure 2.12	A typical DSC curve for polymer	64
Figure 2.13	Scheme of Thermal gravimetric analysis	66
Figure 2.14	A typical thermal degradation TGA curve	67
Figure 2.15	Cross section and lab image of Scanning electron microscope	68
Figure 3.1	FTIR Spectra of pure PVC, pure PMMA and Their blends (a) in the range 600 2000 cm ⁻¹ (b) in the range 2500 3300 cm ⁻¹	83
Figure 3.2	Plot of (a) Absorption coefficient (α) vs Wavelength (λ), (b) Absorption coefficient (α) vs Photon Energy (hv), (c) (α hv) ² vs hv, (d) (α hv) ^{1/2} vs hv	85
Figure 3.3	Raman Spectra of Pure PVC, Pure PMMA and their blends (a) in the C-Cl stretching region of PVC (b) in the C=O stretching region of PMMA	86

Figure 3.4	Variation in Ultimate tensile strength, Stiffness, Young's Modulus, stress at peak, Elongation at break, as a function of PMMA content	88
Figure 3.5	(a) TG of pure PVC, pure PMMA and their blends (b) Derivative TG of pure PVC, pure PMMA and their blends	90
Figure 3.6	Scanning Electron Micrograph of (a) Pure PVC (b) Pure PMMA (c) 80/20 (d) 60/40 (e) 40/60	93
Figure 4.1	FTIR Spectra of pure PAM, pure PVA, 70/30, 50/50 and 3070 blend ratio (a) in the region of 600-1800 cm ^{-1} (b) in the region of 2500-3800 cm ^{-1}	103
Figure 4.2	Deconvolution spectra of pure PAM, pure PVA, 70/30, 50/50 and 3070 blend ratio (a) band in the region of 1500-1800 cm ⁻¹ (b) band in the region of 2600- 3700 cm ⁻¹	104
Figure 4.3	Plot of (a) Absorption coefficient (α) vs Wavelength (λ), (b) Absorption coefficient (α) vs Photon Energy (hv), (c) (α hv) ² vs hv, (d) (α hv) ^{1/2} vs hv	106
Figure4.4	Raman Spectra of pure PAM, pure PVA, 70/30, 50/50 and 3070 blend ratio (a) in the region of 600-1800 cm ⁻¹ (b) in the region of 2700-3600 cm ⁻¹	109
Figure 4.5	, Variation in (a) Max load, Ultimate tensile strength, Young's Modulus, stress at break (b) Elongation at break, Stiffness as a function of PAM/PVA content	111
Figure 4.6	(a) TG of pure PAM, pure PVA and blends (b) Dr TG of pure PAM, pure PVA and blends	112
Figure 4.7	Scanning Electron Micrograph of (a) Pure PAM (b) Pure PVA	114
Figure 4.8	Scanning Electron Micrograph of (a) 70/30 (b) 50/50 (c) 30/70	115
Figure 5.1	FTIR Spectra of Pure and blend polymers (a) in the region of 600-3800 cm ⁻¹ (b) in the region of 1400-1800 cm ⁻¹	123
Figure 5.2	Plot of (a) Absorption coefficient (α) vs Wavelength (λ), (b) Absorption coefficient (α) vs Photon Energy ($h\nu$), (c) ($\alpha h\nu$) ² vs $h\nu$, (d) ($\alpha h\nu$) ^{1/2} vs $h\nu$, (e) In α vs Photon Energy ($h\nu$)	128
Figure 5.3	Raman spectra of pure and blend films in the range (a) 600-2000 cm ⁻¹ (b) 2700-3500 cm ⁻¹	131

.

Figure 5.4	Variation in Max load, Ultimate tensile strength, Young's Modulus, stress at break, Elongation at break, Stiffness as a function of PAM/PEO content	133
Figure 5.5	(a) TG of pure PAM, pure PEO and blends (b) Dr TG of pure PAM, pure PEO and blends	135-
Figure 5.6	(a) DSC curve of pure PAM, pure PEO and blends (b) Dependence of $\frac{1}{T_{m(PEO)}} - \frac{1}{T_{m(blend)}}$ with ϕ_{PAM}^2 for PAM/PEO blends	138
Figure 5.7	Scanning Electron Micrograph of (a) Pure PAM (b) 70/30 (c) 50/50 (d) 30/70 (e) Pure PEO	141
Figure 6.1	FTIR Spectra of pure PMMA and Their composites (a) in the range 600 – 1800 cm ⁻¹ (b) in the range 2800 – 3000 cm ⁻¹	153
Figure 6.2	Plot of (a) Absorption coefficient (α) vs Wavelength (λ), (b) Absorption coefficient (α) vs Photon Energy (hv), (c) (α hv) ² vs hv, (d) (α hv) ^{1/2} vs hv	157
Figure 6.3	Variation in Ultimate tensile strength, stress at break, Stiffness, Young's Modulus, Elongation at break as a function of TiO2 content	. 158
Figure 6.4	DSC curve for PMMA and its composites.	159
Figure 6.5	(a) TG of pure PMMA and their composites (b) Derivative TG of pure PMMA and their composites	161
Figure 6.6	Scanning Electron Micrograph of (a) Pure PMMA (b) 0.03% (c) 0.1% (d) 0.5% of TiO ₂	162

•.